ValueTracking.cpp revision 5034dd318a9dfa0dc45a3ac01e58e60f2aa2498d
1173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
3173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//                     The LLVM Compiler Infrastructure
4173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
5173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file is distributed under the University of Illinois Open Source
6173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// License. See LICENSE.TXT for details.
7173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
8173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
9173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
10173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file contains routines that help analyze properties that chains of
11173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// computations have.
12173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
13173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
14173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
15173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Analysis/ValueTracking.h"
16173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Constants.h"
17173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Instructions.h"
180ff39b3feb10477c224138156941234f5fa46f58Evan Cheng#include "llvm/GlobalVariable.h"
19307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman#include "llvm/GlobalAlias.h"
20173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/IntrinsicInst.h"
2176f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson#include "llvm/LLVMContext.h"
22ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman#include "llvm/Operator.h"
230582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling#include "llvm/Target/TargetData.h"
24173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h"
25173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/MathExtras.h"
2625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher#include "llvm/ADT/SmallPtrSet.h"
2732a9e7a2654c4aab2e617fbe53140492b3d38066Chris Lattner#include <cstring>
28173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerusing namespace llvm;
29173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
30173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeMaskedBits - Determine which of the bits specified in Mask are
31173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// known to be either zero or one and return them in the KnownZero/KnownOne
32173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
33173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// processing.
34173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
35173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// we cannot optimize based on the assumption that it is zero without changing
36173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// it to be an explicit zero.  If we don't change it to zero, other code could
37173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// optimized based on the contradictory assumption that it is non-zero.
38173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// Because instcombine aggressively folds operations with undef args anyway,
39173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this won't lose us code quality.
40cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
41cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
42cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
43cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
44cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
45cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
46173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnervoid llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
47173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             APInt &KnownZero, APInt &KnownOne,
48846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
499004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  const unsigned MaxDepth = 6;
50173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(V && "No Value?");
519004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  assert(Depth <= MaxDepth && "Limit Search Depth");
5279abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner  unsigned BitWidth = Mask.getBitWidth();
531df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
54b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         && "Not integer or pointer type!");
556de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((!TD ||
566de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
57b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         (!V->getType()->isIntOrIntVectorTy() ||
586de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          V->getType()->getScalarSizeInBits() == BitWidth) &&
59173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownZero.getBitWidth() == BitWidth &&
60173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownOne.getBitWidth() == BitWidth &&
61173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "V, Mask, KnownOne and KnownZero should have same BitWidth");
62173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
63173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
64173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We know all of the bits for a constant!
65173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = CI->getValue() & Mask;
66173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = ~KnownOne & Mask;
67173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
68173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
696de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Null and aggregate-zero are all-zeros.
706de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (isa<ConstantPointerNull>(V) ||
716de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      isa<ConstantAggregateZero>(V)) {
727a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
73173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = Mask;
74173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
75173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
766de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Handle a constant vector by taking the intersection of the known bits of
776de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // each element.
786de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
797a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownZero.setAllBits(); KnownOne.setAllBits();
806de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
816de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
826de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
836de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman                        TD, Depth);
846de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownZero &= KnownZero2;
856de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownOne &= KnownOne2;
866de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    }
876de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    return;
886de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  }
89173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // The address of an aligned GlobalValue has trailing zeros.
90173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
91173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = GV->getAlignment();
92004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
93004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      const Type *ObjectType = GV->getType()->getElementType();
94004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // If the object is defined in the current Module, we'll be giving
95004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // it the preferred alignment. Otherwise, we have to assume that it
96004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // may only have the minimum ABI alignment.
97004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      if (!GV->isDeclaration() && !GV->mayBeOverridden())
98004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getPrefTypeAlignment(ObjectType);
99004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      else
100004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getABITypeAlignment(ObjectType);
101004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    }
102173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
103173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
104173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
105173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else
1067a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      KnownZero.clearAllBits();
1077a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
108173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
109173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
110307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
111307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // the bits of its aliasee.
112307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
113307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    if (GA->mayBeOverridden()) {
1147a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      KnownZero.clearAllBits(); KnownOne.clearAllBits();
115307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    } else {
116307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman      ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
117307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman                        TD, Depth+1);
118307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    }
119307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    return;
120307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  }
121173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1227a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad  KnownZero.clearAllBits(); KnownOne.clearAllBits();   // Start out not knowing anything.
123173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1249004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  if (Depth == MaxDepth || Mask == 0)
125173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;  // Limit search depth.
126173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
127ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *I = dyn_cast<Operator>(V);
128173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (!I) return;
129173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
130173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
131ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (I->getOpcode()) {
132173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
133173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And: {
134173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
135173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
136173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownZero);
137173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
138173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
139173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
140173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
141173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
142173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
143173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
144173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
145173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= KnownZero2;
146173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
147173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
148173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or: {
149173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
150173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownOne);
151173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
152173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
153173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
154173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
155173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
156173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
157173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
158173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
159173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne |= KnownOne2;
160173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
161173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
162173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor: {
163173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
164173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
165173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
166173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
167173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
168173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
169173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the LHS & RHS.
170173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
171173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in only one of the LHS, RHS.
172173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
173173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = KnownZeroOut;
174173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
175173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
176173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Mul: {
177173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
178173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
179173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
180173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
181173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
182173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
183173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
184173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If low bits are zero in either operand, output low known-0 bits.
185173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Also compute a conserative estimate for high known-0 bits.
186173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // More trickiness is possible, but this is sufficient for the
187173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // interesting case of alignment computation.
1887a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
189173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = KnownZero.countTrailingOnes() +
190173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      KnownZero2.countTrailingOnes();
191173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
192173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               KnownZero2.countLeadingOnes(),
193173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               BitWidth) - BitWidth;
194173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
195173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    TrailZ = std::min(TrailZ, BitWidth);
196173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    LeadZ = std::min(LeadZ, BitWidth);
197173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
198173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                APInt::getHighBitsSet(BitWidth, LeadZ);
199173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= Mask;
200173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
201173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
202173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UDiv: {
203173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // For the purposes of computing leading zeros we can conservatively
204173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // treat a udiv as a logical right shift by the power of 2 known to
205173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // be less than the denominator.
206173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
207173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0),
208173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
209173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ = KnownZero2.countLeadingOnes();
210173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
2117a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne2.clearAllBits();
2127a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownZero2.clearAllBits();
213173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1),
214173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
215173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
216173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (RHSUnknownLeadingOnes != BitWidth)
217173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      LeadZ = std::min(BitWidth,
218173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
219173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
220173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
221173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
222173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
223173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
224173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
225173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
226173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
227173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
228173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
229173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
230173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Only known if known in both the LHS and RHS.
231173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
232173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
233173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
234173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPTrunc:
235173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPExt:
236173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToUI:
237173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToSI:
238173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SIToFP:
239173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UIToFP:
240173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return; // Can't work with floating point.
241173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PtrToInt:
242173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::IntToPtr:
243173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We can't handle these if we don't know the pointer size.
244173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (!TD) return;
245173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FALL THROUGH and handle them the same as zext/trunc.
246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::ZExt:
247173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc: {
248b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
249b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
250b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth;
251173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Note that we handle pointer operands here because of inttoptr/ptrtoint
252173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // which fall through here.
2531df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    if (SrcTy->isPointerTy())
254b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
255b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    else
256b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = SrcTy->getScalarSizeInBits();
257b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
25840f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
25940f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
26040f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
261173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
262173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
26340f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zextOrTrunc(BitWidth);
26440f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zextOrTrunc(BitWidth);
265173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Any top bits are known to be zero.
266173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (BitWidth > SrcBitWidth)
267173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
268173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
269173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
270173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::BitCast: {
271173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
2721df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2730dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // TODO: For now, not handling conversions like:
2740dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // (bitcast i64 %x to <2 x i32>)
2751df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands        !I->getType()->isVectorTy()) {
276173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
277173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
278173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
279173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
280173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
281173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
282173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt: {
283173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Compute the bits in the result that are not present in the input.
284b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
285173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
28640f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    APInt MaskIn = Mask.trunc(SrcBitWidth);
28740f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.trunc(SrcBitWidth);
28840f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.trunc(SrcBitWidth);
289173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
290173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
291173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
29240f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zext(BitWidth);
29340f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zext(BitWidth);
294173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
295173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If the sign bit of the input is known set or clear, then we know the
296173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // top bits of the result.
297173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
298173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
299173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
300173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
301173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
302173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
303173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
304173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
305173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
306173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
307173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.lshr(ShiftAmt));
308173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
309173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
310173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
311173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero <<= ShiftAmt;
312173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  <<= ShiftAmt;
313173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
314173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
315173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
316173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
317173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::LShr:
318173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
319173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
320173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
321173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
322173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
323173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Unsigned shift right.
324173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
325173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
326173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
327ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
328173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
329173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
330173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // high bits known zero.
331173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
332173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
333173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
334173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
335173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
336173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
337173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
338173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
339173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
340173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
341173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Signed shift right.
342173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
343173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
344173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
345ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
346173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
347173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
348173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
349173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
350173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
351173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= HighBits;
352173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
353173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= HighBits;
354173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
355173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
356173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
357173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub: {
358173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
359173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We know that the top bits of C-X are clear if X contains less bits
360173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // than C (i.e. no wrap-around can happen).  For example, 20-X is
361173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // positive if we can prove that X is >= 0 and < 16.
362173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (!CLHS->getValue().isNegative()) {
363173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
364173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // NLZ can't be BitWidth with no sign bit
365173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
366173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
367173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
368173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
369173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If all of the MaskV bits are known to be zero, then we know the
370173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // output top bits are zero, because we now know that the output is
371173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // from [0-C].
372173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero2 & MaskV) == MaskV) {
373173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
374173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Top bits known zero.
375173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
376173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
377173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
378173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
379173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
380173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // fall through
381173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add: {
382ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky    // If one of the operands has trailing zeros, then the bits that the
3833925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // other operand has in those bit positions will be preserved in the
3843925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // result. For an add, this works with either operand. For a subtract,
3853925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // this only works if the known zeros are in the right operand.
3863925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
3873925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
3883925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                       BitWidth - Mask.countLeadingZeros());
3893925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
390173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
3913925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    assert((LHSKnownZero & LHSKnownOne) == 0 &&
3923925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman           "Bits known to be one AND zero?");
3933925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
394173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
395173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
396173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
397173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
3983925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
399173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
4003925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // Determine which operand has more trailing zeros, and use that
4013925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // many bits from the other operand.
4023925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    if (LHSKnownZeroOut > RHSKnownZeroOut) {
403ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman      if (I->getOpcode() == Instruction::Add) {
4043925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
4053925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= KnownZero2 & Mask;
4063925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownOne  |= KnownOne2 & Mask;
4073925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      } else {
4083925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // If the known zeros are in the left operand for a subtract,
4093925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // fall back to the minimum known zeros in both operands.
4103925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= APInt::getLowBitsSet(BitWidth,
4113925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                          std::min(LHSKnownZeroOut,
4123925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                                   RHSKnownZeroOut));
4133925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      }
4143925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
4153925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
4163925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownZero |= LHSKnownZero & Mask;
4173925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownOne  |= LHSKnownOne & Mask;
4183925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    }
419173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
420173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
421173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SRem:
422173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
423cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      APInt RA = Rem->getValue().abs();
424cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      if (RA.isPowerOf2()) {
425cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        APInt LowBits = RA - 1;
426173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
427173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
428173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
429173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
430cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // The low bits of the first operand are unchanged by the srem.
431cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownZero = KnownZero2 & LowBits;
432cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownOne = KnownOne2 & LowBits;
433cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
434cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is non-negative or has all low bits zero, then
435cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all zero.
436173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
437cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownZero |= ~LowBits;
438173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
439cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is negative and not all low bits are zero, then
440cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all one.
441cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
442cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownOne |= ~LowBits;
443cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
444cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownZero &= Mask;
445cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownOne &= Mask;
446173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
447ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
448173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
449173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
450173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
451173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::URem: {
452173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
453173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
454173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2()) {
455173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = (RA - 1);
456173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits & Mask;
457173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= ~LowBits & Mask;
458173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
459173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
460ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
461173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
462173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
463173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
464173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
465173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Since the result is less than or equal to either operand, any leading
466173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // zero bits in either operand must also exist in the result.
467173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
468173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
469173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
470173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
471173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
472173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
47379abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
474173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                KnownZero2.countLeadingOnes());
4757a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
476173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
477173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
478173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
479173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
480a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez  case Instruction::Alloca: {
4817b929dad59785f62a66f7c58615082f98441e95eVictor Hernandez    AllocaInst *AI = cast<AllocaInst>(V);
482173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = AI->getAlignment();
483a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez    if (Align == 0 && TD)
484a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
485173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
486173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
487173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
488173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
489173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
490173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
491173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::GetElementPtr: {
492173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Analyze all of the subscripts of this getelementptr instruction
493173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // to determine if we can prove known low zero bits.
494173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalMask = APInt::getAllOnesValue(BitWidth);
495173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
496173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), LocalMask,
497173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      LocalKnownZero, LocalKnownOne, TD, Depth+1);
498173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
499173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
500173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    gep_type_iterator GTI = gep_type_begin(I);
501173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
502173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Value *Index = I->getOperand(i);
503173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
504173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle struct member offset arithmetic.
505173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!TD) return;
506173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const StructLayout *SL = TD->getStructLayout(STy);
507173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
508173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t Offset = SL->getElementOffset(Idx);
509173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
510173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(Offset));
511173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      } else {
512173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle array index arithmetic.
513173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const Type *IndexedTy = GTI.getIndexedType();
514173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!IndexedTy->isSized()) return;
5156de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
516777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
517173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalMask = APInt::getAllOnesValue(GEPOpiBits);
518173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
519173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(Index, LocalMask,
520173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          LocalKnownZero, LocalKnownOne, TD, Depth+1);
521173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
52279abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                          unsigned(CountTrailingZeros_64(TypeSize) +
52379abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                                   LocalKnownZero.countTrailingOnes()));
524173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
525173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
526173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
527173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
528173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
529173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
530173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PHI: {
531173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    PHINode *P = cast<PHINode>(I);
532173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle the case of a simple two-predecessor recurrence PHI.
533173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // There's a lot more that could theoretically be done here, but
534173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // this is sufficient to catch some interesting cases.
535173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (P->getNumIncomingValues() == 2) {
536173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      for (unsigned i = 0; i != 2; ++i) {
537173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *L = P->getIncomingValue(i);
538173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *R = P->getIncomingValue(!i);
539ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        Operator *LU = dyn_cast<Operator>(L);
540173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!LU)
541173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          continue;
542ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        unsigned Opcode = LU->getOpcode();
543173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Check for operations that have the property that if
544173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // both their operands have low zero bits, the result
545173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // will have low zero bits.
546173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (Opcode == Instruction::Add ||
547173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Sub ||
548173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::And ||
549173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Or ||
550173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Mul) {
551173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LL = LU->getOperand(0);
552173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LR = LU->getOperand(1);
553173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Find a recurrence.
554173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          if (LL == I)
555173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LR;
556173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else if (LR == I)
557173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LL;
558173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else
559173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            break;
560173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Ok, we have a PHI of the form L op= R. Check for low
561173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // zero bits.
562173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          APInt Mask2 = APInt::getAllOnesValue(BitWidth);
563173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
564173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Mask2 = APInt::getLowBitsSet(BitWidth,
565173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                       KnownZero2.countTrailingOnes());
566c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
567c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          // We need to take the minimum number of known bits
568c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
569c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
570c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
571173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = Mask &
572173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      APInt::getLowBitsSet(BitWidth,
573c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                           std::min(KnownZero2.countTrailingOnes(),
574c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                                    KnownZero3.countTrailingOnes()));
575173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          break;
576173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
577173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
578173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
5799004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5809004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // Otherwise take the unions of the known bit sets of the operands,
5819004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // taking conservative care to avoid excessive recursion.
5829004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
5839004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownZero = APInt::getAllOnesValue(BitWidth);
5849004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownOne = APInt::getAllOnesValue(BitWidth);
5859004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
5869004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Skip direct self references.
5879004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (P->getIncomingValue(i) == P) continue;
5889004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5899004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero2 = APInt(BitWidth, 0);
5909004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne2 = APInt(BitWidth, 0);
5919004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Recurse, but cap the recursion to one level, because we don't
5929004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // want to waste time spinning around in loops.
5939004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
5949004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman                          KnownZero2, KnownOne2, TD, MaxDepth-1);
5959004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero &= KnownZero2;
5969004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne &= KnownOne2;
5979004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // If all bits have been ruled out, there's no need to check
5989004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // more operands.
5999004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (!KnownZero && !KnownOne)
6009004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman          break;
6019004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      }
6029004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    }
603173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
604173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
605173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Call:
606173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
607173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      switch (II->getIntrinsicID()) {
608173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      default: break;
609173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctpop:
610173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctlz:
611173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::cttz: {
612173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned LowBits = Log2_32(BitWidth)+1;
613173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
614173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
615173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
616173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
617173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
618173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
619173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
620173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
621173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
622173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
623173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this predicate to simplify operations downstream.  Mask is known to be zero
624173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// for bits that V cannot have.
625cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
626cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
627cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
628cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
629cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
630cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
631173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
632846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
633173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
634173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
635173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
636173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return (KnownZero & Mask) == Mask;
637173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
638173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
639173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
640173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
641173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeNumSignBits - Return the number of times the sign bit of the
642173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// register is replicated into the other bits.  We know that at least 1 bit
643173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// is always equal to the sign bit (itself), but other cases can give us
644173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// information.  For example, immediately after an "ashr X, 2", we know that
645173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// the top 3 bits are all equal to each other, so we return 3.
646173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
647173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// 'Op' must have a scalar integer type.
648173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
649846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohmanunsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
650846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                                  unsigned Depth) {
651b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
652bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "ComputeNumSignBits requires a TargetData object to operate "
653bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "on non-integer values!");
6546de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  const Type *Ty = V->getType();
655bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
656bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman                         Ty->getScalarSizeInBits();
657173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned Tmp, Tmp2;
658173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned FirstAnswer = 1;
659173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
660d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // Note that ConstantInt is handled by the general ComputeMaskedBits case
661d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // below.
662d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner
663173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6)
664173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return 1;  // Limit search depth.
665173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
666ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *U = dyn_cast<Operator>(V);
667ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (Operator::getOpcode(V)) {
668173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
669173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt:
67069a008075b29fbe0644ccbeecf1418ef8cca5e24Mon P Wang    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
671173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
672173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
673173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
674173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
675173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // ashr X, C   -> adds C sign bits.
676173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
677173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp += C->getZExtValue();
678173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (Tmp > TyBits) Tmp = TyBits;
679173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
680173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return Tmp;
681173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
682173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
683173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // shl destroys sign bits.
684173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
685173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (C->getZExtValue() >= TyBits ||      // Bad shift.
686173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
687173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return Tmp - C->getZExtValue();
688173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
689173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
690173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And:
691173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or:
692173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor:    // NOT is handled here.
693173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Logical binary ops preserve the number of sign bits at the worst.
694173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
695173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp != 1) {
696173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
697173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      FirstAnswer = std::min(Tmp, Tmp2);
698173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We computed what we know about the sign bits as our first
699173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // answer. Now proceed to the generic code that uses
700173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // ComputeMaskedBits, and pick whichever answer is better.
701173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
702173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
703173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
704173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
705173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
706173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
707173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
708173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return std::min(Tmp, Tmp2);
709173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
710173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add:
711173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Add can have at most one carry bit.  Thus we know that the output
712173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
713173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
714173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
715173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
716173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Special case decrementing a value (ADD X, -1):
7170001e56f15215ae4bc5fffb82eec5c4828b888f0Dan Gohman    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
718173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CRHS->isAllOnesValue()) {
719173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
720173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
721173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
722173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
723173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
724173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
725173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
726173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
727173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
728173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
729173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If we are subtracting one from a positive number, there is no carry
730173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // out of the result.
731173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
732173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp;
733173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
734173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
735173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
736173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
7378d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
738173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
739173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub:
740173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
741173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
742173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
743173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle NEG.
744173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
745173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CLHS->isNullValue()) {
746173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
747173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
748173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
749173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
750173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
751173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
752173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
753173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
754173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
755173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be positive (the sign bit is known clear),
756173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // the output of the NEG has the same number of sign bits as the input.
757173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
758173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp2;
759173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
760173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Otherwise, we treat this like a SUB.
761173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
762173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
763173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Sub can have at most one carry bit.  Thus we know that the output
764173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
765173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
766173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
7678d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
7688d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
7698d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  case Instruction::PHI: {
7708d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    PHINode *PN = cast<PHINode>(U);
7718d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Don't analyze large in-degree PHIs.
7728d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    if (PN->getNumIncomingValues() > 4) break;
7738d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
7748d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Take the minimum of all incoming values.  This can't infinitely loop
7758d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // because of our depth threshold.
7768d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
7778d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
7788d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      if (Tmp == 1) return Tmp;
7798d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      Tmp = std::min(Tmp,
7800af20d847ac89f797d613a8a4fc3e7127ccb0b36Evan Cheng                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
7818d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    }
7828d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return Tmp;
7838d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  }
7848d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
785173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc:
786173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FIXME: it's tricky to do anything useful for this, but it is an important
787173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // case for targets like X86.
788173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
789173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
790173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
791173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Finally, if we can prove that the top bits of the result are 0's or 1's,
792173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // use this information.
793173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
794173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt Mask = APInt::getAllOnesValue(TyBits);
795173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
796173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
797173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (KnownZero.isNegative()) {        // sign bit is 0
798173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownZero;
799173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else if (KnownOne.isNegative()) {  // sign bit is 1;
800173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownOne;
801173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else {
802173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Nothing known.
803173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return FirstAnswer;
804173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
805173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
806173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
807173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // the number of identical bits in the top of the input value.
808173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask = ~Mask;
809173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask <<= Mask.getBitWidth()-TyBits;
810173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Return # leading zeros.  We use 'min' here in case Val was zero before
811173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // shifting.  We don't want to return '64' as for an i32 "0".
812173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
813173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
814833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
8152b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// ComputeMultiple - This function computes the integer multiple of Base that
8162b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// equals V.  If successful, it returns true and returns the multiple in
8173dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman/// Multiple.  If unsuccessful, it returns false. It looks
8182b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// through SExt instructions only if LookThroughSExt is true.
8192b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandezbool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
8203dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           bool LookThroughSExt, unsigned Depth) {
8212b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  const unsigned MaxDepth = 6;
8222b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8233dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  assert(V && "No Value?");
8242b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  assert(Depth <= MaxDepth && "Limit Search Depth");
825b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
8262b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8272b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  const Type *T = V->getType();
8282b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8293dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  ConstantInt *CI = dyn_cast<ConstantInt>(V);
8302b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8312b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 0)
8322b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return false;
8332b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8342b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 1) {
8352b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = V;
8362b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
8372b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
8382b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8392b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
8402b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Constant *BaseVal = ConstantInt::get(T, Base);
8412b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CO && CO == BaseVal) {
8422b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // Multiple is 1.
8432b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, 1);
8442b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
8452b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
8462b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8472b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CI && CI->getZExtValue() % Base == 0) {
8482b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
8492b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
8502b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
8512b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8522b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Depth == MaxDepth) return false;  // Limit search depth.
8532b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8542b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Operator *I = dyn_cast<Operator>(V);
8552b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (!I) return false;
8562b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8572b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  switch (I->getOpcode()) {
8582b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  default: break;
85911fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::SExt:
8602b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (!LookThroughSExt) return false;
8612b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // otherwise fall through to ZExt
86211fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::ZExt:
8633dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman    return ComputeMultiple(I->getOperand(0), Base, Multiple,
8643dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           LookThroughSExt, Depth+1);
8652b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Shl:
8662b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Mul: {
8672b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op0 = I->getOperand(0);
8682b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op1 = I->getOperand(1);
8692b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8702b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (I->getOpcode() == Instruction::Shl) {
8712b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
8722b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (!Op1CI) return false;
8732b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      // Turn Op0 << Op1 into Op0 * 2^Op1
8742b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      APInt Op1Int = Op1CI->getValue();
8752b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
876a99793c5ea24dd3839f4925b89b1f6acfcb24604Jay Foad      APInt API(Op1Int.getBitWidth(), 0);
8777a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      API.setBit(BitToSet);
878a99793c5ea24dd3839f4925b89b1f6acfcb24604Jay Foad      Op1 = ConstantInt::get(V->getContext(), API);
8792b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
8802b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8812b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Mul0 = NULL;
882e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
883e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner      if (Constant *Op1C = dyn_cast<Constant>(Op1))
884e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
885e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op1C->getType()->getPrimitiveSizeInBits() <
886e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
887e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
888e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op1C->getType()->getPrimitiveSizeInBits() >
889e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
890e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
891e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner
892e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
893e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          Multiple = ConstantExpr::getMul(MulC, Op1C);
894e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          return true;
895e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        }
8962b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
8972b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
8982b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul0CI->getValue() == 1) {
8992b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op1, so return Op1
9002b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op1;
9012b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
9022b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
9032b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
9042b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
905e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    Value *Mul1 = NULL;
906e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
907e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner      if (Constant *Op0C = dyn_cast<Constant>(Op0))
908e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
909e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op0C->getType()->getPrimitiveSizeInBits() <
910e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
911e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
912e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op0C->getType()->getPrimitiveSizeInBits() >
913e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
914e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
915e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner
916e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
917e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          Multiple = ConstantExpr::getMul(MulC, Op0C);
918e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          return true;
919e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        }
9202b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
9212b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
9222b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul1CI->getValue() == 1) {
9232b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op0, so return Op0
9242b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op0;
9252b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
9262b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
9272b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
9282b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
9292b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
9302b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
9312b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  // We could not determine if V is a multiple of Base.
9322b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  return false;
9332b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez}
9342b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
935833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// CannotBeNegativeZero - Return true if we can prove that the specified FP
936833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// value is never equal to -0.0.
937833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
938833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// NOTE: this function will need to be revisited when we support non-default
939833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// rounding modes!
940833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
941833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattnerbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
942833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
943833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return !CFP->getValueAPF().isNegZero();
944833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
945833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (Depth == 6)
946833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return 1;  // Limit search depth.
947833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
948ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  const Operator *I = dyn_cast<Operator>(V);
949833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I == 0) return false;
950833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
951833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
952ae3a0be92e33bc716722aa600983fc1535acb122Dan Gohman  if (I->getOpcode() == Instruction::FAdd &&
953833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      isa<ConstantFP>(I->getOperand(1)) &&
954833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      cast<ConstantFP>(I->getOperand(1))->isNullValue())
955833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
956833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
957833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // sitofp and uitofp turn into +0.0 for zero.
958833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
959833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
960833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
961833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
962833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    // sqrt(-0.0) = -0.0, no other negative results are possible.
963833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (II->getIntrinsicID() == Intrinsic::sqrt)
96471339c965ca6268b9bff91213364783c3d06f666Gabor Greif      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
965833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
966833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const CallInst *CI = dyn_cast<CallInst>(I))
967833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (const Function *F = CI->getCalledFunction()) {
968833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      if (F->isDeclaration()) {
969f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        // abs(x) != -0.0
970f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "abs") return true;
9719d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        // fabs[lf](x) != -0.0
9729d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabs") return true;
9739d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsf") return true;
9749d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsl") return true;
9759d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
9769d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen            F->getName() == "sqrtl")
97771339c965ca6268b9bff91213364783c3d06f666Gabor Greif          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
978833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      }
979833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    }
980833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
981833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  return false;
982833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner}
983833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
984b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This is the recursive version of BuildSubAggregate. It takes a few different
985b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// arguments. Idxs is the index within the nested struct From that we are
986b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// looking at now (which is of type IndexedType). IdxSkip is the number of
987b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// indices from Idxs that should be left out when inserting into the resulting
988b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct. To is the result struct built so far, new insertvalue instructions
989b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// build on that.
9907db949df789383acce98ef072f08794fdd5bd04eDan Gohmanstatic Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
9917db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                SmallVector<unsigned, 10> &Idxs,
9927db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                unsigned IdxSkip,
9937db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
994b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
995b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (STy) {
9960a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // Save the original To argument so we can modify it
9970a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    Value *OrigTo = To;
998b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // General case, the type indexed by Idxs is a struct
999b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1000b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Process each struct element recursively
1001b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.push_back(i);
10020a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      Value *PrevTo = To;
1003710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1004ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1005b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.pop_back();
10060a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      if (!To) {
10070a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Couldn't find any inserted value for this index? Cleanup
10080a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        while (PrevTo != OrigTo) {
10090a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
10100a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          PrevTo = Del->getAggregateOperand();
10110a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          Del->eraseFromParent();
10120a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        }
10130a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Stop processing elements
10140a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        break;
10150a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      }
1016b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
10170a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // If we succesfully found a value for each of our subaggregates
10180a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    if (To)
10190a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      return To;
1020b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
10210a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
10220a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // the struct's elements had a value that was inserted directly. In the latter
10230a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // case, perhaps we can't determine each of the subelements individually, but
10240a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // we might be able to find the complete struct somewhere.
10250a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
10260a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Find the value that is at that particular spot
1027ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky  Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
10280a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
10290a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  if (!V)
10300a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    return NULL;
10310a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
10320a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Insert the value in the new (sub) aggregrate
10330a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
10340a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman                                       Idxs.end(), "tmp", InsertBefore);
1035b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1036b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1037b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This helper takes a nested struct and extracts a part of it (which is again a
1038b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct) into a new value. For example, given the struct:
1039b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { a, { b, { c, d }, e } }
1040b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// and the indices "1, 1" this returns
1041b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { c, d }.
1042b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
10430a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// It does this by inserting an insertvalue for each element in the resulting
10440a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// struct, as opposed to just inserting a single struct. This will only work if
10450a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// each of the elements of the substruct are known (ie, inserted into From by an
10460a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// insertvalue instruction somewhere).
1047b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
10480a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// All inserted insertvalue instructions are inserted before InsertBefore
10497db949df789383acce98ef072f08794fdd5bd04eDan Gohmanstatic Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
1050ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                                const unsigned *idx_end,
10517db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
1052977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman  assert(InsertBefore && "Must have someplace to insert!");
1053710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman  const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1054710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_begin,
1055710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_end);
10569e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson  Value *To = UndefValue::get(IndexedType);
1057b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
1058b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  unsigned IdxSkip = Idxs.size();
1059b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1060ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1061b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1062b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1063710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1064710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// the scalar value indexed is already around as a register, for example if it
1065710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// were inserted directly into the aggregrate.
10660a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman///
10670a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// If InsertBefore is not null, this function will duplicate (modified)
10680a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// insertvalues when a part of a nested struct is extracted.
1069b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
1070ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                         const unsigned *idx_end, Instruction *InsertBefore) {
1071b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Nothing to index? Just return V then (this is useful at the end of our
1072b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // recursion)
1073b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (idx_begin == idx_end)
1074b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return V;
1075b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // We have indices, so V should have an indexable type
10761df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
1077b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Not looking at a struct or array?");
1078b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
1079b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Invalid indices for type?");
1080b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const CompositeType *PTy = cast<CompositeType>(V->getType());
108176f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson
1082b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (isa<UndefValue>(V))
10839e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson    return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
1084b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_begin,
1085b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_end));
1086b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (isa<ConstantAggregateZero>(V))
1087a7235ea7245028a0723e8ab7fd011386b3900777Owen Anderson    return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
108876f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_begin,
108976f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_end));
1090b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (Constant *C = dyn_cast<Constant>(V)) {
1091b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1092b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Recursively process this constant
109376f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson      return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
1094ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                               idx_end, InsertBefore);
1095b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1096b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Loop the indices for the insertvalue instruction in parallel with the
1097b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested indices
1098b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    const unsigned *req_idx = idx_begin;
1099710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1100710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++req_idx) {
11019954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      if (req_idx == idx_end) {
1102977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        if (InsertBefore)
11030a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // The requested index identifies a part of a nested aggregate. Handle
11040a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // this specially. For example,
11050a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
11060a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
11070a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = extractvalue {i32, { i32, i32 } } %B, 1
11080a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // This can be changed into
11090a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue {i32, i32 } undef, i32 10, 0
11100a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = insertvalue {i32, i32 } %A, i32 11, 1
11110a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // which allows the unused 0,0 element from the nested struct to be
11120a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // removed.
1113ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky          return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
1114977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        else
1115977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          // We can't handle this without inserting insertvalues
1116977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          return 0;
11179954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      }
1118b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1119b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // This insert value inserts something else than what we are looking for.
1120b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // See if the (aggregrate) value inserted into has the value we are
1121b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // looking for, then.
1122b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (*req_idx != *i)
1123710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman        return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
1124ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                                 InsertBefore);
1125b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
1126b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we end up here, the indices of the insertvalue match with those
1127b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested (though possibly only partially). Now we recursively look at
1128b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // the inserted value, passing any remaining indices.
1129710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
1130ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1131b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1132b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we're extracting a value from an aggregrate that was extracted from
1133b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // something else, we can extract from that something else directly instead.
1134b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // However, we will need to chain I's indices with the requested indices.
1135b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1136b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Calculate the number of indices required
1137b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    unsigned size = I->getNumIndices() + (idx_end - idx_begin);
1138b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Allocate some space to put the new indices in
11393faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    SmallVector<unsigned, 5> Idxs;
11403faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    Idxs.reserve(size);
1141b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add indices from the extract value instruction
1142710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
11433faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman         i != e; ++i)
11443faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
1145b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1146b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add requested indices
11473faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
11483faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
1149b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
11503faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    assert(Idxs.size() == size
1151710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman           && "Number of indices added not correct?");
1152b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
11533faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
1154ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1155b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
1156b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Otherwise, we don't know (such as, extracting from a function return value
1157b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // or load instruction)
1158b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return 0;
1159b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
11600ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
1161ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1162ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// it can be expressed as a base pointer plus a constant offset.  Return the
1163ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// base and offset to the caller.
1164ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris LattnerValue *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1165ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner                                              const TargetData &TD) {
1166ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  Operator *PtrOp = dyn_cast<Operator>(Ptr);
1167ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (PtrOp == 0) return Ptr;
1168ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1169ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // Just look through bitcasts.
1170ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (PtrOp->getOpcode() == Instruction::BitCast)
1171ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1172ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1173ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // If this is a GEP with constant indices, we can look through it.
1174ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1175ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1176ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1177ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  gep_type_iterator GTI = gep_type_begin(GEP);
1178ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1179ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner       ++I, ++GTI) {
1180ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    ConstantInt *OpC = cast<ConstantInt>(*I);
1181ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    if (OpC->isZero()) continue;
1182ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1183ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    // Handle a struct and array indices which add their offset to the pointer.
1184ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1185ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1186ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    } else {
1187ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1188ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner      Offset += OpC->getSExtValue()*Size;
1189ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    }
1190ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  }
1191ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1192ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // Re-sign extend from the pointer size if needed to get overflow edge cases
1193ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // right.
1194ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  unsigned PtrSize = TD.getPointerSizeInBits();
1195ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (PtrSize < 64)
1196ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1197ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1198ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1199ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner}
1200ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1201ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
12020ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// GetConstantStringInfo - This function computes the length of a
12030ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// null-terminated C string pointed to by V.  If successful, it returns true
12040ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// and returns the string in Str.  If unsuccessful, it returns false.
12050a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohmanbool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
12060a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman                                 uint64_t Offset,
12070582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling                                 bool StopAtNul) {
12080582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  // If V is NULL then return false;
12090582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (V == NULL) return false;
12100ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12110ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Look through bitcast instructions.
12120a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
12130582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
12140582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
12150ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // If the value is not a GEP instruction nor a constant expression with a
12160ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // GEP instruction, then return false because ConstantArray can't occur
12170ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // any other way
12180a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const User *GEP = 0;
12190a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
12200ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = GEPI;
12210a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
12220ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (CE->getOpcode() == Instruction::BitCast)
12230582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
12240582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (CE->getOpcode() != Instruction::GetElementPtr)
12250582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
12260ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = CE;
12270ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
12280ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12290ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GEP) {
12300ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the GEP has exactly three arguments.
12310582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (GEP->getNumOperands() != 3)
12320582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
12330582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
12340ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the index-ee is a pointer to array of i8.
12350ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
12360ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1237b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
12380582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
12390ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12400ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Check to make sure that the first operand of the GEP is an integer and
12410ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // has value 0 so that we are sure we're indexing into the initializer.
12420a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
12430582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (FirstIdx == 0 || !FirstIdx->isZero())
12440582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
12450ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12460ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // If the second index isn't a ConstantInt, then this is a variable index
12470ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // into the array.  If this occurs, we can't say anything meaningful about
12480ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // the string.
12490ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    uint64_t StartIdx = 0;
12500a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
12510ff39b3feb10477c224138156941234f5fa46f58Evan Cheng      StartIdx = CI->getZExtValue();
12520582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    else
12530582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
12540582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
12550ff39b3feb10477c224138156941234f5fa46f58Evan Cheng                                 StopAtNul);
12560ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
12570ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12580ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The GEP instruction, constant or instruction, must reference a global
12590ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // variable that is a constant and is initialized. The referenced constant
12600ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // initializer is the array that we'll use for optimization.
12610a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
12628255573835970e7130ba93271972172fb335f2ecDan Gohman  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
12630582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
12640a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const Constant *GlobalInit = GV->getInitializer();
12650ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12660ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Handle the ConstantAggregateZero case
12670582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (isa<ConstantAggregateZero>(GlobalInit)) {
12680ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // This is a degenerate case. The initializer is constant zero so the
12690ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // length of the string must be zero.
12700582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str.clear();
12710582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return true;
12720582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  }
12730ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12740ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Must be a Constant Array
12750a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1276b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
12770582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
12780ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12790ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Get the number of elements in the array
12800ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  uint64_t NumElts = Array->getType()->getNumElements();
12810ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12820582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Offset > NumElts)
12830582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
12840ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
12850ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Traverse the constant array from 'Offset' which is the place the GEP refers
12860ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // to in the array.
12870582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  Str.reserve(NumElts-Offset);
12880ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  for (unsigned i = Offset; i != NumElts; ++i) {
12890a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const Constant *Elt = Array->getOperand(i);
12900a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
12910582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (!CI) // This array isn't suitable, non-int initializer.
12920582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
12930ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (StopAtNul && CI->isZero())
12940582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return true; // we found end of string, success!
12950582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str += (char)CI->getZExtValue();
12960ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
12970582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
12980ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
12990582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  return true;
13000ff39b3feb10477c224138156941234f5fa46f58Evan Cheng}
130125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
130225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// These next two are very similar to the above, but also look through PHI
130325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// nodes.
130425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// TODO: See if we can integrate these two together.
130525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
130625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLengthH - If we can compute the length of the string pointed to by
130725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
130825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopherstatic uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
130925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Look through noop bitcast instructions.
131025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
131125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return GetStringLengthH(BCI->getOperand(0), PHIs);
131225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
131325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If this is a PHI node, there are two cases: either we have already seen it
131425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // or we haven't.
131525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (PHINode *PN = dyn_cast<PHINode>(V)) {
131625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!PHIs.insert(PN))
131725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return ~0ULL;  // already in the set.
131825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
131925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // If it was new, see if all the input strings are the same length.
132025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t LenSoFar = ~0ULL;
132125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
132225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
132325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == 0) return 0; // Unknown length -> unknown.
132425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
132525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == ~0ULL) continue;
132625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
132725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len != LenSoFar && LenSoFar != ~0ULL)
132825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher        return 0;    // Disagree -> unknown.
132925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      LenSoFar = Len;
133025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    }
133125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
133225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // Success, all agree.
133325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return LenSoFar;
133425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
133525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
133625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
133725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
133825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
133925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == 0) return 0;
134025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
134125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == 0) return 0;
134225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == ~0ULL) return Len2;
134325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == ~0ULL) return Len1;
134425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 != Len2) return 0;
134525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return Len1;
134625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
134725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
134825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If the value is not a GEP instruction nor a constant expression with a
134925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // GEP instruction, then return unknown.
135025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  User *GEP = 0;
135125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
135225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    GEP = GEPI;
135325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
135425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (CE->getOpcode() != Instruction::GetElementPtr)
135525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
135625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    GEP = CE;
135725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else {
135825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
135925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
136025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
136125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Make sure the GEP has exactly three arguments.
136225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (GEP->getNumOperands() != 3)
136325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
136425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
136525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Check to make sure that the first operand of the GEP is an integer and
136625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // has value 0 so that we are sure we're indexing into the initializer.
136725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
136825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!Idx->isZero())
136925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
137025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else
137125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
137225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
137325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If the second index isn't a ConstantInt, then this is a variable index
137425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // into the array.  If this occurs, we can't say anything meaningful about
137525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // the string.
137625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t StartIdx = 0;
137725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
137825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    StartIdx = CI->getZExtValue();
137925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  else
138025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
138125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
138225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // The GEP instruction, constant or instruction, must reference a global
138325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // variable that is a constant and is initialized. The referenced constant
138425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // initializer is the array that we'll use for optimization.
138525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
138625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
138725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      GV->mayBeOverridden())
138825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
138925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  Constant *GlobalInit = GV->getInitializer();
139025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
139125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Handle the ConstantAggregateZero case, which is a degenerate case. The
139225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // initializer is constant zero so the length of the string must be zero.
139325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (isa<ConstantAggregateZero>(GlobalInit))
139425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 1;  // Len = 0 offset by 1.
139525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
139625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Must be a Constant Array
139725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
139825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
139925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return false;
140025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
140125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Get the number of elements in the array
140225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t NumElts = Array->getType()->getNumElements();
140325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
140425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Traverse the constant array from StartIdx (derived above) which is
140525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // the place the GEP refers to in the array.
140625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  for (unsigned i = StartIdx; i != NumElts; ++i) {
140725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    Constant *Elt = Array->getOperand(i);
140825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
140925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!CI) // This array isn't suitable, non-int initializer.
141025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
141125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (CI->isZero())
141225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return i-StartIdx+1; // We found end of string, success!
141325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
141425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
141525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  return 0; // The array isn't null terminated, conservatively return 'unknown'.
141625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
141725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
141825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLength - If we can compute the length of the string pointed to by
141925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
142025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopheruint64_t llvm::GetStringLength(Value *V) {
142125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!V->getType()->isPointerTy()) return 0;
142225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
142325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  SmallPtrSet<PHINode*, 32> PHIs;
142425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t Len = GetStringLengthH(V, PHIs);
142525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
142625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // an empty string as a length.
142725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  return Len == ~0ULL ? 1 : Len;
142825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
14295034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman
14305034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan GohmanValue *llvm::GetUnderlyingObject(Value *V, unsigned MaxLookup) {
14315034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  if (!V->getType()->isPointerTy())
14325034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    return V;
14335034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
14345034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
14355034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = GEP->getPointerOperand();
14365034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
14375034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = cast<Operator>(V)->getOperand(0);
14385034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
14395034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      if (GA->mayBeOverridden())
14405034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman        return V;
14415034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = GA->getAliasee();
14425034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else {
14435034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      return V;
14445034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    }
14455034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
14465034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  }
14475034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  return V;
14485034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman}
1449