ValueTracking.cpp revision 6de29f8d960505421d61c80cdb738e16720b6c0e
1173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
3173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//                     The LLVM Compiler Infrastructure
4173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
5173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file is distributed under the University of Illinois Open Source
6173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// License. See LICENSE.TXT for details.
7173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
8173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
9173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
10173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file contains routines that help analyze properties that chains of
11173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// computations have.
12173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
13173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
14173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
15173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Analysis/ValueTracking.h"
16173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Constants.h"
17173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Instructions.h"
180ff39b3feb10477c224138156941234f5fa46f58Evan Cheng#include "llvm/GlobalVariable.h"
19173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/IntrinsicInst.h"
200582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling#include "llvm/Target/TargetData.h"
21173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h"
22173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/MathExtras.h"
2332a9e7a2654c4aab2e617fbe53140492b3d38066Chris Lattner#include <cstring>
24173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerusing namespace llvm;
25173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
26173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// getOpcode - If this is an Instruction or a ConstantExpr, return the
27173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// opcode value. Otherwise return UserOp1.
28173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerstatic unsigned getOpcode(const Value *V) {
29173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (const Instruction *I = dyn_cast<Instruction>(V))
30173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return I->getOpcode();
31173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
32173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return CE->getOpcode();
33173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Use UserOp1 to mean there's no opcode.
34173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return Instruction::UserOp1;
35173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
36173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
37173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
38173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeMaskedBits - Determine which of the bits specified in Mask are
39173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// known to be either zero or one and return them in the KnownZero/KnownOne
40173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
41173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// processing.
42173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
43173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// we cannot optimize based on the assumption that it is zero without changing
44173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// it to be an explicit zero.  If we don't change it to zero, other code could
45173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// optimized based on the contradictory assumption that it is non-zero.
46173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// Because instcombine aggressively folds operations with undef args anyway,
47173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this won't lose us code quality.
48173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnervoid llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
49173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             APInt &KnownZero, APInt &KnownOne,
50173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             TargetData *TD, unsigned Depth) {
519004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  const unsigned MaxDepth = 6;
52173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(V && "No Value?");
539004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  assert(Depth <= MaxDepth && "Limit Search Depth");
5479abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner  unsigned BitWidth = Mask.getBitWidth();
556de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
56173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "Not integer or pointer type!");
576de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((!TD ||
586de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
596de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman         (!V->getType()->isIntOrIntVector() ||
606de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          V->getType()->getScalarSizeInBits() == BitWidth) &&
61173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownZero.getBitWidth() == BitWidth &&
62173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownOne.getBitWidth() == BitWidth &&
63173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "V, Mask, KnownOne and KnownZero should have same BitWidth");
64173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
65173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
66173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We know all of the bits for a constant!
67173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = CI->getValue() & Mask;
68173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = ~KnownOne & Mask;
69173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
70173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
716de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Null and aggregate-zero are all-zeros.
726de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (isa<ConstantPointerNull>(V) ||
736de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      isa<ConstantAggregateZero>(V)) {
74173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
75173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = Mask;
76173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
77173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
786de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Handle a constant vector by taking the intersection of the known bits of
796de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // each element.
806de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
816de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    KnownZero.set(); KnownOne.set();
826de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
836de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
846de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
856de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman                        TD, Depth);
866de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownZero &= KnownZero2;
876de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownOne &= KnownOne2;
886de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    }
896de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    return;
906de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  }
91173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // The address of an aligned GlobalValue has trailing zeros.
92173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
93173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = GV->getAlignment();
94173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
95173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
96173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
97173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
98173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
99173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else
100173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero.clear();
101173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
102173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
103173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
104173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
105173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  KnownZero.clear(); KnownOne.clear();   // Start out not knowing anything.
106173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1079004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  if (Depth == MaxDepth || Mask == 0)
108173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;  // Limit search depth.
109173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
110173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  User *I = dyn_cast<User>(V);
111173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (!I) return;
112173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
113173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
114173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  switch (getOpcode(I)) {
115173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
116173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And: {
117173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
118173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
119173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownZero);
120173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
121173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
122173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
123173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
124173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
125173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
126173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
127173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
128173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= KnownZero2;
129173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
130173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
131173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or: {
132173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
133173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownOne);
134173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
135173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
136173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
137173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
138173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
139173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
140173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
141173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
142173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne |= KnownOne2;
143173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
144173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
145173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor: {
146173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
147173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
148173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
149173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
150173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
151173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
152173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the LHS & RHS.
153173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
154173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in only one of the LHS, RHS.
155173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
156173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = KnownZeroOut;
157173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
158173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
159173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Mul: {
160173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
161173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
162173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
163173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
164173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
165173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
166173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
167173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If low bits are zero in either operand, output low known-0 bits.
168173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Also compute a conserative estimate for high known-0 bits.
169173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // More trickiness is possible, but this is sufficient for the
170173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // interesting case of alignment computation.
171173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
172173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = KnownZero.countTrailingOnes() +
173173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      KnownZero2.countTrailingOnes();
174173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
175173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               KnownZero2.countLeadingOnes(),
176173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               BitWidth) - BitWidth;
177173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
178173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    TrailZ = std::min(TrailZ, BitWidth);
179173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    LeadZ = std::min(LeadZ, BitWidth);
180173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                APInt::getHighBitsSet(BitWidth, LeadZ);
182173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= Mask;
183173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
184173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
185173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UDiv: {
186173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // For the purposes of computing leading zeros we can conservatively
187173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // treat a udiv as a logical right shift by the power of 2 known to
188173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // be less than the denominator.
189173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
190173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0),
191173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
192173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ = KnownZero2.countLeadingOnes();
193173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
194173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne2.clear();
195173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero2.clear();
196173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1),
197173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
198173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
199173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (RHSUnknownLeadingOnes != BitWidth)
200173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      LeadZ = std::min(BitWidth,
201173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
202173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
203173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
204173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
205173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
206173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
207173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
208173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
209173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
210173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
211173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
212173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
213173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Only known if known in both the LHS and RHS.
214173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
215173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
216173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
217173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPTrunc:
218173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPExt:
219173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToUI:
220173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToSI:
221173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SIToFP:
222173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UIToFP:
223173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return; // Can't work with floating point.
224173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PtrToInt:
225173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::IntToPtr:
226173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We can't handle these if we don't know the pointer size.
227173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (!TD) return;
228173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FALL THROUGH and handle them the same as zext/trunc.
229173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::ZExt:
230173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc: {
231173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Note that we handle pointer operands here because of inttoptr/ptrtoint
232173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // which fall through here.
233173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
23479abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned SrcBitWidth = TD ?
235173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      TD->getTypeSizeInBits(SrcTy) :
2366de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      SrcTy->getScalarSizeInBits();
237173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
238173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.zextOrTrunc(SrcBitWidth);
239173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(SrcBitWidth);
240173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(SrcBitWidth);
241173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
242173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
243173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(BitWidth);
244173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(BitWidth);
245173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Any top bits are known to be zero.
246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (BitWidth > SrcBitWidth)
247173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
248173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
249173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
250173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::BitCast: {
251173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
252173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
253173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
254173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
255173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
256173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
257173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
258173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
259173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt: {
260173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Compute the bits in the result that are not present in the input.
261173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
26279abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned SrcBitWidth = SrcTy->getBitWidth();
263173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
264173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
265173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.trunc(SrcBitWidth);
266173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.trunc(SrcBitWidth);
267173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.trunc(SrcBitWidth);
268173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
269173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
270173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
271173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zext(BitWidth);
272173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zext(BitWidth);
273173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
274173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If the sign bit of the input is known set or clear, then we know the
275173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // top bits of the result.
276173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
277173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
278173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
279173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
280173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
281173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
282173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
283173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
284173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
285173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
286173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.lshr(ShiftAmt));
287173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
288173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
289173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
290173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero <<= ShiftAmt;
291173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  <<= ShiftAmt;
292173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
293173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
294173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
295173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
296173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::LShr:
297173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
298173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
299173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
300173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
301173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
302173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Unsigned shift right.
303173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
304173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
305173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
306173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
307173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
308173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
309173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // high bits known zero.
310173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
311173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
312173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
313173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
314173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
315173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
316173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
317173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
318173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
319173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
320173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Signed shift right.
321173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
322173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
323173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
324173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
325173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
326173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
327173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
328173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
329173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
330173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= HighBits;
331173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
332173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= HighBits;
333173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
334173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
335173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
336173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub: {
337173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
338173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We know that the top bits of C-X are clear if X contains less bits
339173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // than C (i.e. no wrap-around can happen).  For example, 20-X is
340173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // positive if we can prove that X is >= 0 and < 16.
341173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (!CLHS->getValue().isNegative()) {
342173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
343173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // NLZ can't be BitWidth with no sign bit
344173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
345173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
346173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
347173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
348173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If all of the MaskV bits are known to be zero, then we know the
349173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // output top bits are zero, because we now know that the output is
350173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // from [0-C].
351173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero2 & MaskV) == MaskV) {
352173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
353173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Top bits known zero.
354173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
355173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
356173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
357173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
358173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
359173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // fall through
360173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add: {
3613925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // If one of the operands has trailing zeros, than the bits that the
3623925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // other operand has in those bit positions will be preserved in the
3633925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // result. For an add, this works with either operand. For a subtract,
3643925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // this only works if the known zeros are in the right operand.
3653925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
3663925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
3673925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                       BitWidth - Mask.countLeadingZeros());
3683925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
369173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
3703925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    assert((LHSKnownZero & LHSKnownOne) == 0 &&
3713925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman           "Bits known to be one AND zero?");
3723925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
373173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
374173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
375173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
376173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
3773925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
378173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
3793925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // Determine which operand has more trailing zeros, and use that
3803925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // many bits from the other operand.
3813925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    if (LHSKnownZeroOut > RHSKnownZeroOut) {
3823925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      if (getOpcode(I) == Instruction::Add) {
3833925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
3843925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= KnownZero2 & Mask;
3853925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownOne  |= KnownOne2 & Mask;
3863925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      } else {
3873925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // If the known zeros are in the left operand for a subtract,
3883925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // fall back to the minimum known zeros in both operands.
3893925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= APInt::getLowBitsSet(BitWidth,
3903925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                          std::min(LHSKnownZeroOut,
3913925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                                   RHSKnownZeroOut));
3923925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      }
3933925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
3943925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
3953925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownZero |= LHSKnownZero & Mask;
3963925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownOne  |= LHSKnownOne & Mask;
3973925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    }
398173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
399173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
400173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SRem:
401173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
402173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
403173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
404173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
405173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
406173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
407173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
408173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
409a60832b0187642d01fd726dc766cd62587f6add0Dan Gohman        // If the sign bit of the first operand is zero, the sign bit of
410a60832b0187642d01fd726dc766cd62587f6add0Dan Gohman        // the result is zero. If the first operand has no one bits below
411a60832b0187642d01fd726dc766cd62587f6add0Dan Gohman        // the second operand's single 1 bit, its sign will be zero.
412173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
413173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero2 |= ~LowBits;
414173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
415173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= KnownZero2 & Mask;
416173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
417173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
418173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
419173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
420173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
421173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::URem: {
422173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
423173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
424173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2()) {
425173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = (RA - 1);
426173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits & Mask;
427173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= ~LowBits & Mask;
428173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
429173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
430173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
431173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
432173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
433173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
434173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
435173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Since the result is less than or equal to either operand, any leading
436173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // zero bits in either operand must also exist in the result.
437173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
438173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
439173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
440173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
441173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
442173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
44379abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
444173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                KnownZero2.countLeadingOnes());
445173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
446173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
447173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
448173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
449173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
450173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Alloca:
451173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Malloc: {
452173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    AllocationInst *AI = cast<AllocationInst>(V);
453173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = AI->getAlignment();
454173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align == 0 && TD) {
455173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (isa<AllocaInst>(AI))
4560f2831c820151aa6f2cd6a8bd7b6b633b1035524Chris Lattner        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
457173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (isa<MallocInst>(AI)) {
458173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Malloc returns maximally aligned memory.
459173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
460173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align =
461173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          std::max(Align,
462173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                   (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
463173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align =
464173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          std::max(Align,
465173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                   (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
466173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
467173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
468173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
469173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
470173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
471173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
472173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
473173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
474173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::GetElementPtr: {
475173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Analyze all of the subscripts of this getelementptr instruction
476173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // to determine if we can prove known low zero bits.
477173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalMask = APInt::getAllOnesValue(BitWidth);
478173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
479173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), LocalMask,
480173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      LocalKnownZero, LocalKnownOne, TD, Depth+1);
481173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
482173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
483173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    gep_type_iterator GTI = gep_type_begin(I);
484173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
485173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Value *Index = I->getOperand(i);
486173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
487173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle struct member offset arithmetic.
488173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!TD) return;
489173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const StructLayout *SL = TD->getStructLayout(STy);
490173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
491173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t Offset = SL->getElementOffset(Idx);
492173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
493173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(Offset));
494173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      } else {
495173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle array index arithmetic.
496173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const Type *IndexedTy = GTI.getIndexedType();
497173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!IndexedTy->isSized()) return;
4986de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
499777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
500173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalMask = APInt::getAllOnesValue(GEPOpiBits);
501173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
502173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(Index, LocalMask,
503173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          LocalKnownZero, LocalKnownOne, TD, Depth+1);
504173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
50579abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                          unsigned(CountTrailingZeros_64(TypeSize) +
50679abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                                   LocalKnownZero.countTrailingOnes()));
507173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
508173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
509173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
510173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
511173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
512173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
513173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PHI: {
514173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    PHINode *P = cast<PHINode>(I);
515173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle the case of a simple two-predecessor recurrence PHI.
516173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // There's a lot more that could theoretically be done here, but
517173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // this is sufficient to catch some interesting cases.
518173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (P->getNumIncomingValues() == 2) {
519173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      for (unsigned i = 0; i != 2; ++i) {
520173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *L = P->getIncomingValue(i);
521173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *R = P->getIncomingValue(!i);
522173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        User *LU = dyn_cast<User>(L);
523173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!LU)
524173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          continue;
525173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Opcode = getOpcode(LU);
526173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Check for operations that have the property that if
527173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // both their operands have low zero bits, the result
528173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // will have low zero bits.
529173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (Opcode == Instruction::Add ||
530173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Sub ||
531173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::And ||
532173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Or ||
533173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Mul) {
534173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LL = LU->getOperand(0);
535173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LR = LU->getOperand(1);
536173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Find a recurrence.
537173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          if (LL == I)
538173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LR;
539173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else if (LR == I)
540173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LL;
541173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else
542173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            break;
543173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Ok, we have a PHI of the form L op= R. Check for low
544173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // zero bits.
545173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          APInt Mask2 = APInt::getAllOnesValue(BitWidth);
546173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
547173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Mask2 = APInt::getLowBitsSet(BitWidth,
548173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                       KnownZero2.countTrailingOnes());
549c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
550c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          // We need to take the minimum number of known bits
551c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
552c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
553c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
554173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = Mask &
555173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      APInt::getLowBitsSet(BitWidth,
556c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                           std::min(KnownZero2.countTrailingOnes(),
557c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                                    KnownZero3.countTrailingOnes()));
558173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          break;
559173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
560173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
561173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
5629004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5639004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // Otherwise take the unions of the known bit sets of the operands,
5649004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // taking conservative care to avoid excessive recursion.
5659004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
5669004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownZero = APInt::getAllOnesValue(BitWidth);
5679004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownOne = APInt::getAllOnesValue(BitWidth);
5689004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
5699004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Skip direct self references.
5709004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (P->getIncomingValue(i) == P) continue;
5719004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
5729004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero2 = APInt(BitWidth, 0);
5739004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne2 = APInt(BitWidth, 0);
5749004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Recurse, but cap the recursion to one level, because we don't
5759004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // want to waste time spinning around in loops.
5769004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
5779004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman                          KnownZero2, KnownOne2, TD, MaxDepth-1);
5789004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero &= KnownZero2;
5799004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne &= KnownOne2;
5809004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // If all bits have been ruled out, there's no need to check
5819004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // more operands.
5829004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (!KnownZero && !KnownOne)
5839004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman          break;
5849004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      }
5859004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    }
586173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
587173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
588173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Call:
589173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
590173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      switch (II->getIntrinsicID()) {
591173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      default: break;
592173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctpop:
593173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctlz:
594173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::cttz: {
595173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned LowBits = Log2_32(BitWidth)+1;
596173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
597173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
598173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
599173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
600173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
601173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
602173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
603173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
604173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
605173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
606173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this predicate to simplify operations downstream.  Mask is known to be zero
607173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// for bits that V cannot have.
608173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
609173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             TargetData *TD, unsigned Depth) {
610173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
611173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
612173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
613173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return (KnownZero & Mask) == Mask;
614173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
615173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
616173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
617173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
618173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeNumSignBits - Return the number of times the sign bit of the
619173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// register is replicated into the other bits.  We know that at least 1 bit
620173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// is always equal to the sign bit (itself), but other cases can give us
621173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// information.  For example, immediately after an "ashr X, 2", we know that
622173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// the top 3 bits are all equal to each other, so we return 3.
623173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
624173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// 'Op' must have a scalar integer type.
625173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
626173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerunsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
6276de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  const Type *Ty = V->getType();
6286de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  unsigned TyBits = Ty->getScalarSizeInBits();
629173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned Tmp, Tmp2;
630173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned FirstAnswer = 1;
631173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
632d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // Note that ConstantInt is handled by the general ComputeMaskedBits case
633d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // below.
634d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner
635173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6)
636173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return 1;  // Limit search depth.
637173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
638173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  User *U = dyn_cast<User>(V);
639173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  switch (getOpcode(V)) {
640173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
641173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt:
642173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
643173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
644173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
645173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
646173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
647173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // ashr X, C   -> adds C sign bits.
648173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
649173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp += C->getZExtValue();
650173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (Tmp > TyBits) Tmp = TyBits;
651173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
652173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return Tmp;
653173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
654173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
655173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // shl destroys sign bits.
656173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
657173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (C->getZExtValue() >= TyBits ||      // Bad shift.
658173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
659173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return Tmp - C->getZExtValue();
660173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
661173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
662173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And:
663173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or:
664173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor:    // NOT is handled here.
665173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Logical binary ops preserve the number of sign bits at the worst.
666173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
667173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp != 1) {
668173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
669173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      FirstAnswer = std::min(Tmp, Tmp2);
670173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We computed what we know about the sign bits as our first
671173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // answer. Now proceed to the generic code that uses
672173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // ComputeMaskedBits, and pick whichever answer is better.
673173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
674173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
675173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
676173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
677173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
678173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
679173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
680173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return std::min(Tmp, Tmp2);
681173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
682173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add:
683173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Add can have at most one carry bit.  Thus we know that the output
684173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
685173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
686173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
687173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
688173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Special case decrementing a value (ADD X, -1):
6890001e56f15215ae4bc5fffb82eec5c4828b888f0Dan Gohman    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
690173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CRHS->isAllOnesValue()) {
691173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
692173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
693173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
694173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
695173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
696173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
697173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
698173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
699173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
700173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
701173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If we are subtracting one from a positive number, there is no carry
702173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // out of the result.
703173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
704173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp;
705173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
706173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
707173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
708173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
709173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return std::min(Tmp, Tmp2)-1;
710173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
711173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
712173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub:
713173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
714173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
715173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
716173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle NEG.
717173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
718173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CLHS->isNullValue()) {
719173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
720173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
721173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
722173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
723173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
724173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
725173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
726173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
727173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
728173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be positive (the sign bit is known clear),
729173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // the output of the NEG has the same number of sign bits as the input.
730173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
731173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp2;
732173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
733173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Otherwise, we treat this like a SUB.
734173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
735173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
736173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Sub can have at most one carry bit.  Thus we know that the output
737173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
738173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
739173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
740173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return std::min(Tmp, Tmp2)-1;
741173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
742173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc:
743173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FIXME: it's tricky to do anything useful for this, but it is an important
744173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // case for targets like X86.
745173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
746173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
747173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
748173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Finally, if we can prove that the top bits of the result are 0's or 1's,
749173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // use this information.
750173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
751173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt Mask = APInt::getAllOnesValue(TyBits);
752173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
753173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
754173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (KnownZero.isNegative()) {        // sign bit is 0
755173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownZero;
756173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else if (KnownOne.isNegative()) {  // sign bit is 1;
757173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownOne;
758173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else {
759173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Nothing known.
760173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return FirstAnswer;
761173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
762173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
763173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
764173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // the number of identical bits in the top of the input value.
765173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask = ~Mask;
766173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask <<= Mask.getBitWidth()-TyBits;
767173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Return # leading zeros.  We use 'min' here in case Val was zero before
768173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // shifting.  We don't want to return '64' as for an i32 "0".
769173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
770173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
771833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
772833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// CannotBeNegativeZero - Return true if we can prove that the specified FP
773833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// value is never equal to -0.0.
774833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
775833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// NOTE: this function will need to be revisited when we support non-default
776833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// rounding modes!
777833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
778833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattnerbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
779833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
780833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return !CFP->getValueAPF().isNegZero();
781833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
782833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (Depth == 6)
783833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return 1;  // Limit search depth.
784833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
785833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  const Instruction *I = dyn_cast<Instruction>(V);
786833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I == 0) return false;
787833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
788833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
789ae3a0be92e33bc716722aa600983fc1535acb122Dan Gohman  if (I->getOpcode() == Instruction::FAdd &&
790833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      isa<ConstantFP>(I->getOperand(1)) &&
791833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      cast<ConstantFP>(I->getOperand(1))->isNullValue())
792833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
793833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
794833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // sitofp and uitofp turn into +0.0 for zero.
795833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
796833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
797833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
798833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
799833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    // sqrt(-0.0) = -0.0, no other negative results are possible.
800833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (II->getIntrinsicID() == Intrinsic::sqrt)
801833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      return CannotBeNegativeZero(II->getOperand(1), Depth+1);
802833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
803833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const CallInst *CI = dyn_cast<CallInst>(I))
804833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (const Function *F = CI->getCalledFunction()) {
805833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      if (F->isDeclaration()) {
806833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner        switch (F->getNameLen()) {
807833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner        case 3:  // abs(x) != -0.0
808833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          if (!strcmp(F->getNameStart(), "abs")) return true;
809833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          break;
810833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner        case 4:  // abs[lf](x) != -0.0
811833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          if (!strcmp(F->getNameStart(), "absf")) return true;
812833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          if (!strcmp(F->getNameStart(), "absl")) return true;
813833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          break;
814833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner        }
815833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      }
816833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    }
817833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
818833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  return false;
819833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner}
820833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
821b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This is the recursive version of BuildSubAggregate. It takes a few different
822b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// arguments. Idxs is the index within the nested struct From that we are
823b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// looking at now (which is of type IndexedType). IdxSkip is the number of
824b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// indices from Idxs that should be left out when inserting into the resulting
825b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct. To is the result struct built so far, new insertvalue instructions
826b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// build on that.
827b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
828b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                 SmallVector<unsigned, 10> &Idxs,
829b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                 unsigned IdxSkip,
8300a7413dad84887bee51f20d7a5f1c4c1c7bb4c1eMatthijs Kooijman                                 Instruction *InsertBefore) {
831b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
832b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (STy) {
8330a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // Save the original To argument so we can modify it
8340a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    Value *OrigTo = To;
835b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // General case, the type indexed by Idxs is a struct
836b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
837b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Process each struct element recursively
838b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.push_back(i);
8390a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      Value *PrevTo = To;
840710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
841710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                             InsertBefore);
842b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.pop_back();
8430a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      if (!To) {
8440a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Couldn't find any inserted value for this index? Cleanup
8450a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        while (PrevTo != OrigTo) {
8460a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
8470a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          PrevTo = Del->getAggregateOperand();
8480a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          Del->eraseFromParent();
8490a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        }
8500a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Stop processing elements
8510a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        break;
8520a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      }
853b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
8540a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // If we succesfully found a value for each of our subaggregates
8550a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    if (To)
8560a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      return To;
857b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
8580a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
8590a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // the struct's elements had a value that was inserted directly. In the latter
8600a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // case, perhaps we can't determine each of the subelements individually, but
8610a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // we might be able to find the complete struct somewhere.
8620a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
8630a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Find the value that is at that particular spot
8640a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
8650a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
8660a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  if (!V)
8670a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    return NULL;
8680a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
8690a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Insert the value in the new (sub) aggregrate
8700a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
8710a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman                                       Idxs.end(), "tmp", InsertBefore);
872b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
873b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
874b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This helper takes a nested struct and extracts a part of it (which is again a
875b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct) into a new value. For example, given the struct:
876b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { a, { b, { c, d }, e } }
877b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// and the indices "1, 1" this returns
878b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { c, d }.
879b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
8800a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// It does this by inserting an insertvalue for each element in the resulting
8810a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// struct, as opposed to just inserting a single struct. This will only work if
8820a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// each of the elements of the substruct are known (ie, inserted into From by an
8830a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// insertvalue instruction somewhere).
884b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
8850a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// All inserted insertvalue instructions are inserted before InsertBefore
886710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs KooijmanValue *BuildSubAggregate(Value *From, const unsigned *idx_begin,
8870a7413dad84887bee51f20d7a5f1c4c1c7bb4c1eMatthijs Kooijman                         const unsigned *idx_end, Instruction *InsertBefore) {
888977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman  assert(InsertBefore && "Must have someplace to insert!");
889710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman  const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
890710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_begin,
891710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_end);
892b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  Value *To = UndefValue::get(IndexedType);
893b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
894b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  unsigned IdxSkip = Idxs.size();
895b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
896b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
897b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
898b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
899710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
900710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// the scalar value indexed is already around as a register, for example if it
901710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// were inserted directly into the aggregrate.
9020a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman///
9030a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// If InsertBefore is not null, this function will duplicate (modified)
9040a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// insertvalues when a part of a nested struct is extracted.
905b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
9060a7413dad84887bee51f20d7a5f1c4c1c7bb4c1eMatthijs Kooijman                         const unsigned *idx_end, Instruction *InsertBefore) {
907b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Nothing to index? Just return V then (this is useful at the end of our
908b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // recursion)
909b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (idx_begin == idx_end)
910b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return V;
911b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // We have indices, so V should have an indexable type
912b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
913b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Not looking at a struct or array?");
914b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
915b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Invalid indices for type?");
916b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const CompositeType *PTy = cast<CompositeType>(V->getType());
917b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
918b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (isa<UndefValue>(V))
919b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
920b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_begin,
921b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_end));
922b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (isa<ConstantAggregateZero>(V))
923b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
924b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                                     idx_begin,
925b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                                     idx_end));
926b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (Constant *C = dyn_cast<Constant>(V)) {
927b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
928b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Recursively process this constant
929dddc827125d307d8e992339d00ce4a6e3fe21e73Matthijs Kooijman      return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, idx_end,
930710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                               InsertBefore);
931b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
932b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Loop the indices for the insertvalue instruction in parallel with the
933b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested indices
934b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    const unsigned *req_idx = idx_begin;
935710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
936710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++req_idx) {
9379954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      if (req_idx == idx_end) {
938977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        if (InsertBefore)
9390a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // The requested index identifies a part of a nested aggregate. Handle
9400a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // this specially. For example,
9410a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
9420a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
9430a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = extractvalue {i32, { i32, i32 } } %B, 1
9440a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // This can be changed into
9450a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue {i32, i32 } undef, i32 10, 0
9460a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = insertvalue {i32, i32 } %A, i32 11, 1
9470a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // which allows the unused 0,0 element from the nested struct to be
9480a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // removed.
949977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
950977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        else
951977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          // We can't handle this without inserting insertvalues
952977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          return 0;
9539954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      }
954b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
955b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // This insert value inserts something else than what we are looking for.
956b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // See if the (aggregrate) value inserted into has the value we are
957b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // looking for, then.
958b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (*req_idx != *i)
959710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman        return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
960710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                 InsertBefore);
961b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
962b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we end up here, the indices of the insertvalue match with those
963b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested (though possibly only partially). Now we recursively look at
964b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // the inserted value, passing any remaining indices.
965710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
966710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                             InsertBefore);
967b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
968b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we're extracting a value from an aggregrate that was extracted from
969b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // something else, we can extract from that something else directly instead.
970b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // However, we will need to chain I's indices with the requested indices.
971b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
972b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Calculate the number of indices required
973b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    unsigned size = I->getNumIndices() + (idx_end - idx_begin);
974b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Allocate some space to put the new indices in
9753faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    SmallVector<unsigned, 5> Idxs;
9763faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    Idxs.reserve(size);
977b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add indices from the extract value instruction
978710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
9793faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman         i != e; ++i)
9803faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
981b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
982b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add requested indices
9833faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
9843faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
985b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
9863faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    assert(Idxs.size() == size
987710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman           && "Number of indices added not correct?");
988b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
9893faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
990710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                             InsertBefore);
991b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
992b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Otherwise, we don't know (such as, extracting from a function return value
993b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // or load instruction)
994b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return 0;
995b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
9960ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
9970ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// GetConstantStringInfo - This function computes the length of a
9980ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// null-terminated C string pointed to by V.  If successful, it returns true
9990ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// and returns the string in Str.  If unsuccessful, it returns false.
10000582ae99ba75a556d6ff63b254da327d32ba036fBill Wendlingbool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
10010582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling                                 bool StopAtNul) {
10020582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  // If V is NULL then return false;
10030582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (V == NULL) return false;
10040ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10050ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Look through bitcast instructions.
10060ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
10070582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
10080582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
10090ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // If the value is not a GEP instruction nor a constant expression with a
10100ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // GEP instruction, then return false because ConstantArray can't occur
10110ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // any other way
10120ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  User *GEP = 0;
10130ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
10140ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = GEPI;
10150ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
10160ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (CE->getOpcode() == Instruction::BitCast)
10170582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
10180582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (CE->getOpcode() != Instruction::GetElementPtr)
10190582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10200ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = CE;
10210ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
10220ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10230ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GEP) {
10240ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the GEP has exactly three arguments.
10250582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (GEP->getNumOperands() != 3)
10260582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10270582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
10280ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the index-ee is a pointer to array of i8.
10290ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
10300ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
10310582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (AT == 0 || AT->getElementType() != Type::Int8Ty)
10320582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10330ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10340ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Check to make sure that the first operand of the GEP is an integer and
10350ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // has value 0 so that we are sure we're indexing into the initializer.
10360ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
10370582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (FirstIdx == 0 || !FirstIdx->isZero())
10380582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10390ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10400ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // If the second index isn't a ConstantInt, then this is a variable index
10410ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // into the array.  If this occurs, we can't say anything meaningful about
10420ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // the string.
10430ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    uint64_t StartIdx = 0;
10440582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
10450ff39b3feb10477c224138156941234f5fa46f58Evan Cheng      StartIdx = CI->getZExtValue();
10460582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    else
10470582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10480582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
10490ff39b3feb10477c224138156941234f5fa46f58Evan Cheng                                 StopAtNul);
10500ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
10510ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10520ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The GEP instruction, constant or instruction, must reference a global
10530ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // variable that is a constant and is initialized. The referenced constant
10540ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // initializer is the array that we'll use for optimization.
10550ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
10560582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (!GV || !GV->isConstant() || !GV->hasInitializer())
10570582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
10580ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  Constant *GlobalInit = GV->getInitializer();
10590ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10600ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Handle the ConstantAggregateZero case
10610582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (isa<ConstantAggregateZero>(GlobalInit)) {
10620ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // This is a degenerate case. The initializer is constant zero so the
10630ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // length of the string must be zero.
10640582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str.clear();
10650582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return true;
10660582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  }
10670ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10680ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Must be a Constant Array
10690ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
10700582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
10710582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
10720ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10730ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Get the number of elements in the array
10740ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  uint64_t NumElts = Array->getType()->getNumElements();
10750ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10760582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Offset > NumElts)
10770582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
10780ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
10790ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Traverse the constant array from 'Offset' which is the place the GEP refers
10800ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // to in the array.
10810582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  Str.reserve(NumElts-Offset);
10820ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  for (unsigned i = Offset; i != NumElts; ++i) {
10830ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    Constant *Elt = Array->getOperand(i);
10840ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
10850582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (!CI) // This array isn't suitable, non-int initializer.
10860582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
10870ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (StopAtNul && CI->isZero())
10880582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return true; // we found end of string, success!
10890582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str += (char)CI->getZExtValue();
10900ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
10910582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
10920ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
10930582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  return true;
10940ff39b3feb10477c224138156941234f5fa46f58Evan Cheng}
1095