ValueTracking.cpp revision 710eb236e67dc021c51ef5cb5d2eb8768840895a
1173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
3173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//                     The LLVM Compiler Infrastructure
4173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
5173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file is distributed under the University of Illinois Open Source
6173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// License. See LICENSE.TXT for details.
7173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
8173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
9173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
10173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file contains routines that help analyze properties that chains of
11173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// computations have.
12173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
13173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
14173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
15173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Analysis/ValueTracking.h"
16173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Constants.h"
17173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Instructions.h"
18173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/IntrinsicInst.h"
19173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Target/TargetData.h"
20173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h"
21173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/MathExtras.h"
2232a9e7a2654c4aab2e617fbe53140492b3d38066Chris Lattner#include <cstring>
23173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerusing namespace llvm;
24173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
25173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// getOpcode - If this is an Instruction or a ConstantExpr, return the
26173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// opcode value. Otherwise return UserOp1.
27173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerstatic unsigned getOpcode(const Value *V) {
28173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (const Instruction *I = dyn_cast<Instruction>(V))
29173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return I->getOpcode();
30173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
31173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return CE->getOpcode();
32173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Use UserOp1 to mean there's no opcode.
33173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return Instruction::UserOp1;
34173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
35173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
36173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
37173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeMaskedBits - Determine which of the bits specified in Mask are
38173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// known to be either zero or one and return them in the KnownZero/KnownOne
39173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
40173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// processing.
41173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
42173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// we cannot optimize based on the assumption that it is zero without changing
43173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// it to be an explicit zero.  If we don't change it to zero, other code could
44173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// optimized based on the contradictory assumption that it is non-zero.
45173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// Because instcombine aggressively folds operations with undef args anyway,
46173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this won't lose us code quality.
47173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnervoid llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
48173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             APInt &KnownZero, APInt &KnownOne,
49173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             TargetData *TD, unsigned Depth) {
50173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(V && "No Value?");
51173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(Depth <= 6 && "Limit Search Depth");
52173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  uint32_t BitWidth = Mask.getBitWidth();
53173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) &&
54173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "Not integer or pointer type!");
55173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) &&
56173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         (!isa<IntegerType>(V->getType()) ||
57173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          V->getType()->getPrimitiveSizeInBits() == BitWidth) &&
58173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownZero.getBitWidth() == BitWidth &&
59173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownOne.getBitWidth() == BitWidth &&
60173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "V, Mask, KnownOne and KnownZero should have same BitWidth");
61173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
62173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
63173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We know all of the bits for a constant!
64173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = CI->getValue() & Mask;
65173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = ~KnownOne & Mask;
66173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
67173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
68173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Null is all-zeros.
69173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (isa<ConstantPointerNull>(V)) {
70173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
71173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = Mask;
72173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
73173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
74173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // The address of an aligned GlobalValue has trailing zeros.
75173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
76173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = GV->getAlignment();
77173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
78173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
79173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
80173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
81173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
82173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else
83173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero.clear();
84173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
85173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
86173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
87173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
88173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  KnownZero.clear(); KnownOne.clear();   // Start out not knowing anything.
89173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
90173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6 || Mask == 0)
91173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;  // Limit search depth.
92173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
93173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  User *I = dyn_cast<User>(V);
94173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (!I) return;
95173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
96173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
97173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  switch (getOpcode(I)) {
98173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
99173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And: {
100173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
101173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
102173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownZero);
103173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
104173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
105173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
106173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
107173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
108173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
109173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
110173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
111173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= KnownZero2;
112173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
113173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
114173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or: {
115173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
116173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownOne);
117173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
118173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
119173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
120173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
121173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
122173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
123173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
124173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
125173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne |= KnownOne2;
126173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
127173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
128173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor: {
129173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
130173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
131173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
132173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
133173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
134173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
135173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the LHS & RHS.
136173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
137173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in only one of the LHS, RHS.
138173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
139173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = KnownZeroOut;
140173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
141173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
142173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Mul: {
143173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
144173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
145173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
146173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
147173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
148173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
149173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
150173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If low bits are zero in either operand, output low known-0 bits.
151173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Also compute a conserative estimate for high known-0 bits.
152173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // More trickiness is possible, but this is sufficient for the
153173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // interesting case of alignment computation.
154173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
155173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = KnownZero.countTrailingOnes() +
156173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      KnownZero2.countTrailingOnes();
157173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
158173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               KnownZero2.countLeadingOnes(),
159173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               BitWidth) - BitWidth;
160173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
161173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    TrailZ = std::min(TrailZ, BitWidth);
162173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    LeadZ = std::min(LeadZ, BitWidth);
163173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
164173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                APInt::getHighBitsSet(BitWidth, LeadZ);
165173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= Mask;
166173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
167173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
168173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UDiv: {
169173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // For the purposes of computing leading zeros we can conservatively
170173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // treat a udiv as a logical right shift by the power of 2 known to
171173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // be less than the denominator.
172173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
173173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0),
174173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
175173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ = KnownZero2.countLeadingOnes();
176173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
177173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne2.clear();
178173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero2.clear();
179173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1),
180173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
181173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
182173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (RHSUnknownLeadingOnes != BitWidth)
183173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      LeadZ = std::min(BitWidth,
184173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
185173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
186173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
187173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
188173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
189173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
190173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
191173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
192173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
193173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
194173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
195173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
196173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Only known if known in both the LHS and RHS.
197173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
198173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
199173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
200173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPTrunc:
201173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPExt:
202173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToUI:
203173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToSI:
204173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SIToFP:
205173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UIToFP:
206173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return; // Can't work with floating point.
207173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PtrToInt:
208173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::IntToPtr:
209173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We can't handle these if we don't know the pointer size.
210173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (!TD) return;
211173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FALL THROUGH and handle them the same as zext/trunc.
212173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::ZExt:
213173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc: {
214173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Note that we handle pointer operands here because of inttoptr/ptrtoint
215173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // which fall through here.
216173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
217173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    uint32_t SrcBitWidth = TD ?
218173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      TD->getTypeSizeInBits(SrcTy) :
219173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      SrcTy->getPrimitiveSizeInBits();
220173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
221173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.zextOrTrunc(SrcBitWidth);
222173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(SrcBitWidth);
223173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(SrcBitWidth);
224173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
225173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
226173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zextOrTrunc(BitWidth);
227173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zextOrTrunc(BitWidth);
228173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Any top bits are known to be zero.
229173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (BitWidth > SrcBitWidth)
230173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
231173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
232173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
233173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::BitCast: {
234173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
235173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
236173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
237173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
238173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
239173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
240173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
241173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
242173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt: {
243173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Compute the bits in the result that are not present in the input.
244173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
245173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    uint32_t SrcBitWidth = SrcTy->getBitWidth();
246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
247173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt MaskIn(Mask);
248173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    MaskIn.trunc(SrcBitWidth);
249173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.trunc(SrcBitWidth);
250173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.trunc(SrcBitWidth);
251173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
252173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
253173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
254173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero.zext(BitWidth);
255173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.zext(BitWidth);
256173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
257173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If the sign bit of the input is known set or clear, then we know the
258173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // top bits of the result.
259173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
260173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
261173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
262173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
263173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
264173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
265173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
266173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
267173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
268173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
269173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.lshr(ShiftAmt));
270173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
271173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
272173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
273173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero <<= ShiftAmt;
274173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  <<= ShiftAmt;
275173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
276173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
277173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
278173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
279173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::LShr:
280173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
281173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
282173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
283173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
284173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
285173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Unsigned shift right.
286173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
287173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
288173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
289173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
290173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
291173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
292173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // high bits known zero.
293173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
294173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
295173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
296173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
297173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
298173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
299173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
300173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
301173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
302173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
303173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Signed shift right.
304173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
305173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
306173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
307173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
308173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
309173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
310173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
311173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
312173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
313173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= HighBits;
314173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
315173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= HighBits;
316173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
317173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
318173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
319173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub: {
320173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
321173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We know that the top bits of C-X are clear if X contains less bits
322173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // than C (i.e. no wrap-around can happen).  For example, 20-X is
323173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // positive if we can prove that X is >= 0 and < 16.
324173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (!CLHS->getValue().isNegative()) {
325173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
326173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // NLZ can't be BitWidth with no sign bit
327173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
328173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
329173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
330173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
331173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If all of the MaskV bits are known to be zero, then we know the
332173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // output top bits are zero, because we now know that the output is
333173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // from [0-C].
334173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero2 & MaskV) == MaskV) {
335173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
336173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Top bits known zero.
337173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
338173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
339173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
340173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
341173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
342173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // fall through
343173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add: {
344173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the low clear bits
345173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
346173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // low 3 bits clear.
347173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
348173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
349173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
350173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
351173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
352173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
353173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
354173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
355173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
356173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZeroOut = std::min(KnownZeroOut,
357173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                            KnownZero2.countTrailingOnes());
358173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
359173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
360173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
361173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
362173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SRem:
363173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
364173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
365173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
366173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
367173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
368173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
369173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
370173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
371173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // The sign of a remainder is equal to the sign of the first
372173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // operand (zero being positive).
373173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
374173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero2 |= ~LowBits;
375173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        else if (KnownOne2[BitWidth-1])
376173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownOne2 |= ~LowBits;
377173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
378173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= KnownZero2 & Mask;
379173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= KnownOne2 & Mask;
380173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
381173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
382173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
383173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
384173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
385173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::URem: {
386173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
387173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
388173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2()) {
389173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = (RA - 1);
390173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits & Mask;
391173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= ~LowBits & Mask;
392173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
393173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
394173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
395173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
396173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
397173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
398173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
399173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Since the result is less than or equal to either operand, any leading
400173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // zero bits in either operand must also exist in the result.
401173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
402173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
403173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
404173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
405173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
406173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
407173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
408173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                KnownZero2.countLeadingOnes());
409173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne.clear();
410173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
411173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
412173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
413173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
414173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Alloca:
415173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Malloc: {
416173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    AllocationInst *AI = cast<AllocationInst>(V);
417173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = AI->getAlignment();
418173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align == 0 && TD) {
419173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (isa<AllocaInst>(AI))
420173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
421173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (isa<MallocInst>(AI)) {
422173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Malloc returns maximally aligned memory.
423173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
424173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align =
425173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          std::max(Align,
426173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                   (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
427173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Align =
428173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          std::max(Align,
429173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                   (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
430173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
431173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
432173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
433173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
434173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
435173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
436173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
437173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
438173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::GetElementPtr: {
439173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Analyze all of the subscripts of this getelementptr instruction
440173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // to determine if we can prove known low zero bits.
441173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalMask = APInt::getAllOnesValue(BitWidth);
442173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
443173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), LocalMask,
444173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      LocalKnownZero, LocalKnownOne, TD, Depth+1);
445173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
446173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
447173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    gep_type_iterator GTI = gep_type_begin(I);
448173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
449173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Value *Index = I->getOperand(i);
450173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
451173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle struct member offset arithmetic.
452173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!TD) return;
453173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const StructLayout *SL = TD->getStructLayout(STy);
454173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
455173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t Offset = SL->getElementOffset(Idx);
456173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
457173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(Offset));
458173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      } else {
459173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle array index arithmetic.
460173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const Type *IndexedTy = GTI.getIndexedType();
461173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!IndexedTy->isSized()) return;
462173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits();
463173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t TypeSize = TD ? TD->getABITypeSize(IndexedTy) : 1;
464173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalMask = APInt::getAllOnesValue(GEPOpiBits);
465173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
466173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(Index, LocalMask,
467173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          LocalKnownZero, LocalKnownOne, TD, Depth+1);
468173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
469173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(TypeSize) +
470173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                            LocalKnownZero.countTrailingOnes());
471173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
472173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
473173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
474173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
475173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
476173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
477173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PHI: {
478173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    PHINode *P = cast<PHINode>(I);
479173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle the case of a simple two-predecessor recurrence PHI.
480173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // There's a lot more that could theoretically be done here, but
481173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // this is sufficient to catch some interesting cases.
482173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (P->getNumIncomingValues() == 2) {
483173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      for (unsigned i = 0; i != 2; ++i) {
484173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *L = P->getIncomingValue(i);
485173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *R = P->getIncomingValue(!i);
486173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        User *LU = dyn_cast<User>(L);
487173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!LU)
488173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          continue;
489173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Opcode = getOpcode(LU);
490173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Check for operations that have the property that if
491173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // both their operands have low zero bits, the result
492173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // will have low zero bits.
493173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (Opcode == Instruction::Add ||
494173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Sub ||
495173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::And ||
496173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Or ||
497173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Mul) {
498173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LL = LU->getOperand(0);
499173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LR = LU->getOperand(1);
500173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Find a recurrence.
501173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          if (LL == I)
502173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LR;
503173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else if (LR == I)
504173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LL;
505173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else
506173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            break;
507173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Ok, we have a PHI of the form L op= R. Check for low
508173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // zero bits.
509173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          APInt Mask2 = APInt::getAllOnesValue(BitWidth);
510173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
511173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Mask2 = APInt::getLowBitsSet(BitWidth,
512173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                       KnownZero2.countTrailingOnes());
513173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownOne2.clear();
514173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero2.clear();
515173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          ComputeMaskedBits(L, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
516173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = Mask &
517173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      APInt::getLowBitsSet(BitWidth,
518173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                           KnownZero2.countTrailingOnes());
519173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          break;
520173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
521173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
522173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
523173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
524173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
525173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Call:
526173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
527173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      switch (II->getIntrinsicID()) {
528173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      default: break;
529173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctpop:
530173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctlz:
531173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::cttz: {
532173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned LowBits = Log2_32(BitWidth)+1;
533173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
534173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
535173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
536173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
537173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
538173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
539173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
540173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
541173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
542173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
543173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this predicate to simplify operations downstream.  Mask is known to be zero
544173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// for bits that V cannot have.
545173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
546173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             TargetData *TD, unsigned Depth) {
547173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
548173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
549173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
550173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return (KnownZero & Mask) == Mask;
551173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
552173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
553173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
554173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
555173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeNumSignBits - Return the number of times the sign bit of the
556173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// register is replicated into the other bits.  We know that at least 1 bit
557173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// is always equal to the sign bit (itself), but other cases can give us
558173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// information.  For example, immediately after an "ashr X, 2", we know that
559173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// the top 3 bits are all equal to each other, so we return 3.
560173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
561173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// 'Op' must have a scalar integer type.
562173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
563173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerunsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
564173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  const IntegerType *Ty = cast<IntegerType>(V->getType());
565173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned TyBits = Ty->getBitWidth();
566173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned Tmp, Tmp2;
567173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned FirstAnswer = 1;
568173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
569d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // Note that ConstantInt is handled by the general ComputeMaskedBits case
570d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // below.
571d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner
572173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6)
573173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return 1;  // Limit search depth.
574173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
575173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  User *U = dyn_cast<User>(V);
576173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  switch (getOpcode(V)) {
577173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
578173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt:
579173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
580173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
581173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
582173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
583173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
584173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // ashr X, C   -> adds C sign bits.
585173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
586173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp += C->getZExtValue();
587173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (Tmp > TyBits) Tmp = TyBits;
588173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
589173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return Tmp;
590173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
591173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
592173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // shl destroys sign bits.
593173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
594173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (C->getZExtValue() >= TyBits ||      // Bad shift.
595173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
596173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return Tmp - C->getZExtValue();
597173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
598173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
599173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And:
600173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or:
601173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor:    // NOT is handled here.
602173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Logical binary ops preserve the number of sign bits at the worst.
603173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
604173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp != 1) {
605173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
606173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      FirstAnswer = std::min(Tmp, Tmp2);
607173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We computed what we know about the sign bits as our first
608173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // answer. Now proceed to the generic code that uses
609173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // ComputeMaskedBits, and pick whichever answer is better.
610173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
611173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
612173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
613173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
614173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
615173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
616173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
617173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return std::min(Tmp, Tmp2);
618173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
619173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add:
620173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Add can have at most one carry bit.  Thus we know that the output
621173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
622173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
623173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
624173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
625173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Special case decrementing a value (ADD X, -1):
626173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(0)))
627173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CRHS->isAllOnesValue()) {
628173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
629173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
630173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
631173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
632173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
633173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
634173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
635173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
636173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
637173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
638173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If we are subtracting one from a positive number, there is no carry
639173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // out of the result.
640173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
641173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp;
642173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
643173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
644173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
645173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
646173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return std::min(Tmp, Tmp2)-1;
647173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
648173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
649173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub:
650173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
651173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
652173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
653173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle NEG.
654173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
655173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CLHS->isNullValue()) {
656173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
657173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
658173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
659173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
660173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
661173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
662173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
663173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
664173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
665173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be positive (the sign bit is known clear),
666173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // the output of the NEG has the same number of sign bits as the input.
667173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
668173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp2;
669173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
670173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Otherwise, we treat this like a SUB.
671173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
672173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
673173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Sub can have at most one carry bit.  Thus we know that the output
674173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
675173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
676173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
677173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return std::min(Tmp, Tmp2)-1;
678173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
679173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc:
680173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FIXME: it's tricky to do anything useful for this, but it is an important
681173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // case for targets like X86.
682173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
683173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
684173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
685173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Finally, if we can prove that the top bits of the result are 0's or 1's,
686173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // use this information.
687173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
688173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt Mask = APInt::getAllOnesValue(TyBits);
689173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
690173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
691173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (KnownZero.isNegative()) {        // sign bit is 0
692173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownZero;
693173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else if (KnownOne.isNegative()) {  // sign bit is 1;
694173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownOne;
695173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else {
696173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Nothing known.
697173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return FirstAnswer;
698173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
699173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
700173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
701173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // the number of identical bits in the top of the input value.
702173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask = ~Mask;
703173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask <<= Mask.getBitWidth()-TyBits;
704173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Return # leading zeros.  We use 'min' here in case Val was zero before
705173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // shifting.  We don't want to return '64' as for an i32 "0".
706173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
707173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
708833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
709833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// CannotBeNegativeZero - Return true if we can prove that the specified FP
710833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// value is never equal to -0.0.
711833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
712833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// NOTE: this function will need to be revisited when we support non-default
713833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// rounding modes!
714833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
715833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattnerbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
716833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
717833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return !CFP->getValueAPF().isNegZero();
718833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
719833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (Depth == 6)
720833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return 1;  // Limit search depth.
721833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
722833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  const Instruction *I = dyn_cast<Instruction>(V);
723833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I == 0) return false;
724833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
725833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
726833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I->getOpcode() == Instruction::Add &&
727833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      isa<ConstantFP>(I->getOperand(1)) &&
728833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      cast<ConstantFP>(I->getOperand(1))->isNullValue())
729833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
730833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
731833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // sitofp and uitofp turn into +0.0 for zero.
732833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
733833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
734833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
735833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
736833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    // sqrt(-0.0) = -0.0, no other negative results are possible.
737833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (II->getIntrinsicID() == Intrinsic::sqrt)
738833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      return CannotBeNegativeZero(II->getOperand(1), Depth+1);
739833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
740833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const CallInst *CI = dyn_cast<CallInst>(I))
741833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (const Function *F = CI->getCalledFunction()) {
742833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      if (F->isDeclaration()) {
743833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner        switch (F->getNameLen()) {
744833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner        case 3:  // abs(x) != -0.0
745833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          if (!strcmp(F->getNameStart(), "abs")) return true;
746833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          break;
747833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner        case 4:  // abs[lf](x) != -0.0
748833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          if (!strcmp(F->getNameStart(), "absf")) return true;
749833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          if (!strcmp(F->getNameStart(), "absl")) return true;
750833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner          break;
751833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner        }
752833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      }
753833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    }
754833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
755833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  return false;
756833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner}
757833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
758b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This is the recursive version of BuildSubAggregate. It takes a few different
759b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// arguments. Idxs is the index within the nested struct From that we are
760b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// looking at now (which is of type IndexedType). IdxSkip is the number of
761b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// indices from Idxs that should be left out when inserting into the resulting
762b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct. To is the result struct built so far, new insertvalue instructions
763b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// build on that.
764b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
765b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                 SmallVector<unsigned, 10> &Idxs,
766b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                 unsigned IdxSkip,
767b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                 Instruction &InsertBefore) {
768b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
769b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (STy) {
770b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // General case, the type indexed by Idxs is a struct
771b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
772b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Process each struct element recursively
773b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.push_back(i);
774710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
775710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                             InsertBefore);
776b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.pop_back();
777b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
778b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return To;
779b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else {
780b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Base case, the type indexed by SourceIdxs is not a struct
781b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Load the value from the nested struct into the sub struct (and skip
782b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // IdxSkip indices when indexing the sub struct).
783710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    Instruction *V = llvm::ExtractValueInst::Create(From, Idxs.begin(),
784710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                    Idxs.end(), "tmp",
785710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                    &InsertBefore);
786710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    Instruction *Ins = llvm::InsertValueInst::Create(To, V,
787710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                     Idxs.begin() + IdxSkip,
788710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                     Idxs.end(), "tmp",
789710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                     &InsertBefore);
790b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return Ins;
791b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
792b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
793b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
794b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This helper takes a nested struct and extracts a part of it (which is again a
795b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct) into a new value. For example, given the struct:
796b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { a, { b, { c, d }, e } }
797b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// and the indices "1, 1" this returns
798b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { c, d }.
799b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
800b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// It does this by inserting an extractvalue and insertvalue for each element in
801b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// the resulting struct, as opposed to just inserting a single struct. This
802b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// allows for later folding of these individual extractvalue instructions with
803b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// insertvalue instructions that fill the nested struct.
804b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
805b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// Any inserted instructions are inserted before InsertBefore
806710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs KooijmanValue *BuildSubAggregate(Value *From, const unsigned *idx_begin,
807710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                         const unsigned *idx_end, Instruction &InsertBefore) {
808710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman  const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
809710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_begin,
810710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_end);
811b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  Value *To = UndefValue::get(IndexedType);
812b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
813b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  unsigned IdxSkip = Idxs.size();
814b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
815b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
816b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
817b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
818710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
819710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// the scalar value indexed is already around as a register, for example if it
820710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// were inserted directly into the aggregrate.
821b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
822b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                         const unsigned *idx_end, Instruction &InsertBefore) {
823b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Nothing to index? Just return V then (this is useful at the end of our
824b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // recursion)
825b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (idx_begin == idx_end)
826b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return V;
827b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // We have indices, so V should have an indexable type
828b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
829b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Not looking at a struct or array?");
830b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
831b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Invalid indices for type?");
832b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const CompositeType *PTy = cast<CompositeType>(V->getType());
833b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
834b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (isa<UndefValue>(V))
835b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
836b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_begin,
837b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_end));
838b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (isa<ConstantAggregateZero>(V))
839b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
840b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                                     idx_begin,
841b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                                     idx_end));
842b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (Constant *C = dyn_cast<Constant>(V)) {
843b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
844b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Recursively process this constant
845710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      return FindInsertedValue(C->getOperand(*idx_begin), ++idx_begin, idx_end,
846710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                               InsertBefore);
847b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
848b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Loop the indices for the insertvalue instruction in parallel with the
849b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested indices
850b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    const unsigned *req_idx = idx_begin;
851710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
852710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++req_idx) {
853b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (req_idx == idx_end)
854b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman        // The requested index is a part of a nested aggregate. Handle this
855b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman        // specially.
856b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman        return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
857b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
858b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // This insert value inserts something else than what we are looking for.
859b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // See if the (aggregrate) value inserted into has the value we are
860b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // looking for, then.
861b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (*req_idx != *i)
862710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman        return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
863710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                 InsertBefore);
864b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
865b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we end up here, the indices of the insertvalue match with those
866b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested (though possibly only partially). Now we recursively look at
867b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // the inserted value, passing any remaining indices.
868710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
869710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                             InsertBefore);
870b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
871b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we're extracting a value from an aggregrate that was extracted from
872b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // something else, we can extract from that something else directly instead.
873b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // However, we will need to chain I's indices with the requested indices.
874b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
875b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Calculate the number of indices required
876b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    unsigned size = I->getNumIndices() + (idx_end - idx_begin);
877b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Allocate some space to put the new indices in
878b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    unsigned *new_begin = new unsigned[size];
879b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Auto cleanup this array
880b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    std::auto_ptr<unsigned> newptr(new_begin);
881b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Start inserting at the beginning
882b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    unsigned *new_end = new_begin;
883b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add indices from the extract value instruction
884710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
885710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++new_end)
886b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      *new_end = *i;
887b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
888b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add requested indices
889b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i, ++new_end)
890b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      *new_end = *i;
891b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
892710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    assert((unsigned)(new_end - new_begin) == size
893710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman           && "Number of indices added not correct?");
894b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
895710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    return FindInsertedValue(I->getAggregateOperand(), new_begin, new_end,
896710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                             InsertBefore);
897b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
898b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Otherwise, we don't know (such as, extracting from a function return value
899b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // or load instruction)
900b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return 0;
901b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
902