ValueTracking.cpp revision 99e0b2a8df7e3a49c0e1edd250d17604fe2fb21c
1173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
3173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//                     The LLVM Compiler Infrastructure
4173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
5173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file is distributed under the University of Illinois Open Source
6173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// License. See LICENSE.TXT for details.
7173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
8173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
9173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
10173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file contains routines that help analyze properties that chains of
11173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// computations have.
12173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
13173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
14173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
15173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Analysis/ValueTracking.h"
16243712720ad1da144d4376bdd854d81260c1beaaDan Gohman#include "llvm/Analysis/InstructionSimplify.h"
17173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Constants.h"
18173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Instructions.h"
190ff39b3feb10477c224138156941234f5fa46f58Evan Cheng#include "llvm/GlobalVariable.h"
20307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman#include "llvm/GlobalAlias.h"
21173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/IntrinsicInst.h"
2276f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson#include "llvm/LLVMContext.h"
23ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman#include "llvm/Operator.h"
240582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling#include "llvm/Target/TargetData.h"
25173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h"
26173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/MathExtras.h"
27d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands#include "llvm/Support/PatternMatch.h"
2825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher#include "llvm/ADT/SmallPtrSet.h"
2932a9e7a2654c4aab2e617fbe53140492b3d38066Chris Lattner#include <cstring>
30173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerusing namespace llvm;
31d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsusing namespace llvm::PatternMatch;
32d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
33d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsconst unsigned MaxDepth = 6;
34d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
35d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// unknown returns 0).  For vector types, returns the element type's bitwidth.
37d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsstatic unsigned getBitWidth(const Type *Ty, const TargetData *TD) {
38d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (unsigned BitWidth = Ty->getScalarSizeInBits())
39d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return BitWidth;
40d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  assert(isa<PointerType>(Ty) && "Expected a pointer type!");
41d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  return TD ? TD->getPointerSizeInBits() : 0;
42d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
43173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
44173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeMaskedBits - Determine which of the bits specified in Mask are
45173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// known to be either zero or one and return them in the KnownZero/KnownOne
46173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
47173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// processing.
48173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
49173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// we cannot optimize based on the assumption that it is zero without changing
50173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// it to be an explicit zero.  If we don't change it to zero, other code could
51173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// optimized based on the contradictory assumption that it is non-zero.
52173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// Because instcombine aggressively folds operations with undef args anyway,
53173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this won't lose us code quality.
54cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
55cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
56cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
57cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
58cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
59cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
60173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnervoid llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
61173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             APInt &KnownZero, APInt &KnownOne,
62846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
63173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(V && "No Value?");
649004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  assert(Depth <= MaxDepth && "Limit Search Depth");
6579abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner  unsigned BitWidth = Mask.getBitWidth();
661df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
67b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         && "Not integer or pointer type!");
686de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((!TD ||
696de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
70b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         (!V->getType()->isIntOrIntVectorTy() ||
716de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          V->getType()->getScalarSizeInBits() == BitWidth) &&
72173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownZero.getBitWidth() == BitWidth &&
73173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownOne.getBitWidth() == BitWidth &&
74173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "V, Mask, KnownOne and KnownZero should have same BitWidth");
75173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
76173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
77173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We know all of the bits for a constant!
78173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = CI->getValue() & Mask;
79173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = ~KnownOne & Mask;
80173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
81173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
826de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Null and aggregate-zero are all-zeros.
836de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (isa<ConstantPointerNull>(V) ||
846de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      isa<ConstantAggregateZero>(V)) {
857a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
86173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = Mask;
87173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
88173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
896de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Handle a constant vector by taking the intersection of the known bits of
906de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // each element.
916de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
927a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownZero.setAllBits(); KnownOne.setAllBits();
936de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
946de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
956de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
966de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman                        TD, Depth);
976de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownZero &= KnownZero2;
986de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownOne &= KnownOne2;
996de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    }
1006de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    return;
1016de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  }
102173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // The address of an aligned GlobalValue has trailing zeros.
103173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = GV->getAlignment();
105004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
106004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      const Type *ObjectType = GV->getType()->getElementType();
107004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // If the object is defined in the current Module, we'll be giving
108004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // it the preferred alignment. Otherwise, we have to assume that it
109004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // may only have the minimum ABI alignment.
110004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      if (!GV->isDeclaration() && !GV->mayBeOverridden())
111004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getPrefTypeAlignment(ObjectType);
112004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      else
113004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getABITypeAlignment(ObjectType);
114004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    }
115173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
116173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
117173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
118173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else
1197a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      KnownZero.clearAllBits();
1207a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
121173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
122173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
123307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // the bits of its aliasee.
125307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
126307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    if (GA->mayBeOverridden()) {
1277a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      KnownZero.clearAllBits(); KnownOne.clearAllBits();
128307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    } else {
129307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman      ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
130307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman                        TD, Depth+1);
131307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    }
132307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    return;
133307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  }
134b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner
135b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  if (Argument *A = dyn_cast<Argument>(V)) {
136b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner    // Get alignment information off byval arguments if specified in the IR.
137b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner    if (A->hasByValAttr())
138b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner      if (unsigned Align = A->getParamAlignment())
139b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner        KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
140b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner                                                CountTrailingZeros_32(Align));
141b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner    return;
142b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  }
143173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
144b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  // Start out not knowing anything.
145b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  KnownZero.clearAllBits(); KnownOne.clearAllBits();
146173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1479004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  if (Depth == MaxDepth || Mask == 0)
148173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;  // Limit search depth.
149173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
150ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *I = dyn_cast<Operator>(V);
151173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (!I) return;
152173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
153173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
154ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (I->getOpcode()) {
155173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
156173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And: {
157173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
158173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
159173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownZero);
160173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
161173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
162173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
163173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
164173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
165173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
166173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
167173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
168173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= KnownZero2;
169173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
170173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
171173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or: {
172173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
173173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownOne);
174173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
175173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
176173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
177173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
178173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
179173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
180173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
181173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
182173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne |= KnownOne2;
183173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
184173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
185173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor: {
186173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
187173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
188173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
189173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
190173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
191173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
192173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the LHS & RHS.
193173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
194173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in only one of the LHS, RHS.
195173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
196173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = KnownZeroOut;
197173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
198173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
199173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Mul: {
200173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
201173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
202173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
203173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
204173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
205173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
206173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
207173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If low bits are zero in either operand, output low known-0 bits.
208173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Also compute a conserative estimate for high known-0 bits.
209173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // More trickiness is possible, but this is sufficient for the
210173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // interesting case of alignment computation.
2117a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
212173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = KnownZero.countTrailingOnes() +
213173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      KnownZero2.countTrailingOnes();
214173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
215173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               KnownZero2.countLeadingOnes(),
216173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               BitWidth) - BitWidth;
217173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
218173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    TrailZ = std::min(TrailZ, BitWidth);
219173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    LeadZ = std::min(LeadZ, BitWidth);
220173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
221173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                APInt::getHighBitsSet(BitWidth, LeadZ);
222173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= Mask;
223173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
224173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
225173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UDiv: {
226173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // For the purposes of computing leading zeros we can conservatively
227173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // treat a udiv as a logical right shift by the power of 2 known to
228173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // be less than the denominator.
229173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
230173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0),
231173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
232173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ = KnownZero2.countLeadingOnes();
233173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
2347a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne2.clearAllBits();
2357a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownZero2.clearAllBits();
236173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1),
237173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
238173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
239173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (RHSUnknownLeadingOnes != BitWidth)
240173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      LeadZ = std::min(BitWidth,
241173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
242173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
243173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
244173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
245173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
247173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
248173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
249173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
250173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
251173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
252173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
253173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Only known if known in both the LHS and RHS.
254173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
255173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
256173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
257173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPTrunc:
258173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPExt:
259173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToUI:
260173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToSI:
261173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SIToFP:
262173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UIToFP:
263173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return; // Can't work with floating point.
264173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PtrToInt:
265173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::IntToPtr:
266173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We can't handle these if we don't know the pointer size.
267173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (!TD) return;
268173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FALL THROUGH and handle them the same as zext/trunc.
269173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::ZExt:
270173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc: {
271b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
272b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
273b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth;
274173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Note that we handle pointer operands here because of inttoptr/ptrtoint
275173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // which fall through here.
2761df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    if (SrcTy->isPointerTy())
277b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
278b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    else
279b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = SrcTy->getScalarSizeInBits();
280b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
28140f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
28240f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
28340f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
284173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
285173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
28640f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zextOrTrunc(BitWidth);
28740f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zextOrTrunc(BitWidth);
288173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Any top bits are known to be zero.
289173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (BitWidth > SrcBitWidth)
290173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
291173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
292173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
293173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::BitCast: {
294173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    const Type *SrcTy = I->getOperand(0)->getType();
2951df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2960dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // TODO: For now, not handling conversions like:
2970dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // (bitcast i64 %x to <2 x i32>)
2981df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands        !I->getType()->isVectorTy()) {
299173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
300173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
301173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
302173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
303173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
304173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
305173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt: {
306173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Compute the bits in the result that are not present in the input.
307b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
308173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
30940f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    APInt MaskIn = Mask.trunc(SrcBitWidth);
31040f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.trunc(SrcBitWidth);
31140f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.trunc(SrcBitWidth);
312173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
313173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
314173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
31540f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zext(BitWidth);
31640f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zext(BitWidth);
317173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
318173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If the sign bit of the input is known set or clear, then we know the
319173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // top bits of the result.
320173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
321173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
322173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
323173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
324173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
325173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
326173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
327173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
328173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
329173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
330173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.lshr(ShiftAmt));
331173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
332173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
333173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
334173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero <<= ShiftAmt;
335173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  <<= ShiftAmt;
336173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
337173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
338173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
339173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
340173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::LShr:
341173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
342173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
343173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
344173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
345173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
346173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Unsigned shift right.
347173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
348173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
349173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
350ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
351173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
352173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
353173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // high bits known zero.
354173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
355173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
356173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
357173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
358173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
359173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
360173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
361173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
36243b40a4620c155c73ac71b48472ea2411d7c35daChris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
363173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
364173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Signed shift right.
365173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
366173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
367173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
368ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
369173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
370173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
371173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
372173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
373173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
374173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= HighBits;
375173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
376173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= HighBits;
377173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
378173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
379173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
380173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub: {
381173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
382173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We know that the top bits of C-X are clear if X contains less bits
383173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // than C (i.e. no wrap-around can happen).  For example, 20-X is
384173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // positive if we can prove that X is >= 0 and < 16.
385173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (!CLHS->getValue().isNegative()) {
386173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
387173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // NLZ can't be BitWidth with no sign bit
388173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
389173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
390173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
391173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
392173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If all of the MaskV bits are known to be zero, then we know the
393173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // output top bits are zero, because we now know that the output is
394173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // from [0-C].
395173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero2 & MaskV) == MaskV) {
396173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
397173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Top bits known zero.
398173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
399173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
400173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
401173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
402173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
403173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // fall through
404173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add: {
405ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky    // If one of the operands has trailing zeros, then the bits that the
4063925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // other operand has in those bit positions will be preserved in the
4073925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // result. For an add, this works with either operand. For a subtract,
4083925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // this only works if the known zeros are in the right operand.
4093925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
4103925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
4113925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                       BitWidth - Mask.countLeadingZeros());
4123925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
413173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
4143925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    assert((LHSKnownZero & LHSKnownOne) == 0 &&
4153925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman           "Bits known to be one AND zero?");
4163925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
417173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
418173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
419173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
420173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
4213925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
422173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
4233925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // Determine which operand has more trailing zeros, and use that
4243925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // many bits from the other operand.
4253925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    if (LHSKnownZeroOut > RHSKnownZeroOut) {
426ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman      if (I->getOpcode() == Instruction::Add) {
4273925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
4283925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= KnownZero2 & Mask;
4293925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownOne  |= KnownOne2 & Mask;
4303925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      } else {
4313925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // If the known zeros are in the left operand for a subtract,
4323925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // fall back to the minimum known zeros in both operands.
4333925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= APInt::getLowBitsSet(BitWidth,
4343925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                          std::min(LHSKnownZeroOut,
4353925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                                   RHSKnownZeroOut));
4363925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      }
4373925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
4383925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
4393925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownZero |= LHSKnownZero & Mask;
4403925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownOne  |= LHSKnownOne & Mask;
4413925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    }
442b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky
443b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky    // Are we still trying to solve for the sign bit?
44414b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer    if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
445b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky      OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
446b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky      if (OBO->hasNoSignedWrap()) {
44714b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer        if (I->getOpcode() == Instruction::Add) {
44814b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          // Adding two positive numbers can't wrap into negative
44914b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
45014b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer            KnownZero |= APInt::getSignBit(BitWidth);
45114b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          // and adding two negative numbers can't wrap into positive.
45214b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
45314b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer            KnownOne |= APInt::getSignBit(BitWidth);
45414b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer        } else {
45514b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          // Subtracting a negative number from a positive one can't wrap
45614b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
45714b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer            KnownZero |= APInt::getSignBit(BitWidth);
45814b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          // neither can subtracting a positive number from a negative one.
45914b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
46014b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer            KnownOne |= APInt::getSignBit(BitWidth);
46114b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer        }
462b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky      }
463b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky    }
464b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky
465173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
466173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
467173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SRem:
468173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
469cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      APInt RA = Rem->getValue().abs();
470cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      if (RA.isPowerOf2()) {
471cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        APInt LowBits = RA - 1;
472173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
473173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
474173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
475173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
476cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // The low bits of the first operand are unchanged by the srem.
477cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownZero = KnownZero2 & LowBits;
478cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownOne = KnownOne2 & LowBits;
479cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
480cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is non-negative or has all low bits zero, then
481cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all zero.
482173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
483cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownZero |= ~LowBits;
484173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
485cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is negative and not all low bits are zero, then
486cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all one.
487cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
488cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownOne |= ~LowBits;
489cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
490cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownZero &= Mask;
491cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownOne &= Mask;
492173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
493ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
494173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
495173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
496c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky
497c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    // The sign bit is the LHS's sign bit, except when the result of the
498c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    // remainder is zero.
499c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    if (Mask.isNegative() && KnownZero.isNonNegative()) {
500c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      APInt Mask2 = APInt::getSignBit(BitWidth);
501c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
502c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
503c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky                        Depth+1);
504c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      // If it's known zero, our sign bit is also zero.
505c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      if (LHSKnownZero.isNegative())
506c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky        KnownZero |= LHSKnownZero;
507c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    }
508c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky
509173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
510173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::URem: {
511173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
512173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
513173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2()) {
514173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = (RA - 1);
515173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits & Mask;
516173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= ~LowBits & Mask;
517173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
518173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
519ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
520173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
521173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
522173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
523173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
524173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Since the result is less than or equal to either operand, any leading
525173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // zero bits in either operand must also exist in the result.
526173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
527173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
528173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
529173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
530173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
531173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
53279abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
533173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                KnownZero2.countLeadingOnes());
5347a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
535173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
536173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
537173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
538173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
539a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez  case Instruction::Alloca: {
5407b929dad59785f62a66f7c58615082f98441e95eVictor Hernandez    AllocaInst *AI = cast<AllocaInst>(V);
541173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = AI->getAlignment();
542a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez    if (Align == 0 && TD)
543a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
544173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
545173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
546173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
547173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
548173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
549173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
550173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::GetElementPtr: {
551173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Analyze all of the subscripts of this getelementptr instruction
552173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // to determine if we can prove known low zero bits.
553173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalMask = APInt::getAllOnesValue(BitWidth);
554173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
555173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), LocalMask,
556173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      LocalKnownZero, LocalKnownOne, TD, Depth+1);
557173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
558173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
559173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    gep_type_iterator GTI = gep_type_begin(I);
560173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
561173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Value *Index = I->getOperand(i);
562173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
563173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle struct member offset arithmetic.
564173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!TD) return;
565173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const StructLayout *SL = TD->getStructLayout(STy);
566173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
567173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t Offset = SL->getElementOffset(Idx);
568173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
569173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(Offset));
570173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      } else {
571173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle array index arithmetic.
572173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const Type *IndexedTy = GTI.getIndexedType();
573173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!IndexedTy->isSized()) return;
5746de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
575777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
576173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalMask = APInt::getAllOnesValue(GEPOpiBits);
577173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
578173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(Index, LocalMask,
579173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          LocalKnownZero, LocalKnownOne, TD, Depth+1);
580173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
58179abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                          unsigned(CountTrailingZeros_64(TypeSize) +
58279abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                                   LocalKnownZero.countTrailingOnes()));
583173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
584173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
585173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
586173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
587173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
588173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
589173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PHI: {
590173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    PHINode *P = cast<PHINode>(I);
591173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle the case of a simple two-predecessor recurrence PHI.
592173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // There's a lot more that could theoretically be done here, but
593173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // this is sufficient to catch some interesting cases.
594173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (P->getNumIncomingValues() == 2) {
595173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      for (unsigned i = 0; i != 2; ++i) {
596173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *L = P->getIncomingValue(i);
597173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *R = P->getIncomingValue(!i);
598ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        Operator *LU = dyn_cast<Operator>(L);
599173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!LU)
600173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          continue;
601ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        unsigned Opcode = LU->getOpcode();
602173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Check for operations that have the property that if
603173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // both their operands have low zero bits, the result
604173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // will have low zero bits.
605173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (Opcode == Instruction::Add ||
606173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Sub ||
607173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::And ||
608173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Or ||
609173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Mul) {
610173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LL = LU->getOperand(0);
611173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LR = LU->getOperand(1);
612173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Find a recurrence.
613173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          if (LL == I)
614173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LR;
615173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else if (LR == I)
616173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LL;
617173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else
618173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            break;
619173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Ok, we have a PHI of the form L op= R. Check for low
620173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // zero bits.
621173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          APInt Mask2 = APInt::getAllOnesValue(BitWidth);
622173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
623173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Mask2 = APInt::getLowBitsSet(BitWidth,
624173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                       KnownZero2.countTrailingOnes());
625c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
626c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          // We need to take the minimum number of known bits
627c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
628c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
629c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
630173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = Mask &
631173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      APInt::getLowBitsSet(BitWidth,
632c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                           std::min(KnownZero2.countTrailingOnes(),
633c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                                    KnownZero3.countTrailingOnes()));
634173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          break;
635173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
636173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
637173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
6389004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
6393b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky    // Unreachable blocks may have zero-operand PHI nodes.
6403b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky    if (P->getNumIncomingValues() == 0)
6413b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky      return;
6423b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky
6439004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // Otherwise take the unions of the known bit sets of the operands,
6449004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // taking conservative care to avoid excessive recursion.
6459004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
646606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands      // Skip if every incoming value references to ourself.
647606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands      if (P->hasConstantValue() == P)
648606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands        break;
649606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands
6509004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownZero = APInt::getAllOnesValue(BitWidth);
6519004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownOne = APInt::getAllOnesValue(BitWidth);
6529004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
6539004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Skip direct self references.
6549004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (P->getIncomingValue(i) == P) continue;
6559004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
6569004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero2 = APInt(BitWidth, 0);
6579004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne2 = APInt(BitWidth, 0);
6589004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Recurse, but cap the recursion to one level, because we don't
6599004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // want to waste time spinning around in loops.
6609004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
6619004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman                          KnownZero2, KnownOne2, TD, MaxDepth-1);
6629004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero &= KnownZero2;
6639004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne &= KnownOne2;
6649004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // If all bits have been ruled out, there's no need to check
6659004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // more operands.
6669004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (!KnownZero && !KnownOne)
6679004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman          break;
6689004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      }
6699004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    }
670173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
671173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
672173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Call:
673173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
674173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      switch (II->getIntrinsicID()) {
675173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      default: break;
676173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctpop:
677173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctlz:
678173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::cttz: {
679173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned LowBits = Log2_32(BitWidth)+1;
680173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
681173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
682173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
68362660310d9e5f9ecf329fd3cacb67c344a12ddbcChad Rosier      case Intrinsic::x86_sse42_crc32_64_8:
68462660310d9e5f9ecf329fd3cacb67c344a12ddbcChad Rosier      case Intrinsic::x86_sse42_crc32_64_64:
685cb559c1270a773de2c97c99700dcd5456f24a732Evan Cheng        KnownZero = APInt::getHighBitsSet(64, 32);
686cb559c1270a773de2c97c99700dcd5456f24a732Evan Cheng        break;
687173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
688173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
689173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
690173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
691173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
692173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
693d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// ComputeSignBit - Determine whether the sign bit is known to be zero or
694d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// one.  Convenience wrapper around ComputeMaskedBits.
695d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsvoid llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
696d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands                          const TargetData *TD, unsigned Depth) {
697d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  unsigned BitWidth = getBitWidth(V->getType(), TD);
698d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (!BitWidth) {
699d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    KnownZero = false;
700d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    KnownOne = false;
701d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return;
702d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
703d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt ZeroBits(BitWidth, 0);
704d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt OneBits(BitWidth, 0);
705d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
706d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands                    Depth);
707d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  KnownOne = OneBits[BitWidth - 1];
708d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  KnownZero = ZeroBits[BitWidth - 1];
709d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
710d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
711d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// isPowerOfTwo - Return true if the given value is known to have exactly one
712d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// bit set when defined. For vectors return true if every element is known to
713d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// be a power of two when defined.  Supports values with integer or pointer
714d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// types and vectors of integers.
715d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsbool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
716d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
717464a4f349c95a25d06d709e79d7df21fbbb155e2Duncan Sands    return CI->getValue().isPowerOf2();
718d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // TODO: Handle vector constants.
719d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
720d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
721d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // it is shifted off the end then the result is undefined.
722d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (match(V, m_Shl(m_One(), m_Value())))
723d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return true;
724d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
725d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
726d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // bottom.  If it is shifted off the bottom then the result is undefined.
72793c780288df9631d11f996b010b2212a8b44d4d3Duncan Sands  if (match(V, m_LShr(m_SignBit(), m_Value())))
728d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return true;
729d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
730d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // The remaining tests are all recursive, so bail out if we hit the limit.
731d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (Depth++ == MaxDepth)
732d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return false;
733d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
734d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
735d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
736d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
737d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (SelectInst *SI = dyn_cast<SelectInst>(V))
738d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
739d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      isPowerOfTwo(SI->getFalseValue(), TD, Depth);
740d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
7413dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  // An exact divide or right shift can only shift off zero bits, so the result
7421f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky  // is a power of two only if the first operand is a power of two and not
7431f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky  // copying a sign bit (sdiv int_min, 2).
7441f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky  if (match(V, m_LShr(m_Value(), m_Value())) ||
7451f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky      match(V, m_UDiv(m_Value(), m_Value()))) {
7466bdd261df972b5e70e4242721ab16b57c6fe3d1fEli Friedman    PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V);
7476bdd261df972b5e70e4242721ab16b57c6fe3d1fEli Friedman    if (PEO->isExact())
7486bdd261df972b5e70e4242721ab16b57c6fe3d1fEli Friedman      return isPowerOfTwo(PEO->getOperand(0), TD, Depth);
7493dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  }
7503dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky
751d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  return false;
752d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
753d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
754d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// isKnownNonZero - Return true if the given value is known to be non-zero
755d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// when defined.  For vectors return true if every element is known to be
756d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// non-zero when defined.  Supports values with integer or pointer type and
757d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// vectors of integers.
758d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsbool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
759d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (Constant *C = dyn_cast<Constant>(V)) {
760d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (C->isNullValue())
761d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return false;
762d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (isa<ConstantInt>(C))
763d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // Must be non-zero due to null test above.
764d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
765d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // TODO: Handle vectors
766d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return false;
767d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
768d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
769d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // The remaining tests are all recursive, so bail out if we hit the limit.
770d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (Depth++ == MaxDepth)
771d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return false;
772d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
773d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  unsigned BitWidth = getBitWidth(V->getType(), TD);
774d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
775d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // X | Y != 0 if X != 0 or Y != 0.
776d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  Value *X = 0, *Y = 0;
777d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (match(V, m_Or(m_Value(X), m_Value(Y))))
778d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
779d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
780d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // ext X != 0 if X != 0.
781d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
782d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
783d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
7849136782d273cd45b6f19a7d0cc0d146d0791bac9Duncan Sands  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
785d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // if the lowest bit is shifted off the end.
786d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
7873dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    // shl nuw can't remove any non-zero bits.
7883dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    BinaryOperator *BO = cast<BinaryOperator>(V);
7893dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    if (BO->hasNoUnsignedWrap())
7903dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky      return isKnownNonZero(X, TD, Depth);
7913dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky
792d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    APInt KnownZero(BitWidth, 0);
793d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    APInt KnownOne(BitWidth, 0);
7949136782d273cd45b6f19a7d0cc0d146d0791bac9Duncan Sands    ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
795d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (KnownOne[0])
796d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
797d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
7989136782d273cd45b6f19a7d0cc0d146d0791bac9Duncan Sands  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
799d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // defined if the sign bit is shifted off the end.
800d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
8013dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    // shr exact can only shift out zero bits.
8023dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    BinaryOperator *BO = cast<BinaryOperator>(V);
8033dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    if (BO->isExact())
8043dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky      return isKnownNonZero(X, TD, Depth);
8053dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky
806d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    bool XKnownNonNegative, XKnownNegative;
807d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
808d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (XKnownNegative)
809d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
810d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
8113dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  // div exact can only produce a zero if the dividend is zero.
8123dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
8133dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    BinaryOperator *BO = cast<BinaryOperator>(V);
8143dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    if (BO->isExact())
8153dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky      return isKnownNonZero(X, TD, Depth);
8163dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  }
817d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // X + Y.
818d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
819d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    bool XKnownNonNegative, XKnownNegative;
820d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    bool YKnownNonNegative, YKnownNegative;
821d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
822d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
823d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
824d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // If X and Y are both non-negative (as signed values) then their sum is not
825227fba11ca168225d913d1cea94a05b883092e76Duncan Sands    // zero unless both X and Y are zero.
826d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (XKnownNonNegative && YKnownNonNegative)
827227fba11ca168225d913d1cea94a05b883092e76Duncan Sands      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
828227fba11ca168225d913d1cea94a05b883092e76Duncan Sands        return true;
829d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
830d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // If X and Y are both negative (as signed values) then their sum is not
831d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // zero unless both X and Y equal INT_MIN.
832d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (BitWidth && XKnownNegative && YKnownNegative) {
833d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      APInt KnownZero(BitWidth, 0);
834d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      APInt KnownOne(BitWidth, 0);
835d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      APInt Mask = APInt::getSignedMaxValue(BitWidth);
836d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // The sign bit of X is set.  If some other bit is set then X is not equal
837d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // to INT_MIN.
838d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
839d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      if ((KnownOne & Mask) != 0)
840d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands        return true;
841d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // The sign bit of Y is set.  If some other bit is set then Y is not equal
842d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // to INT_MIN.
843d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
844d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      if ((KnownOne & Mask) != 0)
845d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands        return true;
846d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    }
847d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
848d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // The sum of a non-negative number and a power of two is not zero.
849d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
850d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
851d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
852d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
853d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
854d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // (C ? X : Y) != 0 if X != 0 and Y != 0.
855d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
856d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
857d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands        isKnownNonZero(SI->getFalseValue(), TD, Depth))
858d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
859d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
860d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
861d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (!BitWidth) return false;
862d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt KnownZero(BitWidth, 0);
863d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt KnownOne(BitWidth, 0);
864d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
865d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands                    TD, Depth);
866d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  return KnownOne != 0;
867d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
868d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
869173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
870173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this predicate to simplify operations downstream.  Mask is known to be zero
871173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// for bits that V cannot have.
872cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
873cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
874cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
875cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
876cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
877cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
878173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
879846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
880173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
881173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
882173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
883173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return (KnownZero & Mask) == Mask;
884173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
885173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
886173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
887173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
888173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeNumSignBits - Return the number of times the sign bit of the
889173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// register is replicated into the other bits.  We know that at least 1 bit
890173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// is always equal to the sign bit (itself), but other cases can give us
891173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// information.  For example, immediately after an "ashr X, 2", we know that
892173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// the top 3 bits are all equal to each other, so we return 3.
893173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
894173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// 'Op' must have a scalar integer type.
895173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
896846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohmanunsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
897846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                                  unsigned Depth) {
898b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
899bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "ComputeNumSignBits requires a TargetData object to operate "
900bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "on non-integer values!");
9016de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  const Type *Ty = V->getType();
902bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
903bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman                         Ty->getScalarSizeInBits();
904173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned Tmp, Tmp2;
905173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned FirstAnswer = 1;
906173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
907d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // Note that ConstantInt is handled by the general ComputeMaskedBits case
908d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // below.
909d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner
910173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6)
911173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return 1;  // Limit search depth.
912173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
913ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *U = dyn_cast<Operator>(V);
914ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (Operator::getOpcode(V)) {
915173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
916173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt:
91769a008075b29fbe0644ccbeecf1418ef8cca5e24Mon P Wang    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
918173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
919173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
920173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
921173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
922173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // ashr X, C   -> adds C sign bits.
923173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
924173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp += C->getZExtValue();
925173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (Tmp > TyBits) Tmp = TyBits;
926173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
9279a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman    // vector ashr X, <C, C, C, C>  -> adds C sign bits
9289a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman    if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
9299a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman      if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
9309a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman        Tmp += CI->getZExtValue();
9319a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman        if (Tmp > TyBits) Tmp = TyBits;
9329a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman      }
9339a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman    }
934173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return Tmp;
935173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
936173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
937173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // shl destroys sign bits.
938173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
939173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (C->getZExtValue() >= TyBits ||      // Bad shift.
940173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
941173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return Tmp - C->getZExtValue();
942173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
943173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
944173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And:
945173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or:
946173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor:    // NOT is handled here.
947173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Logical binary ops preserve the number of sign bits at the worst.
948173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
949173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp != 1) {
950173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
951173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      FirstAnswer = std::min(Tmp, Tmp2);
952173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We computed what we know about the sign bits as our first
953173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // answer. Now proceed to the generic code that uses
954173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // ComputeMaskedBits, and pick whichever answer is better.
955173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
956173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
957173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
958173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
959173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
960173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
961173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
962173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return std::min(Tmp, Tmp2);
963173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
964173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add:
965173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Add can have at most one carry bit.  Thus we know that the output
966173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
967173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
968173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
969173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
970173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Special case decrementing a value (ADD X, -1):
9710001e56f15215ae4bc5fffb82eec5c4828b888f0Dan Gohman    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
972173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CRHS->isAllOnesValue()) {
973173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
974173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
975173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
976173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
977173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
978173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
979173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
980173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
981173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
982173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
983173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If we are subtracting one from a positive number, there is no carry
984173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // out of the result.
985173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
986173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp;
987173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
988173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
989173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
990173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
9918d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
992173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
993173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub:
994173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
995173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
996173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
997173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle NEG.
998173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
999173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CLHS->isNullValue()) {
1000173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1001173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
1002173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
1003173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
1004173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1005173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
1006173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
1007173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
1008173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1009173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be positive (the sign bit is known clear),
1010173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // the output of the NEG has the same number of sign bits as the input.
1011173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
1012173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp2;
1013173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1014173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Otherwise, we treat this like a SUB.
1015173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
1016173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1017173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Sub can have at most one carry bit.  Thus we know that the output
1018173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
1019173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1020173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
10218d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
10228d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
10238d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  case Instruction::PHI: {
10248d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    PHINode *PN = cast<PHINode>(U);
10258d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Don't analyze large in-degree PHIs.
10268d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    if (PN->getNumIncomingValues() > 4) break;
10278d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
10288d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Take the minimum of all incoming values.  This can't infinitely loop
10298d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // because of our depth threshold.
10308d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
10318d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
10328d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      if (Tmp == 1) return Tmp;
10338d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      Tmp = std::min(Tmp,
10340af20d847ac89f797d613a8a4fc3e7127ccb0b36Evan Cheng                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
10358d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    }
10368d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return Tmp;
10378d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  }
10388d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
1039173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc:
1040173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FIXME: it's tricky to do anything useful for this, but it is an important
1041173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // case for targets like X86.
1042173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
1043173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
1044173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1045173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1046173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // use this information.
1047173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1048173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt Mask = APInt::getAllOnesValue(TyBits);
1049173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
1050173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1051173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (KnownZero.isNegative()) {        // sign bit is 0
1052173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownZero;
1053173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1054173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownOne;
1055173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else {
1056173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Nothing known.
1057173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return FirstAnswer;
1058173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
1059173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1060173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1061173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // the number of identical bits in the top of the input value.
1062173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask = ~Mask;
1063173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask <<= Mask.getBitWidth()-TyBits;
1064173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Return # leading zeros.  We use 'min' here in case Val was zero before
1065173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // shifting.  We don't want to return '64' as for an i32 "0".
1066173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1067173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
1068833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
10692b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// ComputeMultiple - This function computes the integer multiple of Base that
10702b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// equals V.  If successful, it returns true and returns the multiple in
10713dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman/// Multiple.  If unsuccessful, it returns false. It looks
10722b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// through SExt instructions only if LookThroughSExt is true.
10732b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandezbool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
10743dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           bool LookThroughSExt, unsigned Depth) {
10752b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  const unsigned MaxDepth = 6;
10762b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
10773dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  assert(V && "No Value?");
10782b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  assert(Depth <= MaxDepth && "Limit Search Depth");
1079b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
10802b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
10812b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  const Type *T = V->getType();
10822b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
10833dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  ConstantInt *CI = dyn_cast<ConstantInt>(V);
10842b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
10852b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 0)
10862b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return false;
10872b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
10882b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 1) {
10892b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = V;
10902b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
10912b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
10922b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
10932b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
10942b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Constant *BaseVal = ConstantInt::get(T, Base);
10952b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CO && CO == BaseVal) {
10962b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // Multiple is 1.
10972b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, 1);
10982b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
10992b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
11002b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11012b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CI && CI->getZExtValue() % Base == 0) {
11022b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
11032b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
11042b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
11052b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11062b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Depth == MaxDepth) return false;  // Limit search depth.
11072b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11082b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Operator *I = dyn_cast<Operator>(V);
11092b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (!I) return false;
11102b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11112b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  switch (I->getOpcode()) {
11122b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  default: break;
111311fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::SExt:
11142b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (!LookThroughSExt) return false;
11152b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // otherwise fall through to ZExt
111611fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::ZExt:
11173dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman    return ComputeMultiple(I->getOperand(0), Base, Multiple,
11183dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           LookThroughSExt, Depth+1);
11192b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Shl:
11202b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Mul: {
11212b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op0 = I->getOperand(0);
11222b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op1 = I->getOperand(1);
11232b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11242b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (I->getOpcode() == Instruction::Shl) {
11252b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
11262b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (!Op1CI) return false;
11272b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      // Turn Op0 << Op1 into Op0 * 2^Op1
11282b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      APInt Op1Int = Op1CI->getValue();
11292b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1130a99793c5ea24dd3839f4925b89b1f6acfcb24604Jay Foad      APInt API(Op1Int.getBitWidth(), 0);
11317a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      API.setBit(BitToSet);
1132a99793c5ea24dd3839f4925b89b1f6acfcb24604Jay Foad      Op1 = ConstantInt::get(V->getContext(), API);
11332b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
11342b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11352b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Mul0 = NULL;
1136e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1137e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1138e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1139e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op1C->getType()->getPrimitiveSizeInBits() <
1140e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1141e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1142e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op1C->getType()->getPrimitiveSizeInBits() >
1143e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1144e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1145e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner
1146e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1147e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          Multiple = ConstantExpr::getMul(MulC, Op1C);
1148e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          return true;
1149e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        }
11502b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11512b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
11522b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul0CI->getValue() == 1) {
11532b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op1, so return Op1
11542b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op1;
11552b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
11562b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
11572b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
11582b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
1159e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    Value *Mul1 = NULL;
1160e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1161e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1162e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1163e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op0C->getType()->getPrimitiveSizeInBits() <
1164e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1165e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1166e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op0C->getType()->getPrimitiveSizeInBits() >
1167e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1168e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1169e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner
1170e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1171e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          Multiple = ConstantExpr::getMul(MulC, Op0C);
1172e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          return true;
1173e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        }
11742b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11752b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
11762b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul1CI->getValue() == 1) {
11772b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op0, so return Op0
11782b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op0;
11792b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
11802b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
11812b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
11822b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
11832b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
11842b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11852b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  // We could not determine if V is a multiple of Base.
11862b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  return false;
11872b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez}
11882b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
1189833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1190833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// value is never equal to -0.0.
1191833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
1192833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// NOTE: this function will need to be revisited when we support non-default
1193833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// rounding modes!
1194833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
1195833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattnerbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1196833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1197833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return !CFP->getValueAPF().isNegZero();
1198833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1199833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (Depth == 6)
1200833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return 1;  // Limit search depth.
1201833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1202ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  const Operator *I = dyn_cast<Operator>(V);
1203833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I == 0) return false;
1204833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1205833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1206ae3a0be92e33bc716722aa600983fc1535acb122Dan Gohman  if (I->getOpcode() == Instruction::FAdd &&
1207833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      isa<ConstantFP>(I->getOperand(1)) &&
1208833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      cast<ConstantFP>(I->getOperand(1))->isNullValue())
1209833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
1210833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1211833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // sitofp and uitofp turn into +0.0 for zero.
1212833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1213833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
1214833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1215833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1216833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    // sqrt(-0.0) = -0.0, no other negative results are possible.
1217833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (II->getIntrinsicID() == Intrinsic::sqrt)
121871339c965ca6268b9bff91213364783c3d06f666Gabor Greif      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1219833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1220833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const CallInst *CI = dyn_cast<CallInst>(I))
1221833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (const Function *F = CI->getCalledFunction()) {
1222833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      if (F->isDeclaration()) {
1223f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        // abs(x) != -0.0
1224f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "abs") return true;
12259d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        // fabs[lf](x) != -0.0
12269d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabs") return true;
12279d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsf") return true;
12289d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsl") return true;
12299d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
12309d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen            F->getName() == "sqrtl")
123171339c965ca6268b9bff91213364783c3d06f666Gabor Greif          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1232833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      }
1233833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    }
1234833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1235833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  return false;
1236833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner}
1237833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1238bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// isBytewiseValue - If the specified value can be set by repeating the same
1239bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// byte in memory, return the i8 value that it is represented with.  This is
1240bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1241bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1242bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// byte store (e.g. i16 0x1234), return null.
1243bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris LattnerValue *llvm::isBytewiseValue(Value *V) {
1244bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // All byte-wide stores are splatable, even of arbitrary variables.
1245bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (V->getType()->isIntegerTy(8)) return V;
124641bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner
124741bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner  // Handle 'null' ConstantArrayZero etc.
124841bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner  if (Constant *C = dyn_cast<Constant>(V))
124941bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner    if (C->isNullValue())
125041bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1251bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1252bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // Constant float and double values can be handled as integer values if the
1253bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // corresponding integer value is "byteable".  An important case is 0.0.
1254bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1255bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (CFP->getType()->isFloatTy())
1256bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1257bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (CFP->getType()->isDoubleTy())
1258bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1259bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    // Don't handle long double formats, which have strange constraints.
1260bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  }
1261bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1262bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // We can handle constant integers that are power of two in size and a
1263bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // multiple of 8 bits.
1264bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1265bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    unsigned Width = CI->getBitWidth();
1266bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (isPowerOf2_32(Width) && Width > 8) {
1267bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      // We can handle this value if the recursive binary decomposition is the
1268bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      // same at all levels.
1269bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      APInt Val = CI->getValue();
1270bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      APInt Val2;
1271bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      while (Val.getBitWidth() != 8) {
1272bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        unsigned NextWidth = Val.getBitWidth()/2;
1273bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        Val2  = Val.lshr(NextWidth);
1274bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        Val2 = Val2.trunc(Val.getBitWidth()/2);
1275bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        Val = Val.trunc(Val.getBitWidth()/2);
1276bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1277bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        // If the top/bottom halves aren't the same, reject it.
1278bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        if (Val != Val2)
1279bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner          return 0;
1280bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      }
1281bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      return ConstantInt::get(V->getContext(), Val);
1282bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    }
1283bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  }
1284bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1285bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // A ConstantArray is splatable if all its members are equal and also
1286bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // splatable.
1287bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1288bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (CA->getNumOperands() == 0)
1289bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      return 0;
1290bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1291bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    Value *Val = isBytewiseValue(CA->getOperand(0));
1292bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (!Val)
1293bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      return 0;
1294bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1295bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
1296bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      if (CA->getOperand(I-1) != CA->getOperand(I))
1297bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        return 0;
1298bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1299bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    return Val;
1300bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  }
1301bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1302bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // Conceptually, we could handle things like:
1303bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  //   %a = zext i8 %X to i16
1304bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  //   %b = shl i16 %a, 8
1305bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  //   %c = or i16 %a, %b
1306bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // but until there is an example that actually needs this, it doesn't seem
1307bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // worth worrying about.
1308bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  return 0;
1309bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner}
1310bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1311bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1312b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This is the recursive version of BuildSubAggregate. It takes a few different
1313b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// arguments. Idxs is the index within the nested struct From that we are
1314b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// looking at now (which is of type IndexedType). IdxSkip is the number of
1315b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// indices from Idxs that should be left out when inserting into the resulting
1316b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct. To is the result struct built so far, new insertvalue instructions
1317b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// build on that.
13187db949df789383acce98ef072f08794fdd5bd04eDan Gohmanstatic Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
13197db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                SmallVector<unsigned, 10> &Idxs,
13207db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                unsigned IdxSkip,
13217db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
1322b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1323b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (STy) {
13240a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // Save the original To argument so we can modify it
13250a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    Value *OrigTo = To;
1326b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // General case, the type indexed by Idxs is a struct
1327b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1328b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Process each struct element recursively
1329b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.push_back(i);
13300a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      Value *PrevTo = To;
1331710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1332ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1333b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.pop_back();
13340a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      if (!To) {
13350a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Couldn't find any inserted value for this index? Cleanup
13360a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        while (PrevTo != OrigTo) {
13370a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
13380a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          PrevTo = Del->getAggregateOperand();
13390a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          Del->eraseFromParent();
13400a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        }
13410a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Stop processing elements
13420a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        break;
13430a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      }
1344b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
13457a2bdde0a0eebcd2125055e0eacaca040f0b766cChris Lattner    // If we successfully found a value for each of our subaggregates
13460a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    if (To)
13470a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      return To;
1348b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
13490a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
13500a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // the struct's elements had a value that was inserted directly. In the latter
13510a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // case, perhaps we can't determine each of the subelements individually, but
13520a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // we might be able to find the complete struct somewhere.
13530a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
13540a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Find the value that is at that particular spot
1355ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky  Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
13560a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
13570a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  if (!V)
13580a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    return NULL;
13590a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
13600a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Insert the value in the new (sub) aggregrate
13610a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
13620a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman                                       Idxs.end(), "tmp", InsertBefore);
1363b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1364b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1365b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This helper takes a nested struct and extracts a part of it (which is again a
1366b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct) into a new value. For example, given the struct:
1367b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { a, { b, { c, d }, e } }
1368b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// and the indices "1, 1" this returns
1369b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { c, d }.
1370b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
13710a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// It does this by inserting an insertvalue for each element in the resulting
13720a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// struct, as opposed to just inserting a single struct. This will only work if
13730a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// each of the elements of the substruct are known (ie, inserted into From by an
13740a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// insertvalue instruction somewhere).
1375b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
13760a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// All inserted insertvalue instructions are inserted before InsertBefore
13777db949df789383acce98ef072f08794fdd5bd04eDan Gohmanstatic Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
1378ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                                const unsigned *idx_end,
13797db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
1380977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman  assert(InsertBefore && "Must have someplace to insert!");
1381710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman  const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1382710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_begin,
1383710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman                                                             idx_end);
13849e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson  Value *To = UndefValue::get(IndexedType);
1385b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
1386b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  unsigned IdxSkip = Idxs.size();
1387b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1388ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1389b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1390b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1391710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1392710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// the scalar value indexed is already around as a register, for example if it
1393710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// were inserted directly into the aggregrate.
13940a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman///
13950a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// If InsertBefore is not null, this function will duplicate (modified)
13960a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// insertvalues when a part of a nested struct is extracted.
1397b23d5adbc8230167e711070b9298985de4580f30Matthijs KooijmanValue *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
1398ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                         const unsigned *idx_end, Instruction *InsertBefore) {
1399b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Nothing to index? Just return V then (this is useful at the end of our
1400b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // recursion)
1401b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (idx_begin == idx_end)
1402b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return V;
1403b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // We have indices, so V should have an indexable type
14041df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
1405b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Not looking at a struct or array?");
1406b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
1407b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Invalid indices for type?");
1408b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  const CompositeType *PTy = cast<CompositeType>(V->getType());
140976f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson
1410b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (isa<UndefValue>(V))
14119e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson    return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
1412b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_begin,
1413b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman                                                              idx_end));
1414b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (isa<ConstantAggregateZero>(V))
1415a7235ea7245028a0723e8ab7fd011386b3900777Owen Anderson    return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
141676f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_begin,
141776f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson                                                                  idx_end));
1418b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (Constant *C = dyn_cast<Constant>(V)) {
1419b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1420b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Recursively process this constant
142176f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson      return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
1422ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                               idx_end, InsertBefore);
1423b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1424b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Loop the indices for the insertvalue instruction in parallel with the
1425b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested indices
1426b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    const unsigned *req_idx = idx_begin;
1427710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1428710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++req_idx) {
14299954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      if (req_idx == idx_end) {
1430977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        if (InsertBefore)
14310a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // The requested index identifies a part of a nested aggregate. Handle
14320a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // this specially. For example,
14330a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
14340a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
14350a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = extractvalue {i32, { i32, i32 } } %B, 1
14360a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // This can be changed into
14370a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue {i32, i32 } undef, i32 10, 0
14380a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = insertvalue {i32, i32 } %A, i32 11, 1
14390a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // which allows the unused 0,0 element from the nested struct to be
14400a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // removed.
1441ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky          return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
1442977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        else
1443977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          // We can't handle this without inserting insertvalues
1444977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          return 0;
14459954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      }
1446b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1447b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // This insert value inserts something else than what we are looking for.
1448b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // See if the (aggregrate) value inserted into has the value we are
1449b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // looking for, then.
1450b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (*req_idx != *i)
1451710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman        return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
1452ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                                 InsertBefore);
1453b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
1454b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we end up here, the indices of the insertvalue match with those
1455b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested (though possibly only partially). Now we recursively look at
1456b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // the inserted value, passing any remaining indices.
1457710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
1458ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1459b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1460b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we're extracting a value from an aggregrate that was extracted from
1461b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // something else, we can extract from that something else directly instead.
1462b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // However, we will need to chain I's indices with the requested indices.
1463b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1464b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Calculate the number of indices required
1465b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    unsigned size = I->getNumIndices() + (idx_end - idx_begin);
1466b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Allocate some space to put the new indices in
14673faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    SmallVector<unsigned, 5> Idxs;
14683faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    Idxs.reserve(size);
1469b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add indices from the extract value instruction
1470710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
14713faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman         i != e; ++i)
14723faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
1473b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1474b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add requested indices
14753faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
14763faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman      Idxs.push_back(*i);
1477b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
14783faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    assert(Idxs.size() == size
1479710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman           && "Number of indices added not correct?");
1480b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
14813faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
1482ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1483b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
1484b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Otherwise, we don't know (such as, extracting from a function return value
1485b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // or load instruction)
1486b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return 0;
1487b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
14880ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
1489ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1490ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// it can be expressed as a base pointer plus a constant offset.  Return the
1491ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// base and offset to the caller.
1492ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris LattnerValue *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1493ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner                                              const TargetData &TD) {
1494ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  Operator *PtrOp = dyn_cast<Operator>(Ptr);
1495ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (PtrOp == 0) return Ptr;
1496ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1497ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // Just look through bitcasts.
1498ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (PtrOp->getOpcode() == Instruction::BitCast)
1499ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1500ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1501ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // If this is a GEP with constant indices, we can look through it.
1502ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1503ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1504ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1505ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  gep_type_iterator GTI = gep_type_begin(GEP);
1506ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1507ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner       ++I, ++GTI) {
1508ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    ConstantInt *OpC = cast<ConstantInt>(*I);
1509ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    if (OpC->isZero()) continue;
1510ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1511ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    // Handle a struct and array indices which add their offset to the pointer.
1512ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1513ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1514ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    } else {
1515ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1516ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner      Offset += OpC->getSExtValue()*Size;
1517ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    }
1518ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  }
1519ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1520ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // Re-sign extend from the pointer size if needed to get overflow edge cases
1521ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // right.
1522ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  unsigned PtrSize = TD.getPointerSizeInBits();
1523ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (PtrSize < 64)
1524ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1525ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1526ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1527ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner}
1528ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1529ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
15300ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// GetConstantStringInfo - This function computes the length of a
15310ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// null-terminated C string pointed to by V.  If successful, it returns true
15320ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// and returns the string in Str.  If unsuccessful, it returns false.
15330a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohmanbool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
15340a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman                                 uint64_t Offset,
15350582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling                                 bool StopAtNul) {
15360582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  // If V is NULL then return false;
15370582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (V == NULL) return false;
15380ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
15390ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Look through bitcast instructions.
15400a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
15410582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
15420582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
15430ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // If the value is not a GEP instruction nor a constant expression with a
15440ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // GEP instruction, then return false because ConstantArray can't occur
15450ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // any other way
15460a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const User *GEP = 0;
15470a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
15480ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = GEPI;
15490a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
15500ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (CE->getOpcode() == Instruction::BitCast)
15510582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
15520582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (CE->getOpcode() != Instruction::GetElementPtr)
15530582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
15540ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = CE;
15550ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
15560ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
15570ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GEP) {
15580ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the GEP has exactly three arguments.
15590582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (GEP->getNumOperands() != 3)
15600582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
15610582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
15620ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the index-ee is a pointer to array of i8.
15630ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
15640ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1565b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
15660582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
15670ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
15680ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Check to make sure that the first operand of the GEP is an integer and
15690ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // has value 0 so that we are sure we're indexing into the initializer.
15700a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
15710582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (FirstIdx == 0 || !FirstIdx->isZero())
15720582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
15730ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
15740ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // If the second index isn't a ConstantInt, then this is a variable index
15750ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // into the array.  If this occurs, we can't say anything meaningful about
15760ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // the string.
15770ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    uint64_t StartIdx = 0;
15780a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
15790ff39b3feb10477c224138156941234f5fa46f58Evan Cheng      StartIdx = CI->getZExtValue();
15800582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    else
15810582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
15820582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
15830ff39b3feb10477c224138156941234f5fa46f58Evan Cheng                                 StopAtNul);
15840ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
15850ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
15860ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The GEP instruction, constant or instruction, must reference a global
15870ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // variable that is a constant and is initialized. The referenced constant
15880ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // initializer is the array that we'll use for optimization.
15890a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
15908255573835970e7130ba93271972172fb335f2ecDan Gohman  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
15910582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
15920a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const Constant *GlobalInit = GV->getInitializer();
15930ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
15940ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Handle the ConstantAggregateZero case
15950582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (isa<ConstantAggregateZero>(GlobalInit)) {
15960ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // This is a degenerate case. The initializer is constant zero so the
15970ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // length of the string must be zero.
15980582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str.clear();
15990582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return true;
16000582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  }
16010ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16020ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Must be a Constant Array
16030a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1604b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
16050582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
16060ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16070ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Get the number of elements in the array
16080ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  uint64_t NumElts = Array->getType()->getNumElements();
16090ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16100582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Offset > NumElts)
16110582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
16120ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16130ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Traverse the constant array from 'Offset' which is the place the GEP refers
16140ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // to in the array.
16150582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  Str.reserve(NumElts-Offset);
16160ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  for (unsigned i = Offset; i != NumElts; ++i) {
16170a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const Constant *Elt = Array->getOperand(i);
16180a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
16190582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (!CI) // This array isn't suitable, non-int initializer.
16200582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
16210ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (StopAtNul && CI->isZero())
16220582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return true; // we found end of string, success!
16230582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str += (char)CI->getZExtValue();
16240ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
16250582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
16260ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
16270582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  return true;
16280ff39b3feb10477c224138156941234f5fa46f58Evan Cheng}
162925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
163025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// These next two are very similar to the above, but also look through PHI
163125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// nodes.
163225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// TODO: See if we can integrate these two together.
163325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
163425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLengthH - If we can compute the length of the string pointed to by
163525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
163625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopherstatic uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
163725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Look through noop bitcast instructions.
163825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
163925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return GetStringLengthH(BCI->getOperand(0), PHIs);
164025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
164125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If this is a PHI node, there are two cases: either we have already seen it
164225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // or we haven't.
164325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (PHINode *PN = dyn_cast<PHINode>(V)) {
164425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!PHIs.insert(PN))
164525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return ~0ULL;  // already in the set.
164625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
164725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // If it was new, see if all the input strings are the same length.
164825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t LenSoFar = ~0ULL;
164925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
165025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
165125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == 0) return 0; // Unknown length -> unknown.
165225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
165325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == ~0ULL) continue;
165425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
165525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len != LenSoFar && LenSoFar != ~0ULL)
165625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher        return 0;    // Disagree -> unknown.
165725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      LenSoFar = Len;
165825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    }
165925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
166025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // Success, all agree.
166125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return LenSoFar;
166225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
166325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
166425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
166525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
166625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
166725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == 0) return 0;
166825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
166925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == 0) return 0;
167025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == ~0ULL) return Len2;
167125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == ~0ULL) return Len1;
167225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 != Len2) return 0;
167325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return Len1;
167425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
167525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
167625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If the value is not a GEP instruction nor a constant expression with a
167725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // GEP instruction, then return unknown.
167825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  User *GEP = 0;
167925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
168025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    GEP = GEPI;
168125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
168225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (CE->getOpcode() != Instruction::GetElementPtr)
168325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
168425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    GEP = CE;
168525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else {
168625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
168725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
168825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
168925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Make sure the GEP has exactly three arguments.
169025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (GEP->getNumOperands() != 3)
169125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
169225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
169325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Check to make sure that the first operand of the GEP is an integer and
169425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // has value 0 so that we are sure we're indexing into the initializer.
169525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
169625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!Idx->isZero())
169725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
169825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else
169925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
170025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
170125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If the second index isn't a ConstantInt, then this is a variable index
170225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // into the array.  If this occurs, we can't say anything meaningful about
170325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // the string.
170425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t StartIdx = 0;
170525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
170625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    StartIdx = CI->getZExtValue();
170725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  else
170825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
170925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
171025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // The GEP instruction, constant or instruction, must reference a global
171125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // variable that is a constant and is initialized. The referenced constant
171225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // initializer is the array that we'll use for optimization.
171325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
171425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
171525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      GV->mayBeOverridden())
171625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
171725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  Constant *GlobalInit = GV->getInitializer();
171825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
171925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Handle the ConstantAggregateZero case, which is a degenerate case. The
172025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // initializer is constant zero so the length of the string must be zero.
172125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (isa<ConstantAggregateZero>(GlobalInit))
172225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 1;  // Len = 0 offset by 1.
172325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
172425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Must be a Constant Array
172525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
172625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
172725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return false;
172825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
172925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Get the number of elements in the array
173025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t NumElts = Array->getType()->getNumElements();
173125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
173225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Traverse the constant array from StartIdx (derived above) which is
173325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // the place the GEP refers to in the array.
173425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  for (unsigned i = StartIdx; i != NumElts; ++i) {
173525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    Constant *Elt = Array->getOperand(i);
173625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
173725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!CI) // This array isn't suitable, non-int initializer.
173825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
173925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (CI->isZero())
174025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return i-StartIdx+1; // We found end of string, success!
174125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
174225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
174325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  return 0; // The array isn't null terminated, conservatively return 'unknown'.
174425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
174525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
174625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLength - If we can compute the length of the string pointed to by
174725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
174825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopheruint64_t llvm::GetStringLength(Value *V) {
174925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!V->getType()->isPointerTy()) return 0;
175025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
175125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  SmallPtrSet<PHINode*, 32> PHIs;
175225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t Len = GetStringLengthH(V, PHIs);
175325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
175425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // an empty string as a length.
175525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  return Len == ~0ULL ? 1 : Len;
175625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
17575034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman
1758bd1801b5553c8be3960255a92738464e0010b6f6Dan GohmanValue *
1759bd1801b5553c8be3960255a92738464e0010b6f6Dan Gohmanllvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
17605034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  if (!V->getType()->isPointerTy())
17615034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    return V;
17625034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
17635034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
17645034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = GEP->getPointerOperand();
17655034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
17665034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = cast<Operator>(V)->getOperand(0);
17675034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
17685034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      if (GA->mayBeOverridden())
17695034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman        return V;
17705034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = GA->getAliasee();
17715034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else {
1772c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman      // See if InstructionSimplify knows any relevant tricks.
1773c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman      if (Instruction *I = dyn_cast<Instruction>(V))
17747a2bdde0a0eebcd2125055e0eacaca040f0b766cChris Lattner        // TODO: Acquire a DominatorTree and use it.
1775bd1801b5553c8be3960255a92738464e0010b6f6Dan Gohman        if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1776c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman          V = Simplified;
1777c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman          continue;
1778c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman        }
1779c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman
17805034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      return V;
17815034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    }
17825034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
17835034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  }
17845034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  return V;
17855034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman}
178699e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky
178799e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
178899e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky/// are lifetime markers.
178999e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky///
179099e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewyckybool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
179199e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
179299e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky       UI != UE; ++UI) {
179399e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
179499e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky    if (!II) return false;
179599e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky
179699e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
179799e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky        II->getIntrinsicID() != Intrinsic::lifetime_end)
179899e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky      return false;
179999e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky  }
180099e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky  return true;
180199e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky}
1802