ValueTracking.cpp revision a8f5cd3539580b2fe3c20c748c1374f76992f113
1173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
3173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//                     The LLVM Compiler Infrastructure
4173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
5173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file is distributed under the University of Illinois Open Source
6173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// License. See LICENSE.TXT for details.
7173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
8173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
9173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
10173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// This file contains routines that help analyze properties that chains of
11173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner// computations have.
12173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//
13173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner//===----------------------------------------------------------------------===//
14173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
15173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Analysis/ValueTracking.h"
16243712720ad1da144d4376bdd854d81260c1beaaDan Gohman#include "llvm/Analysis/InstructionSimplify.h"
17173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Constants.h"
18173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Instructions.h"
190ff39b3feb10477c224138156941234f5fa46f58Evan Cheng#include "llvm/GlobalVariable.h"
20307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman#include "llvm/GlobalAlias.h"
21173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/IntrinsicInst.h"
2276f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson#include "llvm/LLVMContext.h"
23ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman#include "llvm/Operator.h"
240582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling#include "llvm/Target/TargetData.h"
25173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/GetElementPtrTypeIterator.h"
26173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner#include "llvm/Support/MathExtras.h"
27d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands#include "llvm/Support/PatternMatch.h"
2825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher#include "llvm/ADT/SmallPtrSet.h"
2932a9e7a2654c4aab2e617fbe53140492b3d38066Chris Lattner#include <cstring>
30173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerusing namespace llvm;
31d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsusing namespace llvm::PatternMatch;
32d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
33d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsconst unsigned MaxDepth = 6;
34d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
35d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// unknown returns 0).  For vector types, returns the element type's bitwidth.
37db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattnerstatic unsigned getBitWidth(Type *Ty, const TargetData *TD) {
38d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (unsigned BitWidth = Ty->getScalarSizeInBits())
39d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return BitWidth;
40d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  assert(isa<PointerType>(Ty) && "Expected a pointer type!");
41d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  return TD ? TD->getPointerSizeInBits() : 0;
42d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
43173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
44173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeMaskedBits - Determine which of the bits specified in Mask are
45173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// known to be either zero or one and return them in the KnownZero/KnownOne
46173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
47173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// processing.
48173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
49173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// we cannot optimize based on the assumption that it is zero without changing
50173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// it to be an explicit zero.  If we don't change it to zero, other code could
51173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// optimized based on the contradictory assumption that it is non-zero.
52173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// Because instcombine aggressively folds operations with undef args anyway,
53173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this won't lose us code quality.
54cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
55cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
56cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
57cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
58cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
59cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
60173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnervoid llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
61173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                             APInt &KnownZero, APInt &KnownOne,
62846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
63173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert(V && "No Value?");
649004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  assert(Depth <= MaxDepth && "Limit Search Depth");
6579abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner  unsigned BitWidth = Mask.getBitWidth();
661df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
67b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         && "Not integer or pointer type!");
686de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  assert((!TD ||
696de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
70b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands         (!V->getType()->isIntOrIntVectorTy() ||
716de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman          V->getType()->getScalarSizeInBits() == BitWidth) &&
72173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownZero.getBitWidth() == BitWidth &&
73173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         KnownOne.getBitWidth() == BitWidth &&
74173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner         "V, Mask, KnownOne and KnownZero should have same BitWidth");
75173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
76173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
77173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We know all of the bits for a constant!
78173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = CI->getValue() & Mask;
79173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = ~KnownOne & Mask;
80173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
81173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
826de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Null and aggregate-zero are all-zeros.
836de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (isa<ConstantPointerNull>(V) ||
846de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      isa<ConstantAggregateZero>(V)) {
857a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
86173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = Mask;
87173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
88173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
896de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // Handle a constant vector by taking the intersection of the known bits of
906de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  // each element.
916de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
927a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownZero.setAllBits(); KnownOne.setAllBits();
936de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
946de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
956de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
966de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman                        TD, Depth);
976de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownZero &= KnownZero2;
986de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman      KnownOne &= KnownOne2;
996de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    }
1006de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman    return;
1016de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman  }
102173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // The address of an aligned GlobalValue has trailing zeros.
103173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = GV->getAlignment();
105004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
106db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner      Type *ObjectType = GV->getType()->getElementType();
107004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // If the object is defined in the current Module, we'll be giving
108004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // it the preferred alignment. Otherwise, we have to assume that it
109004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      // may only have the minimum ABI alignment.
110004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      if (!GV->isDeclaration() && !GV->mayBeOverridden())
111004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getPrefTypeAlignment(ObjectType);
112004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman      else
113004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman        Align = TD->getABITypeAlignment(ObjectType);
114004072508bfc66159ca09be26f06b8b05c1bac4eDan Gohman    }
115173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
116173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
117173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
118173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else
1197a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      KnownZero.clearAllBits();
1207a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
121173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
122173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
123307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  // the bits of its aliasee.
125307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
126307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    if (GA->mayBeOverridden()) {
1277a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      KnownZero.clearAllBits(); KnownOne.clearAllBits();
128307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    } else {
129307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman      ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
130307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman                        TD, Depth+1);
131307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    }
132307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman    return;
133307a7c48f15b087663b60d600d23afffb9e211e6Dan Gohman  }
134b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner
135b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  if (Argument *A = dyn_cast<Argument>(V)) {
136b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner    // Get alignment information off byval arguments if specified in the IR.
137b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner    if (A->hasByValAttr())
138b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner      if (unsigned Align = A->getParamAlignment())
139b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner        KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
140b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner                                                CountTrailingZeros_32(Align));
141b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner    return;
142b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  }
143173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
144b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  // Start out not knowing anything.
145b3f0673d52b72f34434dec13c4e2044c82012ef6Chris Lattner  KnownZero.clearAllBits(); KnownOne.clearAllBits();
146173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1479004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman  if (Depth == MaxDepth || Mask == 0)
148173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;  // Limit search depth.
149173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
150ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *I = dyn_cast<Operator>(V);
151173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (!I) return;
152173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
153173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
154ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (I->getOpcode()) {
155173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
156173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And: {
157173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If either the LHS or the RHS are Zero, the result is zero.
158173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
159173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownZero);
160173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
161173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
162173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
163173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
164173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
165173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 bits are only known if set in both the LHS & RHS.
166173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
167173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 are known to be clear if zero in either the LHS | RHS.
168173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero |= KnownZero2;
169173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
170173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
171173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or: {
172173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
173173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2(Mask & ~KnownOne);
174173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
175173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
176173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
177173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
178173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
179173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are only known if clear in both the LHS & RHS.
180173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
181173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in either the LHS | RHS.
182173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne |= KnownOne2;
183173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
184173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
185173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor: {
186173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
187173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
188173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
189173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
190173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
191173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
192173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-0 bits are known if clear or set in both the LHS & RHS.
193173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
194173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Output known-1 are known to be set if set in only one of the LHS, RHS.
195173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
196173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = KnownZeroOut;
197173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
198173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
199173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Mul: {
200173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
201173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
202173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
203173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
20432a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
20532a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
20632a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands
20732a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    bool isKnownNegative = false;
20832a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    bool isKnownNonNegative = false;
20932a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    // If the multiplication is known not to overflow, compute the sign bit.
21032a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    if (Mask.isNegative() &&
21132a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) {
21232a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands      Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0);
21332a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands      if (Op1 == Op2) {
21432a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        // The product of a number with itself is non-negative.
21532a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        isKnownNonNegative = true;
21632a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands      } else {
21732a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        bool isKnownNonNegative1 = KnownZero.isNegative();
21832a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        bool isKnownNonNegative2 = KnownZero2.isNegative();
21932a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        bool isKnownNegative1 = KnownOne.isNegative();
22032a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        bool isKnownNegative2 = KnownOne2.isNegative();
22132a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        // The product of two numbers with the same sign is non-negative.
22232a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) ||
22332a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands          (isKnownNonNegative1 && isKnownNonNegative2);
22432a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        // The product of a negative number and a non-negative number is either
22532a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        // negative or zero.
22632a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        if (!isKnownNonNegative)
22732a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands          isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 &&
22832a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands                             isKnownNonZero(Op2, TD, Depth)) ||
22932a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands                            (isKnownNegative2 && isKnownNonNegative1 &&
23032a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands                             isKnownNonZero(Op1, TD, Depth));
23132a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands      }
23232a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    }
23332a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands
234173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If low bits are zero in either operand, output low known-0 bits.
235173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Also compute a conserative estimate for high known-0 bits.
236173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // More trickiness is possible, but this is sufficient for the
237173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // interesting case of alignment computation.
2387a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
239173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = KnownZero.countTrailingOnes() +
240173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      KnownZero2.countTrailingOnes();
241173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
242173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               KnownZero2.countLeadingOnes(),
243173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                               BitWidth) - BitWidth;
244173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
245173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    TrailZ = std::min(TrailZ, BitWidth);
246173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    LeadZ = std::min(LeadZ, BitWidth);
247173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
248173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                APInt::getHighBitsSet(BitWidth, LeadZ);
249173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= Mask;
25032a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands
251a8f5cd3539580b2fe3c20c748c1374f76992f113Duncan Sands    // Only make use of no-wrap flags if we failed to compute the sign bit
252a8f5cd3539580b2fe3c20c748c1374f76992f113Duncan Sands    // directly.  This matters if the multiplication always overflows, in
253a8f5cd3539580b2fe3c20c748c1374f76992f113Duncan Sands    // which case we prefer to follow the result of the direct computation,
254a8f5cd3539580b2fe3c20c748c1374f76992f113Duncan Sands    // though as the program is invoking undefined behaviour we can choose
255a8f5cd3539580b2fe3c20c748c1374f76992f113Duncan Sands    // whatever we like here.
256a8f5cd3539580b2fe3c20c748c1374f76992f113Duncan Sands    if (isKnownNonNegative && !KnownOne.isNegative())
25732a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands      KnownZero.setBit(BitWidth - 1);
258a8f5cd3539580b2fe3c20c748c1374f76992f113Duncan Sands    else if (isKnownNegative && !KnownZero.isNegative())
25932a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands      KnownOne.setBit(BitWidth - 1);
26032a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands
261173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
262173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
263173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UDiv: {
264173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // For the purposes of computing leading zeros we can conservatively
265173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // treat a udiv as a logical right shift by the power of 2 known to
266173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // be less than the denominator.
267173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
268173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0),
269173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
270173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned LeadZ = KnownZero2.countLeadingOnes();
271173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
2727a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne2.clearAllBits();
2737a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownZero2.clearAllBits();
274173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1),
275173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
276173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
277173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (RHSUnknownLeadingOnes != BitWidth)
278173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      LeadZ = std::min(BitWidth,
279173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
280173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
281173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
282173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
283173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
284173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
285173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
286173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
287173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
288173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
289173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
290173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
291173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Only known if known in both the LHS and RHS.
292173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownOne &= KnownOne2;
293173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero &= KnownZero2;
294173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
295173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPTrunc:
296173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPExt:
297173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToUI:
298173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::FPToSI:
299173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SIToFP:
300173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::UIToFP:
301173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return; // Can't work with floating point.
302173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PtrToInt:
303173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::IntToPtr:
304173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // We can't handle these if we don't know the pointer size.
305173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (!TD) return;
306173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FALL THROUGH and handle them the same as zext/trunc.
307173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::ZExt:
308173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc: {
309db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    Type *SrcTy = I->getOperand(0)->getType();
310b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
311b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth;
312173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Note that we handle pointer operands here because of inttoptr/ptrtoint
313173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // which fall through here.
3141df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    if (SrcTy->isPointerTy())
315b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
316b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    else
317b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner      SrcBitWidth = SrcTy->getScalarSizeInBits();
318b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner
31940f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
32040f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
32140f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
322173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
323173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
32440f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zextOrTrunc(BitWidth);
32540f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zextOrTrunc(BitWidth);
326173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Any top bits are known to be zero.
327173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (BitWidth > SrcBitWidth)
328173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
329173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
330173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
331173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::BitCast: {
332db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    Type *SrcTy = I->getOperand(0)->getType();
3331df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands    if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3340dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // TODO: For now, not handling conversions like:
3350dabb0b177089202dae485d085ed15bd41ef29e6Chris Lattner        // (bitcast i64 %x to <2 x i32>)
3361df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands        !I->getType()->isVectorTy()) {
337173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
338173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
339173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
340173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
341173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
342173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
343173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt: {
344173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Compute the bits in the result that are not present in the input.
345b9a4ddbbcd668a94fe945f0648010c281e272889Chris Lattner    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
346173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
34740f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    APInt MaskIn = Mask.trunc(SrcBitWidth);
34840f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.trunc(SrcBitWidth);
34940f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.trunc(SrcBitWidth);
350173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
351173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
352173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
35340f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownZero = KnownZero.zext(BitWidth);
35440f8f6264d5af2c38e797e0dc59827cd231e8ff7Jay Foad    KnownOne = KnownOne.zext(BitWidth);
355173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
356173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // If the sign bit of the input is known set or clear, then we know the
357173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // top bits of the result.
358173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
359173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
360173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
361173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
362173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
363173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
364173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
365173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
366173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
367173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
368173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.lshr(ShiftAmt));
369173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
370173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
371173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
372173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero <<= ShiftAmt;
373173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  <<= ShiftAmt;
374173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
375173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
376173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
377173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
378173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::LShr:
379173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
380173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
381173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
382173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
383173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
384173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Unsigned shift right.
385173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
386173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
387173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
388ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
389173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
390173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
391173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // high bits known zero.
392173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
393173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
394173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
395173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
396173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
397173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
398173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
399173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Compute the new bits that are at the top now.
40043b40a4620c155c73ac71b48472ea2411d7c35daChris Lattner      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
401173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
402173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // Signed shift right.
403173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt Mask2(Mask.shl(ShiftAmt));
404173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
405173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                        Depth+1);
406ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
407173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
408173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
409173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
410173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
411173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
412173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= HighBits;
413173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
414173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownOne |= HighBits;
415173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return;
416173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
417173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
418173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub: {
419173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
420173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We know that the top bits of C-X are clear if X contains less bits
421173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // than C (i.e. no wrap-around can happen).  For example, 20-X is
422173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // positive if we can prove that X is >= 0 and < 16.
423173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (!CLHS->getValue().isNegative()) {
424173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
425173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // NLZ can't be BitWidth with no sign bit
426173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
427173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
428173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
429173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
430173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If all of the MaskV bits are known to be zero, then we know the
431173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // output top bits are zero, because we now know that the output is
432173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // from [0-C].
433173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero2 & MaskV) == MaskV) {
434173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
435173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Top bits known zero.
436173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
437173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
438173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
439173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
440173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
441173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // fall through
442173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add: {
443ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky    // If one of the operands has trailing zeros, then the bits that the
4443925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // other operand has in those bit positions will be preserved in the
4453925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // result. For an add, this works with either operand. For a subtract,
4463925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // this only works if the known zeros are in the right operand.
4473925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
4483925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
4493925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                       BitWidth - Mask.countLeadingZeros());
4503925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
451173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
4523925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    assert((LHSKnownZero & LHSKnownOne) == 0 &&
4533925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman           "Bits known to be one AND zero?");
4543925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
455173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
456173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
457173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      Depth+1);
458173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
4593925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
460173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
4613925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // Determine which operand has more trailing zeros, and use that
4623925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    // many bits from the other operand.
4633925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    if (LHSKnownZeroOut > RHSKnownZeroOut) {
464ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman      if (I->getOpcode() == Instruction::Add) {
4653925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
4663925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= KnownZero2 & Mask;
4673925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownOne  |= KnownOne2 & Mask;
4683925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      } else {
4693925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // If the known zeros are in the left operand for a subtract,
4703925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        // fall back to the minimum known zeros in both operands.
4713925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman        KnownZero |= APInt::getLowBitsSet(BitWidth,
4723925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                          std::min(LHSKnownZeroOut,
4733925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman                                                   RHSKnownZeroOut));
4743925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      }
4753925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
4763925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
4773925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownZero |= LHSKnownZero & Mask;
4783925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman      KnownOne  |= LHSKnownOne & Mask;
4793925043af0ecf1f0a6158c5007c1186797a252cbDan Gohman    }
480b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky
481b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky    // Are we still trying to solve for the sign bit?
48214b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer    if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
483b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky      OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
484b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky      if (OBO->hasNoSignedWrap()) {
48514b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer        if (I->getOpcode() == Instruction::Add) {
48614b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          // Adding two positive numbers can't wrap into negative
48714b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
48814b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer            KnownZero |= APInt::getSignBit(BitWidth);
48914b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          // and adding two negative numbers can't wrap into positive.
49014b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
49114b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer            KnownOne |= APInt::getSignBit(BitWidth);
49214b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer        } else {
49314b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          // Subtracting a negative number from a positive one can't wrap
49414b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
49514b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer            KnownZero |= APInt::getSignBit(BitWidth);
49614b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          // neither can subtracting a positive number from a negative one.
49714b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer          else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
49814b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer            KnownOne |= APInt::getSignBit(BitWidth);
49914b2a59301e9e4065c7b9b07a0c68462b6037a4fBenjamin Kramer        }
500b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky      }
501b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky    }
502b69050a94c1c9266ab048a79c8375e5b14d87c72Nick Lewycky
503173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return;
504173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
505173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SRem:
506173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
507cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      APInt RA = Rem->getValue().abs();
508cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands      if (RA.isPowerOf2()) {
509cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        APInt LowBits = RA - 1;
510173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
511173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
512173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
513173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
514cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // The low bits of the first operand are unchanged by the srem.
515cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownZero = KnownZero2 & LowBits;
516cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownOne = KnownOne2 & LowBits;
517cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
518cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is non-negative or has all low bits zero, then
519cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all zero.
520173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
521cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownZero |= ~LowBits;
522173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
523cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // If the first operand is negative and not all low bits are zero, then
524cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        // the upper bits are all one.
525cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
526cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands          KnownOne |= ~LowBits;
527cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands
528cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownZero &= Mask;
529cfd54181a44db5ac75cd4a7d0a3c6a199ab01c29Duncan Sands        KnownOne &= Mask;
530173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
531ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
532173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
533173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
534c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky
535c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    // The sign bit is the LHS's sign bit, except when the result of the
536c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    // remainder is zero.
537c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    if (Mask.isNegative() && KnownZero.isNonNegative()) {
538c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      APInt Mask2 = APInt::getSignBit(BitWidth);
539c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
540c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
541c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky                        Depth+1);
542c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      // If it's known zero, our sign bit is also zero.
543c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky      if (LHSKnownZero.isNegative())
544c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky        KnownZero |= LHSKnownZero;
545c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky    }
546c14bc77315ac4867f16c1585181b41919339eb3cNick Lewycky
547173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
548173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::URem: {
549173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
550173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      APInt RA = Rem->getValue();
551173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (RA.isPowerOf2()) {
552173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt LowBits = (RA - 1);
553173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask2 = LowBits & Mask;
554173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero |= ~LowBits & Mask;
555173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
556173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
557ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky        assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
558173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
559173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
560173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
561173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
562173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Since the result is less than or equal to either operand, any leading
563173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // zero bits in either operand must also exist in the result.
564173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
565173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
566173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
567173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
568173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      TD, Depth+1);
569173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
57079abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
571173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                KnownZero2.countLeadingOnes());
5727a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad    KnownOne.clearAllBits();
573173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
574173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
575173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
576173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
577a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez  case Instruction::Alloca: {
5787b929dad59785f62a66f7c58615082f98441e95eVictor Hernandez    AllocaInst *AI = cast<AllocaInst>(V);
579173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned Align = AI->getAlignment();
580a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez    if (Align == 0 && TD)
581a276c603b82a11b0bf0b59f0517a69e4b63adeabVictor Hernandez      Align = TD->getABITypeAlignment(AI->getType()->getElementType());
582173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
583173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Align > 0)
584173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
585173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                              CountTrailingZeros_32(Align));
586173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
587173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
588173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::GetElementPtr: {
589173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Analyze all of the subscripts of this getelementptr instruction
590173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // to determine if we can prove known low zero bits.
591173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalMask = APInt::getAllOnesValue(BitWidth);
592173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
593173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    ComputeMaskedBits(I->getOperand(0), LocalMask,
594173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      LocalKnownZero, LocalKnownOne, TD, Depth+1);
595173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
596173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
597173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    gep_type_iterator GTI = gep_type_begin(I);
598173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
599173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Value *Index = I->getOperand(i);
600db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
601173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle struct member offset arithmetic.
602173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!TD) return;
603173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        const StructLayout *SL = TD->getStructLayout(STy);
604173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
605173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        uint64_t Offset = SL->getElementOffset(Idx);
606173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
607173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          CountTrailingZeros_64(Offset));
608173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      } else {
609173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Handle array index arithmetic.
610db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner        Type *IndexedTy = GTI.getIndexedType();
611173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!IndexedTy->isSized()) return;
6126de29f8d960505421d61c80cdb738e16720b6c0eDan Gohman        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
613777d2306b36816a53bc1ae1244c0dc7d998ae691Duncan Sands        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
614173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalMask = APInt::getAllOnesValue(GEPOpiBits);
615173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
616173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(Index, LocalMask,
617173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          LocalKnownZero, LocalKnownOne, TD, Depth+1);
618173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        TrailZ = std::min(TrailZ,
61979abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                          unsigned(CountTrailingZeros_64(TypeSize) +
62079abedb83a4dd7d3583c7ca6df8283079acc3ba5Chris Lattner                                   LocalKnownZero.countTrailingOnes()));
621173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
622173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
623173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
624173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
625173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
626173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
627173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::PHI: {
628173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    PHINode *P = cast<PHINode>(I);
629173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle the case of a simple two-predecessor recurrence PHI.
630173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // There's a lot more that could theoretically be done here, but
631173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // this is sufficient to catch some interesting cases.
632173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (P->getNumIncomingValues() == 2) {
633173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      for (unsigned i = 0; i != 2; ++i) {
634173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *L = P->getIncomingValue(i);
635173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        Value *R = P->getIncomingValue(!i);
636ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        Operator *LU = dyn_cast<Operator>(L);
637173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (!LU)
638173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          continue;
639ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman        unsigned Opcode = LU->getOpcode();
640173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Check for operations that have the property that if
641173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // both their operands have low zero bits, the result
642173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // will have low zero bits.
643173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (Opcode == Instruction::Add ||
644173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Sub ||
645173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::And ||
646173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Or ||
647173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            Opcode == Instruction::Mul) {
648173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LL = LU->getOperand(0);
649173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Value *LR = LU->getOperand(1);
650173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Find a recurrence.
651173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          if (LL == I)
652173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LR;
653173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else if (LR == I)
654173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            L = LL;
655173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          else
656173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner            break;
657173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // Ok, we have a PHI of the form L op= R. Check for low
658173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          // zero bits.
659173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          APInt Mask2 = APInt::getAllOnesValue(BitWidth);
660173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
661173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          Mask2 = APInt::getLowBitsSet(BitWidth,
662173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                                       KnownZero2.countTrailingOnes());
663c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
664c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          // We need to take the minimum number of known bits
665c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
666c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene          ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
667c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene
668173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          KnownZero = Mask &
669173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                      APInt::getLowBitsSet(BitWidth,
670c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                           std::min(KnownZero2.countTrailingOnes(),
671c714f1309049b2fd9e4ab68c8a7b480c63a4be0cDavid Greene                                                    KnownZero3.countTrailingOnes()));
672173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          break;
673173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        }
674173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
675173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
6769004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
6773b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky    // Unreachable blocks may have zero-operand PHI nodes.
6783b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky    if (P->getNumIncomingValues() == 0)
6793b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky      return;
6803b739d278c87f8ac22b5dc368b319fa278347b2fNick Lewycky
6819004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // Otherwise take the unions of the known bit sets of the operands,
6829004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    // taking conservative care to avoid excessive recursion.
6839004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
684606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands      // Skip if every incoming value references to ourself.
685606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands      if (P->hasConstantValue() == P)
686606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands        break;
687606199fb85d1c8407615e575b5e8bb5c71be27bdDuncan Sands
6889004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownZero = APInt::getAllOnesValue(BitWidth);
6899004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      KnownOne = APInt::getAllOnesValue(BitWidth);
6909004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
6919004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Skip direct self references.
6929004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (P->getIncomingValue(i) == P) continue;
6939004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman
6949004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero2 = APInt(BitWidth, 0);
6959004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne2 = APInt(BitWidth, 0);
6969004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // Recurse, but cap the recursion to one level, because we don't
6979004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // want to waste time spinning around in loops.
6989004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
6999004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman                          KnownZero2, KnownOne2, TD, MaxDepth-1);
7009004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownZero &= KnownZero2;
7019004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        KnownOne &= KnownOne2;
7029004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // If all bits have been ruled out, there's no need to check
7039004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        // more operands.
7049004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman        if (!KnownZero && !KnownOne)
7059004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman          break;
7069004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman      }
7079004c8afd4bf7b3f27f4a4f8fd069379afa97c83Dan Gohman    }
708173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
709173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
710173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Call:
711173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
712173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      switch (II->getIntrinsicID()) {
713173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      default: break;
714173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctpop:
715173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::ctlz:
716173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      case Intrinsic::cttz: {
717173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        unsigned LowBits = Log2_32(BitWidth)+1;
718173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
719173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        break;
720173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
72162660310d9e5f9ecf329fd3cacb67c344a12ddbcChad Rosier      case Intrinsic::x86_sse42_crc32_64_8:
72262660310d9e5f9ecf329fd3cacb67c344a12ddbcChad Rosier      case Intrinsic::x86_sse42_crc32_64_64:
723cb559c1270a773de2c97c99700dcd5456f24a732Evan Cheng        KnownZero = APInt::getHighBitsSet(64, 32);
724cb559c1270a773de2c97c99700dcd5456f24a732Evan Cheng        break;
725173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
726173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
727173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
728173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
729173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
730173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
731d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// ComputeSignBit - Determine whether the sign bit is known to be zero or
732d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// one.  Convenience wrapper around ComputeMaskedBits.
733d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsvoid llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
734d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands                          const TargetData *TD, unsigned Depth) {
735d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  unsigned BitWidth = getBitWidth(V->getType(), TD);
736d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (!BitWidth) {
737d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    KnownZero = false;
738d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    KnownOne = false;
739d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return;
740d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
741d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt ZeroBits(BitWidth, 0);
742d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt OneBits(BitWidth, 0);
743d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
744d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands                    Depth);
745d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  KnownOne = OneBits[BitWidth - 1];
746d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  KnownZero = ZeroBits[BitWidth - 1];
747d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
748d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
749d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// isPowerOfTwo - Return true if the given value is known to have exactly one
750d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// bit set when defined. For vectors return true if every element is known to
751d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// be a power of two when defined.  Supports values with integer or pointer
752d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// types and vectors of integers.
753dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sandsbool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
754dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands                        unsigned Depth) {
755dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands  if (Constant *C = dyn_cast<Constant>(V)) {
756dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    if (C->isNullValue())
757dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      return OrZero;
758dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
759dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      return CI->getValue().isPowerOf2();
760dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    // TODO: Handle vector constants.
761dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands  }
762d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
763d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // 1 << X is clearly a power of two if the one is not shifted off the end.  If
764d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // it is shifted off the end then the result is undefined.
765d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (match(V, m_Shl(m_One(), m_Value())))
766d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return true;
767d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
768d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // (signbit) >>l X is clearly a power of two if the one is not shifted off the
769d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // bottom.  If it is shifted off the bottom then the result is undefined.
77093c780288df9631d11f996b010b2212a8b44d4d3Duncan Sands  if (match(V, m_LShr(m_SignBit(), m_Value())))
771d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return true;
772d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
773d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // The remaining tests are all recursive, so bail out if we hit the limit.
774d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (Depth++ == MaxDepth)
775d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return false;
776d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
7774604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands  Value *X = 0, *Y = 0;
7784604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands  // A shift of a power of two is a power of two or zero.
7794604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands  if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
7804604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands                 match(V, m_Shr(m_Value(X), m_Value()))))
7814604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands    return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
7824604fc7791314af7ba7b66999e4c7fb75a4d9f6eDuncan Sands
783d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
784dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
785d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
786d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (SelectInst *SI = dyn_cast<SelectInst>(V))
787dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
788dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
789dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands
790dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands  if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
791dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    // A power of two and'd with anything is a power of two or zero.
792dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
793dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands        isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
794dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      return true;
795dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    // X & (-X) is always a power of two or zero.
796dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
797dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      return true;
798dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    return false;
799dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands  }
800d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
8013dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  // An exact divide or right shift can only shift off zero bits, so the result
8021f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky  // is a power of two only if the first operand is a power of two and not
8031f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky  // copying a sign bit (sdiv int_min, 2).
8041f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky  if (match(V, m_LShr(m_Value(), m_Value())) ||
8051f7bc701b030f5b01553f306cc975eeac1e4d99bNick Lewycky      match(V, m_UDiv(m_Value(), m_Value()))) {
8066bdd261df972b5e70e4242721ab16b57c6fe3d1fEli Friedman    PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V);
8076bdd261df972b5e70e4242721ab16b57c6fe3d1fEli Friedman    if (PEO->isExact())
808dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands      return isPowerOfTwo(PEO->getOperand(0), TD, OrZero, Depth);
8093dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  }
8103dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky
811d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  return false;
812d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
813d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
814d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// isKnownNonZero - Return true if the given value is known to be non-zero
815d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// when defined.  For vectors return true if every element is known to be
816d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// non-zero when defined.  Supports values with integer or pointer type and
817d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands/// vectors of integers.
818d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sandsbool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
819d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (Constant *C = dyn_cast<Constant>(V)) {
820d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (C->isNullValue())
821d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return false;
822d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (isa<ConstantInt>(C))
823d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // Must be non-zero due to null test above.
824d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
825d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // TODO: Handle vectors
826d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return false;
827d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
828d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
829d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // The remaining tests are all recursive, so bail out if we hit the limit.
83032a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands  if (Depth++ >= MaxDepth)
831d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return false;
832d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
833d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  unsigned BitWidth = getBitWidth(V->getType(), TD);
834d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
835d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // X | Y != 0 if X != 0 or Y != 0.
836d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  Value *X = 0, *Y = 0;
837d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (match(V, m_Or(m_Value(X), m_Value(Y))))
838d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
839d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
840d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // ext X != 0 if X != 0.
841d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (isa<SExtInst>(V) || isa<ZExtInst>(V))
842d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
843d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
8449136782d273cd45b6f19a7d0cc0d146d0791bac9Duncan Sands  // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
845d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // if the lowest bit is shifted off the end.
846d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
8473dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    // shl nuw can't remove any non-zero bits.
84832a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
8493dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    if (BO->hasNoUnsignedWrap())
8503dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky      return isKnownNonZero(X, TD, Depth);
8513dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky
852d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    APInt KnownZero(BitWidth, 0);
853d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    APInt KnownOne(BitWidth, 0);
8549136782d273cd45b6f19a7d0cc0d146d0791bac9Duncan Sands    ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
855d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (KnownOne[0])
856d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
857d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
8589136782d273cd45b6f19a7d0cc0d146d0791bac9Duncan Sands  // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
859d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // defined if the sign bit is shifted off the end.
860d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
8613dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    // shr exact can only shift out zero bits.
86232a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
8633dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    if (BO->isExact())
8643dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky      return isKnownNonZero(X, TD, Depth);
8653dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky
866d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    bool XKnownNonNegative, XKnownNegative;
867d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
868d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (XKnownNegative)
869d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
870d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
8713dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  // div exact can only produce a zero if the dividend is zero.
8723dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
87332a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
8743dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky    if (BO->isExact())
8753dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky      return isKnownNonZero(X, TD, Depth);
8763dfd98744c1f6e6c5d13e419b63ac69894ae84cfNick Lewycky  }
877d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // X + Y.
878d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
879d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    bool XKnownNonNegative, XKnownNegative;
880d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    bool YKnownNonNegative, YKnownNegative;
881d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
882d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
883d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
884d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // If X and Y are both non-negative (as signed values) then their sum is not
885227fba11ca168225d913d1cea94a05b883092e76Duncan Sands    // zero unless both X and Y are zero.
886d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (XKnownNonNegative && YKnownNonNegative)
887227fba11ca168225d913d1cea94a05b883092e76Duncan Sands      if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
888227fba11ca168225d913d1cea94a05b883092e76Duncan Sands        return true;
889d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
890d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // If X and Y are both negative (as signed values) then their sum is not
891d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // zero unless both X and Y equal INT_MIN.
892d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (BitWidth && XKnownNegative && YKnownNegative) {
893d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      APInt KnownZero(BitWidth, 0);
894d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      APInt KnownOne(BitWidth, 0);
895d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      APInt Mask = APInt::getSignedMaxValue(BitWidth);
896d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // The sign bit of X is set.  If some other bit is set then X is not equal
897d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // to INT_MIN.
898d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
899d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      if ((KnownOne & Mask) != 0)
900d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands        return true;
901d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // The sign bit of Y is set.  If some other bit is set then Y is not equal
902d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      // to INT_MIN.
903d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
904d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      if ((KnownOne & Mask) != 0)
905d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands        return true;
906d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    }
907d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
908d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    // The sum of a non-negative number and a power of two is not zero.
909dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
910d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
911dd3149d57977d0632cfaf24290dd93416fb2a0efDuncan Sands    if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
912d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
913d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
91432a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands  // X * Y.
91532a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands  else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
91632a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
91732a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    // If X and Y are non-zero then so is X * Y as long as the multiplication
91832a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    // does not overflow.
91932a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands    if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
92032a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands        isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
92132a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands      return true;
92232a43cc0fc3cd42702d7859eaa58dd42f561a54dDuncan Sands  }
923d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  // (C ? X : Y) != 0 if X != 0 and Y != 0.
924d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
925d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands    if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
926d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands        isKnownNonZero(SI->getFalseValue(), TD, Depth))
927d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands      return true;
928d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  }
929d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
930d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  if (!BitWidth) return false;
931d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt KnownZero(BitWidth, 0);
932d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  APInt KnownOne(BitWidth, 0);
933d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
934d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands                    TD, Depth);
935d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands  return KnownOne != 0;
936d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands}
937d70d1a5c44609af091f6fc3e29193f9f4756a74fDuncan Sands
938173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
939173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// this predicate to simplify operations downstream.  Mask is known to be zero
940173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// for bits that V cannot have.
941cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner///
942cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// This function is defined on values with integer type, values with pointer
943cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// type (but only if TD is non-null), and vectors of integers.  In the case
944cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// where V is a vector, the mask, known zero, and known one values are the
945cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// same width as the vector element, and the bit is set only if it is true
946cf5128ec01f45d2bf7eadc20b253cb44486e473fChris Lattner/// for all of the elements in the vector.
947173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattnerbool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
948846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                             const TargetData *TD, unsigned Depth) {
949173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
950173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
951173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
952173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return (KnownZero & Mask) == Mask;
953173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
954173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
955173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
956173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
957173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// ComputeNumSignBits - Return the number of times the sign bit of the
958173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// register is replicated into the other bits.  We know that at least 1 bit
959173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// is always equal to the sign bit (itself), but other cases can give us
960173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// information.  For example, immediately after an "ashr X, 2", we know that
961173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// the top 3 bits are all equal to each other, so we return 3.
962173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
963173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner/// 'Op' must have a scalar integer type.
964173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner///
965846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohmanunsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
966846a2f2703f6bb894098274964faf5dce0b68c4dDan Gohman                                  unsigned Depth) {
967b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert((TD || V->getType()->isIntOrIntVectorTy()) &&
968bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "ComputeNumSignBits requires a TargetData object to operate "
969bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman         "on non-integer values!");
970db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner  Type *Ty = V->getType();
971bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
972bd5ce52740700bb482fb2b5a03bce781acbf2941Dan Gohman                         Ty->getScalarSizeInBits();
973173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned Tmp, Tmp2;
974173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  unsigned FirstAnswer = 1;
975173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
976d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // Note that ConstantInt is handled by the general ComputeMaskedBits case
977d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner  // below.
978d82e511aec0ea27ddd4c1e504b37f689796e965fChris Lattner
979173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (Depth == 6)
980173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return 1;  // Limit search depth.
981173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
982ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  Operator *U = dyn_cast<Operator>(V);
983ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  switch (Operator::getOpcode(V)) {
984173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  default: break;
985173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::SExt:
98669a008075b29fbe0644ccbeecf1418ef8cca5e24Mon P Wang    Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
987173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
988173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
989173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::AShr:
990173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
991173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // ashr X, C   -> adds C sign bits.
992173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
993173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp += C->getZExtValue();
994173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (Tmp > TyBits) Tmp = TyBits;
995173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
9969a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman    // vector ashr X, <C, C, C, C>  -> adds C sign bits
9979a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman    if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
9989a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman      if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
9999a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman        Tmp += CI->getZExtValue();
10009a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman        if (Tmp > TyBits) Tmp = TyBits;
10019a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman      }
10029a3dc552022e0e034ef34da889f6ceb9de260c96Nate Begeman    }
1003173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return Tmp;
1004173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Shl:
1005173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
1006173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // shl destroys sign bits.
1007173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1008173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (C->getZExtValue() >= TyBits ||      // Bad shift.
1009173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1010173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      return Tmp - C->getZExtValue();
1011173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
1012173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
1013173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::And:
1014173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Or:
1015173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Xor:    // NOT is handled here.
1016173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Logical binary ops preserve the number of sign bits at the worst.
1017173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1018173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp != 1) {
1019173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1020173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      FirstAnswer = std::min(Tmp, Tmp2);
1021173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // We computed what we know about the sign bits as our first
1022173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // answer. Now proceed to the generic code that uses
1023173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      // ComputeMaskedBits, and pick whichever answer is better.
1024173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    }
1025173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
1026173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1027173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Select:
1028173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1029173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
1030173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1031173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return std::min(Tmp, Tmp2);
1032173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1033173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Add:
1034173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Add can have at most one carry bit.  Thus we know that the output
1035173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
1036173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1037173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
1038173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1039173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Special case decrementing a value (ADD X, -1):
10400001e56f15215ae4bc5fffb82eec5c4828b888f0Dan Gohman    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
1041173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CRHS->isAllOnesValue()) {
1042173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1043173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
1044173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
1045173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          Depth+1);
1046173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1047173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1048173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
1049173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
1050173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
1051173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1052173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If we are subtracting one from a positive number, there is no carry
1053173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // out of the result.
1054173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
1055173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp;
1056173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
1057173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1058173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1059173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
10608d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
1061173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1062173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Sub:
1063173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1064173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp2 == 1) return 1;
1065173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1066173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Handle NEG.
1067173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1068173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      if (CLHS->isNullValue()) {
1069173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1070173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        APInt Mask = APInt::getAllOnesValue(TyBits);
1071173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
1072173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner                          TD, Depth+1);
1073173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1074173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // sign bits set.
1075173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if ((KnownZero | APInt(TyBits, 1)) == Mask)
1076173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return TyBits;
1077173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1078173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // If the input is known to be positive (the sign bit is known clear),
1079173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // the output of the NEG has the same number of sign bits as the input.
1080173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        if (KnownZero.isNegative())
1081173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner          return Tmp2;
1082173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1083173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner        // Otherwise, we treat this like a SUB.
1084173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner      }
1085173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1086173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Sub can have at most one carry bit.  Thus we know that the output
1087173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // is, at worst, one more bit than the inputs.
1088173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1089173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    if (Tmp == 1) return 1;  // Early out.
10908d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return std::min(Tmp, Tmp2)-1;
10918d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
10928d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  case Instruction::PHI: {
10938d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    PHINode *PN = cast<PHINode>(U);
10948d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Don't analyze large in-degree PHIs.
10958d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    if (PN->getNumIncomingValues() > 4) break;
10968d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
10978d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // Take the minimum of all incoming values.  This can't infinitely loop
10988d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    // because of our depth threshold.
10998d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
11008d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
11018d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      if (Tmp == 1) return Tmp;
11028d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner      Tmp = std::min(Tmp,
11030af20d847ac89f797d613a8a4fc3e7127ccb0b36Evan Cheng                     ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
11048d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    }
11058d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner    return Tmp;
11068d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner  }
11078d10f9d4a836907d7bf048be507787a9233959c9Chris Lattner
1108173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  case Instruction::Trunc:
1109173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // FIXME: it's tricky to do anything useful for this, but it is an important
1110173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // case for targets like X86.
1111173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    break;
1112173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
1113173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1114173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1115173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // use this information.
1116173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1117173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  APInt Mask = APInt::getAllOnesValue(TyBits);
1118173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
1119173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1120173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  if (KnownZero.isNegative()) {        // sign bit is 0
1121173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownZero;
1122173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1123173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    Mask = KnownOne;
1124173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  } else {
1125173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    // Nothing known.
1126173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner    return FirstAnswer;
1127173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  }
1128173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner
1129173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1130173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // the number of identical bits in the top of the input value.
1131173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask = ~Mask;
1132173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  Mask <<= Mask.getBitWidth()-TyBits;
1133173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // Return # leading zeros.  We use 'min' here in case Val was zero before
1134173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  // shifting.  We don't want to return '64' as for an i32 "0".
1135173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1136173234a68fb6ece106e77da443d87f09d5906cb9Chris Lattner}
1137833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
11382b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// ComputeMultiple - This function computes the integer multiple of Base that
11392b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// equals V.  If successful, it returns true and returns the multiple in
11403dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman/// Multiple.  If unsuccessful, it returns false. It looks
11412b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez/// through SExt instructions only if LookThroughSExt is true.
11422b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandezbool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
11433dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           bool LookThroughSExt, unsigned Depth) {
11442b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  const unsigned MaxDepth = 6;
11452b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11463dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  assert(V && "No Value?");
11472b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  assert(Depth <= MaxDepth && "Limit Search Depth");
1148b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
11492b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
1150db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner  Type *T = V->getType();
11512b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11523dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman  ConstantInt *CI = dyn_cast<ConstantInt>(V);
11532b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11542b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 0)
11552b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return false;
11562b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11572b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Base == 1) {
11582b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = V;
11592b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
11602b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
11612b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11622b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
11632b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Constant *BaseVal = ConstantInt::get(T, Base);
11642b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CO && CO == BaseVal) {
11652b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // Multiple is 1.
11662b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, 1);
11672b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
11682b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
11692b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11702b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (CI && CI->getZExtValue() % Base == 0) {
11712b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
11722b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    return true;
11732b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
11742b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11752b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (Depth == MaxDepth) return false;  // Limit search depth.
11762b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11772b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  Operator *I = dyn_cast<Operator>(V);
11782b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  if (!I) return false;
11792b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11802b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  switch (I->getOpcode()) {
11812b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  default: break;
118211fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::SExt:
11832b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (!LookThroughSExt) return false;
11842b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    // otherwise fall through to ZExt
118511fe72661dac17efa1564ef6fc212acae4f0c07eChris Lattner  case Instruction::ZExt:
11863dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman    return ComputeMultiple(I->getOperand(0), Base, Multiple,
11873dbb9e64d6e9d1e8bf16f75ebe4fe59ffdf93dd3Dan Gohman                           LookThroughSExt, Depth+1);
11882b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Shl:
11892b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  case Instruction::Mul: {
11902b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op0 = I->getOperand(0);
11912b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Op1 = I->getOperand(1);
11922b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
11932b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    if (I->getOpcode() == Instruction::Shl) {
11942b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
11952b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (!Op1CI) return false;
11962b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      // Turn Op0 << Op1 into Op0 * 2^Op1
11972b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      APInt Op1Int = Op1CI->getValue();
11982b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1199a99793c5ea24dd3839f4925b89b1f6acfcb24604Jay Foad      APInt API(Op1Int.getBitWidth(), 0);
12007a874ddda037349184fbeb22838cc11a1a9bb78fJay Foad      API.setBit(BitToSet);
1201a99793c5ea24dd3839f4925b89b1f6acfcb24604Jay Foad      Op1 = ConstantInt::get(V->getContext(), API);
12022b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
12032b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
12042b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    Value *Mul0 = NULL;
1205e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1206e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner      if (Constant *Op1C = dyn_cast<Constant>(Op1))
1207e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1208e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op1C->getType()->getPrimitiveSizeInBits() <
1209e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1210e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1211e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op1C->getType()->getPrimitiveSizeInBits() >
1212e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1213e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1214e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner
1215e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1216e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          Multiple = ConstantExpr::getMul(MulC, Op1C);
1217e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          return true;
1218e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        }
12192b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
12202b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
12212b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul0CI->getValue() == 1) {
12222b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op1, so return Op1
12232b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op1;
12242b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
12252b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
12262b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
12272b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
1228e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    Value *Mul1 = NULL;
1229e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner    if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1230e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner      if (Constant *Op0C = dyn_cast<Constant>(Op0))
1231e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1232e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op0C->getType()->getPrimitiveSizeInBits() <
1233e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1234e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1235e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          if (Op0C->getType()->getPrimitiveSizeInBits() >
1236e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner              MulC->getType()->getPrimitiveSizeInBits())
1237e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner            MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1238e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner
1239e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1240e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          Multiple = ConstantExpr::getMul(MulC, Op0C);
1241e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner          return true;
1242e971131695ac41afd56e82facddccc2807aa9bbdChris Lattner        }
12432b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
12442b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez      if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
12452b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        if (Mul1CI->getValue() == 1) {
12462b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          // V == Base * Op0, so return Op0
12472b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          Multiple = Op0;
12482b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez          return true;
12492b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez        }
12502b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez    }
12512b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
12522b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  }
12532b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
12542b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  // We could not determine if V is a multiple of Base.
12552b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez  return false;
12562b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez}
12572b6705f5e7c7624bd7fe486298c400f1afc15f6cVictor Hernandez
1258833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1259833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// value is never equal to -0.0.
1260833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
1261833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// NOTE: this function will need to be revisited when we support non-default
1262833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner/// rounding modes!
1263833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner///
1264833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattnerbool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1265833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1266833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return !CFP->getValueAPF().isNegZero();
1267833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1268833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (Depth == 6)
1269833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return 1;  // Limit search depth.
1270833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1271ca178908c8dc2303a1fb54a8a93bab0f0b964e11Dan Gohman  const Operator *I = dyn_cast<Operator>(V);
1272833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (I == 0) return false;
1273833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1274833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1275ae3a0be92e33bc716722aa600983fc1535acb122Dan Gohman  if (I->getOpcode() == Instruction::FAdd &&
1276833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      isa<ConstantFP>(I->getOperand(1)) &&
1277833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      cast<ConstantFP>(I->getOperand(1))->isNullValue())
1278833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
1279833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1280833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  // sitofp and uitofp turn into +0.0 for zero.
1281833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1282833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    return true;
1283833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1284833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1285833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    // sqrt(-0.0) = -0.0, no other negative results are possible.
1286833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (II->getIntrinsicID() == Intrinsic::sqrt)
128771339c965ca6268b9bff91213364783c3d06f666Gabor Greif      return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1288833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1289833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  if (const CallInst *CI = dyn_cast<CallInst>(I))
1290833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    if (const Function *F = CI->getCalledFunction()) {
1291833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      if (F->isDeclaration()) {
1292f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        // abs(x) != -0.0
1293f0443c1eb44d737d9bd78962932fc80f74c6113cDaniel Dunbar        if (F->getName() == "abs") return true;
12949d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        // fabs[lf](x) != -0.0
12959d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabs") return true;
12969d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsf") return true;
12979d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "fabsl") return true;
12989d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen        if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
12999d06175a15a61b977ebbabd0d9cc738ebfa7870cDale Johannesen            F->getName() == "sqrtl")
130071339c965ca6268b9bff91213364783c3d06f666Gabor Greif          return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1301833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner      }
1302833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner    }
1303833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1304833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner  return false;
1305833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner}
1306833f25d79ee28f1049f9177c3d2f4c9fbad6f643Chris Lattner
1307bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// isBytewiseValue - If the specified value can be set by repeating the same
1308bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// byte in memory, return the i8 value that it is represented with.  This is
1309bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1310bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
1311bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner/// byte store (e.g. i16 0x1234), return null.
1312bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris LattnerValue *llvm::isBytewiseValue(Value *V) {
1313bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // All byte-wide stores are splatable, even of arbitrary variables.
1314bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (V->getType()->isIntegerTy(8)) return V;
131541bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner
131641bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner  // Handle 'null' ConstantArrayZero etc.
131741bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner  if (Constant *C = dyn_cast<Constant>(V))
131841bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner    if (C->isNullValue())
131941bfbb0a8776674c486682cbf2aa80f15abfef68Chris Lattner      return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1320bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1321bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // Constant float and double values can be handled as integer values if the
1322bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // corresponding integer value is "byteable".  An important case is 0.0.
1323bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1324bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (CFP->getType()->isFloatTy())
1325bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1326bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (CFP->getType()->isDoubleTy())
1327bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1328bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    // Don't handle long double formats, which have strange constraints.
1329bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  }
1330bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1331bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // We can handle constant integers that are power of two in size and a
1332bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // multiple of 8 bits.
1333bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1334bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    unsigned Width = CI->getBitWidth();
1335bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (isPowerOf2_32(Width) && Width > 8) {
1336bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      // We can handle this value if the recursive binary decomposition is the
1337bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      // same at all levels.
1338bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      APInt Val = CI->getValue();
1339bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      APInt Val2;
1340bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      while (Val.getBitWidth() != 8) {
1341bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        unsigned NextWidth = Val.getBitWidth()/2;
1342bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        Val2  = Val.lshr(NextWidth);
1343bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        Val2 = Val2.trunc(Val.getBitWidth()/2);
1344bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        Val = Val.trunc(Val.getBitWidth()/2);
1345bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1346bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        // If the top/bottom halves aren't the same, reject it.
1347bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        if (Val != Val2)
1348bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner          return 0;
1349bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      }
1350bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      return ConstantInt::get(V->getContext(), Val);
1351bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    }
1352bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  }
1353bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1354bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // A ConstantArray is splatable if all its members are equal and also
1355bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // splatable.
1356bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1357bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (CA->getNumOperands() == 0)
1358bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      return 0;
1359bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1360bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    Value *Val = isBytewiseValue(CA->getOperand(0));
1361bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    if (!Val)
1362bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      return 0;
1363bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1364bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
1365bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner      if (CA->getOperand(I-1) != CA->getOperand(I))
1366bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner        return 0;
1367bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1368bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner    return Val;
1369bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  }
1370bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1371bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // Conceptually, we could handle things like:
1372bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  //   %a = zext i8 %X to i16
1373bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  //   %b = shl i16 %a, 8
1374bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  //   %c = or i16 %a, %b
1375bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // but until there is an example that actually needs this, it doesn't seem
1376bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  // worth worrying about.
1377bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner  return 0;
1378bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner}
1379bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1380bb89710dddf967199dfc56e8bf5d28b0003f2ee6Chris Lattner
1381b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This is the recursive version of BuildSubAggregate. It takes a few different
1382b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// arguments. Idxs is the index within the nested struct From that we are
1383b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// looking at now (which is of type IndexedType). IdxSkip is the number of
1384b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// indices from Idxs that should be left out when inserting into the resulting
1385b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct. To is the result struct built so far, new insertvalue instructions
1386b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// build on that.
1387db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattnerstatic Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
13887db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                SmallVector<unsigned, 10> &Idxs,
13897db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                unsigned IdxSkip,
13907db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
1391db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner  llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1392b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (STy) {
13930a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    // Save the original To argument so we can modify it
13940a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    Value *OrigTo = To;
1395b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // General case, the type indexed by Idxs is a struct
1396b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1397b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Process each struct element recursively
1398b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.push_back(i);
13990a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      Value *PrevTo = To;
1400710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1401ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1402b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      Idxs.pop_back();
14030a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      if (!To) {
14040a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Couldn't find any inserted value for this index? Cleanup
14050a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        while (PrevTo != OrigTo) {
14060a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
14070a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          PrevTo = Del->getAggregateOperand();
14080a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          Del->eraseFromParent();
14090a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        }
14100a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        // Stop processing elements
14110a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman        break;
14120a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      }
1413b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
14147a2bdde0a0eebcd2125055e0eacaca040f0b766cChris Lattner    // If we successfully found a value for each of our subaggregates
14150a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    if (To)
14160a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman      return To;
1417b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
14180a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
14190a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // the struct's elements had a value that was inserted directly. In the latter
14200a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // case, perhaps we can't determine each of the subelements individually, but
14210a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // we might be able to find the complete struct somewhere.
14220a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
14230a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Find the value that is at that particular spot
1424fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad  Value *V = FindInsertedValue(From, Idxs);
14250a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
14260a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  if (!V)
14270a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman    return NULL;
14280a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman
14290a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman  // Insert the value in the new (sub) aggregrate
143039b5abf507b43da6b92f68b86406e0015ead18e9Frits van Bommel  return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
1431fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                                       "tmp", InsertBefore);
1432b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1433b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1434b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// This helper takes a nested struct and extracts a part of it (which is again a
1435b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// struct) into a new value. For example, given the struct:
1436b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { a, { b, { c, d }, e } }
1437b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// and the indices "1, 1" this returns
1438b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman// { c, d }.
1439b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
14400a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// It does this by inserting an insertvalue for each element in the resulting
14410a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// struct, as opposed to just inserting a single struct. This will only work if
14420a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// each of the elements of the substruct are known (ie, inserted into From by an
14430a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// insertvalue instruction somewhere).
1444b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman//
14450a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman// All inserted insertvalue instructions are inserted before InsertBefore
1446fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foadstatic Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
14477db949df789383acce98ef072f08794fdd5bd04eDan Gohman                                Instruction *InsertBefore) {
1448977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman  assert(InsertBefore && "Must have someplace to insert!");
1449db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner  Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1450fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                                                             idx_range);
14519e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson  Value *To = UndefValue::get(IndexedType);
1452fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad  SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
1453b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  unsigned IdxSkip = Idxs.size();
1454b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1455ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1456b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
1457b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1458710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1459710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// the scalar value indexed is already around as a register, for example if it
1460710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman/// were inserted directly into the aggregrate.
14610a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman///
14620a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// If InsertBefore is not null, this function will duplicate (modified)
14630a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman/// insertvalues when a part of a nested struct is extracted.
1464fc6d3a49867cd38954dc40936a88f1907252c6d2Jay FoadValue *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1465fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                               Instruction *InsertBefore) {
1466b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Nothing to index? Just return V then (this is useful at the end of our
1467b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // recursion)
1468fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad  if (idx_range.empty())
1469b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    return V;
1470b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // We have indices, so V should have an indexable type
14711df9859c40492511b8aa4321eb76496005d3b75bDuncan Sands  assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
1472b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Not looking at a struct or array?");
1473fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad  assert(ExtractValueInst::getIndexedType(V->getType(), idx_range)
1474b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman         && "Invalid indices for type?");
1475db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner  CompositeType *PTy = cast<CompositeType>(V->getType());
147676f600b205606a055ec35e7d3fd1a99602329d67Owen Anderson
1477b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  if (isa<UndefValue>(V))
14789e9a0d5fc26878e51a58a8b57900fcbf952c2691Owen Anderson    return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
1479fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                                                              idx_range));
1480b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (isa<ConstantAggregateZero>(V))
1481a7235ea7245028a0723e8ab7fd011386b3900777Owen Anderson    return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
1482fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                                                                  idx_range));
1483b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  else if (Constant *C = dyn_cast<Constant>(V)) {
1484b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1485b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // Recursively process this constant
1486fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad      return FindInsertedValue(C->getOperand(idx_range[0]), idx_range.slice(1),
1487fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                               InsertBefore);
1488b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1489b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Loop the indices for the insertvalue instruction in parallel with the
1490b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested indices
1491fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    const unsigned *req_idx = idx_range.begin();
1492710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1493710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman         i != e; ++i, ++req_idx) {
1494fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad      if (req_idx == idx_range.end()) {
1495977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        if (InsertBefore)
14960a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // The requested index identifies a part of a nested aggregate. Handle
14970a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // this specially. For example,
14980a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
14990a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
15000a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = extractvalue {i32, { i32, i32 } } %B, 1
15010a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // This can be changed into
15020a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %A = insertvalue {i32, i32 } undef, i32 10, 0
15030a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // %C = insertvalue {i32, i32 } %A, i32 11, 1
15040a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // which allows the unused 0,0 element from the nested struct to be
15050a9aaf46bee75540db16603dd60f7d3bc597842dMatthijs Kooijman          // removed.
150639b5abf507b43da6b92f68b86406e0015ead18e9Frits van Bommel          return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1507fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad                                   InsertBefore);
1508977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman        else
1509977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          // We can't handle this without inserting insertvalues
1510977289121996f0afb781592f92a4aee1be3010feMatthijs Kooijman          return 0;
15119954c76f2c89ab3c70bfe8222534621a86f9085aDuncan Sands      }
1512b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1513b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // This insert value inserts something else than what we are looking for.
1514b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // See if the (aggregrate) value inserted into has the value we are
1515b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      // looking for, then.
1516b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman      if (*req_idx != *i)
1517fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad        return FindInsertedValue(I->getAggregateOperand(), idx_range,
1518ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                                 InsertBefore);
1519b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    }
1520b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we end up here, the indices of the insertvalue match with those
1521b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // requested (though possibly only partially). Now we recursively look at
1522b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // the inserted value, passing any remaining indices.
1523fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    return FindInsertedValue(I->getInsertedValueOperand(),
152439b5abf507b43da6b92f68b86406e0015ead18e9Frits van Bommel                             makeArrayRef(req_idx, idx_range.end()),
1525ae3d802953b5209e7e9530cd5b5d4e457a6974dcNick Lewycky                             InsertBefore);
1526b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1527b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // If we're extracting a value from an aggregrate that was extracted from
1528b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // something else, we can extract from that something else directly instead.
1529b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // However, we will need to chain I's indices with the requested indices.
1530b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1531b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Calculate the number of indices required
1532fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    unsigned size = I->getNumIndices() + idx_range.size();
1533b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Allocate some space to put the new indices in
15343faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    SmallVector<unsigned, 5> Idxs;
15353faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    Idxs.reserve(size);
1536b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add indices from the extract value instruction
1537fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    Idxs.append(I->idx_begin(), I->idx_end());
1538b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1539b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman    // Add requested indices
1540fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    Idxs.append(idx_range.begin(), idx_range.end());
1541b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
15423faf9df08ff389028050bfbccbef571061bf7cc1Matthijs Kooijman    assert(Idxs.size() == size
1543710eb236e67dc021c51ef5cb5d2eb8768840895aMatthijs Kooijman           && "Number of indices added not correct?");
1544b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman
1545fc6d3a49867cd38954dc40936a88f1907252c6d2Jay Foad    return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
1546b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  }
1547b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // Otherwise, we don't know (such as, extracting from a function return value
1548b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  // or load instruction)
1549b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman  return 0;
1550b23d5adbc8230167e711070b9298985de4580f30Matthijs Kooijman}
15510ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
1552ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1553ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// it can be expressed as a base pointer plus a constant offset.  Return the
1554ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner/// base and offset to the caller.
1555ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris LattnerValue *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1556ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner                                              const TargetData &TD) {
1557ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  Operator *PtrOp = dyn_cast<Operator>(Ptr);
1558ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (PtrOp == 0) return Ptr;
1559ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1560ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // Just look through bitcasts.
1561ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (PtrOp->getOpcode() == Instruction::BitCast)
1562ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1563ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1564ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // If this is a GEP with constant indices, we can look through it.
1565ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1566ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1567ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1568ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  gep_type_iterator GTI = gep_type_begin(GEP);
1569ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1570ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner       ++I, ++GTI) {
1571ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    ConstantInt *OpC = cast<ConstantInt>(*I);
1572ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    if (OpC->isZero()) continue;
1573ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1574ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    // Handle a struct and array indices which add their offset to the pointer.
1575db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1576ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1577ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    } else {
1578ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1579ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner      Offset += OpC->getSExtValue()*Size;
1580ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    }
1581ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  }
1582ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1583ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // Re-sign extend from the pointer size if needed to get overflow edge cases
1584ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  // right.
1585ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  unsigned PtrSize = TD.getPointerSizeInBits();
1586ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  if (PtrSize < 64)
1587ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1588ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1589ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner  return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1590ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner}
1591ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
1592ed58a6f96f605901adc0df3ca76499d52b2d1a1aChris Lattner
15930ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// GetConstantStringInfo - This function computes the length of a
15940ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// null-terminated C string pointed to by V.  If successful, it returns true
15950ff39b3feb10477c224138156941234f5fa46f58Evan Cheng/// and returns the string in Str.  If unsuccessful, it returns false.
15960a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohmanbool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
15970cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky                                 uint64_t Offset, bool StopAtNul) {
15980582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  // If V is NULL then return false;
15990582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (V == NULL) return false;
16000ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16010ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Look through bitcast instructions.
16020a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
16030582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
16040582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
16050ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // If the value is not a GEP instruction nor a constant expression with a
16060ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // GEP instruction, then return false because ConstantArray can't occur
16070cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky  // any other way.
16080a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const User *GEP = 0;
16090a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
16100ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = GEPI;
16110a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
16120ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (CE->getOpcode() == Instruction::BitCast)
16130582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
16140582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (CE->getOpcode() != Instruction::GetElementPtr)
16150582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
16160ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    GEP = CE;
16170ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
16180ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16190ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  if (GEP) {
16200ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the GEP has exactly three arguments.
16210582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (GEP->getNumOperands() != 3)
16220582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
16230582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
16240ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Make sure the index-ee is a pointer to array of i8.
1625db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1626db125cfaf57cc83e7dd7453de2d509bc8efd0e5eChris Lattner    ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1627b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands    if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
16280582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
16290ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16300ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // Check to make sure that the first operand of the GEP is an integer and
16310ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // has value 0 so that we are sure we're indexing into the initializer.
16320a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
16330582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (FirstIdx == 0 || !FirstIdx->isZero())
16340582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
16350ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16360ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // If the second index isn't a ConstantInt, then this is a variable index
16370ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // into the array.  If this occurs, we can't say anything meaningful about
16380ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // the string.
16390ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    uint64_t StartIdx = 0;
16400a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
16410ff39b3feb10477c224138156941234f5fa46f58Evan Cheng      StartIdx = CI->getZExtValue();
16420582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    else
16430582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
16440582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
16450ff39b3feb10477c224138156941234f5fa46f58Evan Cheng                                 StopAtNul);
16460ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
16470cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky
16480ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The GEP instruction, constant or instruction, must reference a global
16490ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // variable that is a constant and is initialized. The referenced constant
16500ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // initializer is the array that we'll use for optimization.
16510a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
16528255573835970e7130ba93271972172fb335f2ecDan Gohman  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
16530582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
16540a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const Constant *GlobalInit = GV->getInitializer();
16550ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16560cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky  // Handle the all-zeros case
16570cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky  if (GlobalInit->isNullValue()) {
16580ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // This is a degenerate case. The initializer is constant zero so the
16590ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    // length of the string must be zero.
16600582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str.clear();
16610582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return true;
16620582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  }
16630ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16640ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Must be a Constant Array
16650a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman  const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1666b0bc6c361da9009e8414efde317d9bbff755f6c0Duncan Sands  if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
16670582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
16680ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16690ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Get the number of elements in the array
16700ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  uint64_t NumElts = Array->getType()->getNumElements();
16710ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16720582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  if (Offset > NumElts)
16730582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    return false;
16740ff39b3feb10477c224138156941234f5fa46f58Evan Cheng
16750ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // Traverse the constant array from 'Offset' which is the place the GEP refers
16760ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // to in the array.
16770582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  Str.reserve(NumElts-Offset);
16780ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  for (unsigned i = Offset; i != NumElts; ++i) {
16790a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const Constant *Elt = Array->getOperand(i);
16800a60fa33210202a38a59ae3ea8681216f234ce51Dan Gohman    const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
16810582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    if (!CI) // This array isn't suitable, non-int initializer.
16820582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return false;
16830ff39b3feb10477c224138156941234f5fa46f58Evan Cheng    if (StopAtNul && CI->isZero())
16840582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling      return true; // we found end of string, success!
16850582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling    Str += (char)CI->getZExtValue();
16860ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  }
16870582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling
16880ff39b3feb10477c224138156941234f5fa46f58Evan Cheng  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
16890582ae99ba75a556d6ff63b254da327d32ba036fBill Wendling  return true;
16900ff39b3feb10477c224138156941234f5fa46f58Evan Cheng}
169125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
169225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// These next two are very similar to the above, but also look through PHI
169325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// nodes.
169425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher// TODO: See if we can integrate these two together.
169525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
169625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLengthH - If we can compute the length of the string pointed to by
169725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
169825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopherstatic uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
169925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Look through noop bitcast instructions.
170025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
170125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return GetStringLengthH(BCI->getOperand(0), PHIs);
170225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
170325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If this is a PHI node, there are two cases: either we have already seen it
170425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // or we haven't.
170525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (PHINode *PN = dyn_cast<PHINode>(V)) {
170625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!PHIs.insert(PN))
170725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return ~0ULL;  // already in the set.
170825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
170925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // If it was new, see if all the input strings are the same length.
171025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t LenSoFar = ~0ULL;
171125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
171225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
171325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == 0) return 0; // Unknown length -> unknown.
171425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
171525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len == ~0ULL) continue;
171625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
171725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      if (Len != LenSoFar && LenSoFar != ~0ULL)
171825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher        return 0;    // Disagree -> unknown.
171925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      LenSoFar = Len;
172025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    }
172125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
172225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    // Success, all agree.
172325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return LenSoFar;
172425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
172525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
172625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
172725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
172825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
172925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == 0) return 0;
173025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
173125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == 0) return 0;
173225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 == ~0ULL) return Len2;
173325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len2 == ~0ULL) return Len1;
173425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (Len1 != Len2) return 0;
173525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return Len1;
173625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
173725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
17380cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky  // As a special-case, "@string = constant i8 0" is also a string with zero
17390cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky  // length, not wrapped in a bitcast or GEP.
17400cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
17410cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky    if (GV->isConstant() && GV->hasDefinitiveInitializer())
17420cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky      if (GV->getInitializer()->isNullValue()) return 1;
17430cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky    return 0;
17440cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky  }
17450cd0fee91eadcee37d01398e05176e7c63bda2a7Nick Lewycky
174625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If the value is not a GEP instruction nor a constant expression with a
174725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // GEP instruction, then return unknown.
174825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  User *GEP = 0;
174925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
175025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    GEP = GEPI;
175125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
175225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (CE->getOpcode() != Instruction::GetElementPtr)
175325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
175425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    GEP = CE;
175525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else {
175625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
175725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
175825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
175925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Make sure the GEP has exactly three arguments.
176025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (GEP->getNumOperands() != 3)
176125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
176225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
176325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Check to make sure that the first operand of the GEP is an integer and
176425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // has value 0 so that we are sure we're indexing into the initializer.
176525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
176625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!Idx->isZero())
176725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
176825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  } else
176925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
177025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
177125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If the second index isn't a ConstantInt, then this is a variable index
177225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // into the array.  If this occurs, we can't say anything meaningful about
177325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // the string.
177425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t StartIdx = 0;
177525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
177625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    StartIdx = CI->getZExtValue();
177725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  else
177825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
177925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
178025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // The GEP instruction, constant or instruction, must reference a global
178125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // variable that is a constant and is initialized. The referenced constant
178225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // initializer is the array that we'll use for optimization.
178325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
178425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
178525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      GV->mayBeOverridden())
178625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 0;
178725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  Constant *GlobalInit = GV->getInitializer();
178825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
178925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Handle the ConstantAggregateZero case, which is a degenerate case. The
179025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // initializer is constant zero so the length of the string must be zero.
179125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (isa<ConstantAggregateZero>(GlobalInit))
179225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return 1;  // Len = 0 offset by 1.
179325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
179425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Must be a Constant Array
179525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
179625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
179725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    return false;
179825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
179925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Get the number of elements in the array
180025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t NumElts = Array->getType()->getNumElements();
180125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
180225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // Traverse the constant array from StartIdx (derived above) which is
180325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // the place the GEP refers to in the array.
180425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  for (unsigned i = StartIdx; i != NumElts; ++i) {
180525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    Constant *Elt = Array->getOperand(i);
180625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
180725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (!CI) // This array isn't suitable, non-int initializer.
180825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return 0;
180925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher    if (CI->isZero())
181025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher      return i-StartIdx+1; // We found end of string, success!
181125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  }
181225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
181325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  return 0; // The array isn't null terminated, conservatively return 'unknown'.
181425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
181525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
181625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// GetStringLength - If we can compute the length of the string pointed to by
181725ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher/// the specified pointer, return 'len+1'.  If we can't, return 0.
181825ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopheruint64_t llvm::GetStringLength(Value *V) {
181925ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  if (!V->getType()->isPointerTy()) return 0;
182025ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher
182125ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  SmallPtrSet<PHINode*, 32> PHIs;
182225ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  uint64_t Len = GetStringLengthH(V, PHIs);
182325ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
182425ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  // an empty string as a length.
182525ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher  return Len == ~0ULL ? 1 : Len;
182625ec483cfca8d3a3ba8728a4a126e04b92789069Eric Christopher}
18275034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman
1828bd1801b5553c8be3960255a92738464e0010b6f6Dan GohmanValue *
1829bd1801b5553c8be3960255a92738464e0010b6f6Dan Gohmanllvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
18305034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  if (!V->getType()->isPointerTy())
18315034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    return V;
18325034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
18335034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
18345034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = GEP->getPointerOperand();
18355034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
18365034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = cast<Operator>(V)->getOperand(0);
18375034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
18385034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      if (GA->mayBeOverridden())
18395034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman        return V;
18405034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      V = GA->getAliasee();
18415034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    } else {
1842c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman      // See if InstructionSimplify knows any relevant tricks.
1843c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman      if (Instruction *I = dyn_cast<Instruction>(V))
18447a2bdde0a0eebcd2125055e0eacaca040f0b766cChris Lattner        // TODO: Acquire a DominatorTree and use it.
1845bd1801b5553c8be3960255a92738464e0010b6f6Dan Gohman        if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1846c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman          V = Simplified;
1847c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman          continue;
1848c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman        }
1849c01895c7db4c4d8883dd4c31427c42cdae356567Dan Gohman
18505034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman      return V;
18515034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    }
18525034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
18535034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  }
18545034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman  return V;
18555034dd318a9dfa0dc45a3ac01e58e60f2aa2498dDan Gohman}
185699e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky
185799e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
185899e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky/// are lifetime markers.
185999e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky///
186099e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewyckybool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
186199e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
186299e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky       UI != UE; ++UI) {
186399e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
186499e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky    if (!II) return false;
186599e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky
186699e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
186799e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky        II->getIntrinsicID() != Intrinsic::lifetime_end)
186899e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky      return false;
186999e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky  }
187099e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky  return true;
187199e0b2a8df7e3a49c0e1edd250d17604fe2fb21cNick Lewycky}
1872