ValueTracking.cpp revision b9a4ddbbcd668a94fe945f0648010c281e272889
1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/Operator.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Support/GetElementPtrTypeIterator.h"
24#include "llvm/Support/MathExtras.h"
25#include <cstring>
26using namespace llvm;
27
28/// ComputeMaskedBits - Determine which of the bits specified in Mask are
29/// known to be either zero or one and return them in the KnownZero/KnownOne
30/// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
31/// processing.
32/// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
33/// we cannot optimize based on the assumption that it is zero without changing
34/// it to be an explicit zero.  If we don't change it to zero, other code could
35/// optimized based on the contradictory assumption that it is non-zero.
36/// Because instcombine aggressively folds operations with undef args anyway,
37/// this won't lose us code quality.
38///
39/// This function is defined on values with integer type, values with pointer
40/// type (but only if TD is non-null), and vectors of integers.  In the case
41/// where V is a vector, the mask, known zero, and known one values are the
42/// same width as the vector element, and the bit is set only if it is true
43/// for all of the elements in the vector.
44void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
45                             APInt &KnownZero, APInt &KnownOne,
46                             const TargetData *TD, unsigned Depth) {
47  const unsigned MaxDepth = 6;
48  assert(V && "No Value?");
49  assert(Depth <= MaxDepth && "Limit Search Depth");
50  unsigned BitWidth = Mask.getBitWidth();
51  assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
52         "Not integer or pointer type!");
53  assert((!TD ||
54          TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
55         (!V->getType()->isIntOrIntVector() ||
56          V->getType()->getScalarSizeInBits() == BitWidth) &&
57         KnownZero.getBitWidth() == BitWidth &&
58         KnownOne.getBitWidth() == BitWidth &&
59         "V, Mask, KnownOne and KnownZero should have same BitWidth");
60
61  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
62    // We know all of the bits for a constant!
63    KnownOne = CI->getValue() & Mask;
64    KnownZero = ~KnownOne & Mask;
65    return;
66  }
67  // Null and aggregate-zero are all-zeros.
68  if (isa<ConstantPointerNull>(V) ||
69      isa<ConstantAggregateZero>(V)) {
70    KnownOne.clear();
71    KnownZero = Mask;
72    return;
73  }
74  // Handle a constant vector by taking the intersection of the known bits of
75  // each element.
76  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
77    KnownZero.set(); KnownOne.set();
78    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
79      APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
80      ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
81                        TD, Depth);
82      KnownZero &= KnownZero2;
83      KnownOne &= KnownOne2;
84    }
85    return;
86  }
87  // The address of an aligned GlobalValue has trailing zeros.
88  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
89    unsigned Align = GV->getAlignment();
90    if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
91      const Type *ObjectType = GV->getType()->getElementType();
92      // If the object is defined in the current Module, we'll be giving
93      // it the preferred alignment. Otherwise, we have to assume that it
94      // may only have the minimum ABI alignment.
95      if (!GV->isDeclaration() && !GV->mayBeOverridden())
96        Align = TD->getPrefTypeAlignment(ObjectType);
97      else
98        Align = TD->getABITypeAlignment(ObjectType);
99    }
100    if (Align > 0)
101      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
102                                              CountTrailingZeros_32(Align));
103    else
104      KnownZero.clear();
105    KnownOne.clear();
106    return;
107  }
108
109  KnownZero.clear(); KnownOne.clear();   // Start out not knowing anything.
110
111  if (Depth == MaxDepth || Mask == 0)
112    return;  // Limit search depth.
113
114  Operator *I = dyn_cast<Operator>(V);
115  if (!I) return;
116
117  APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
118  switch (I->getOpcode()) {
119  default: break;
120  case Instruction::And: {
121    // If either the LHS or the RHS are Zero, the result is zero.
122    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
123    APInt Mask2(Mask & ~KnownZero);
124    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
125                      Depth+1);
126    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
127    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
128
129    // Output known-1 bits are only known if set in both the LHS & RHS.
130    KnownOne &= KnownOne2;
131    // Output known-0 are known to be clear if zero in either the LHS | RHS.
132    KnownZero |= KnownZero2;
133    return;
134  }
135  case Instruction::Or: {
136    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
137    APInt Mask2(Mask & ~KnownOne);
138    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
139                      Depth+1);
140    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
141    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
142
143    // Output known-0 bits are only known if clear in both the LHS & RHS.
144    KnownZero &= KnownZero2;
145    // Output known-1 are known to be set if set in either the LHS | RHS.
146    KnownOne |= KnownOne2;
147    return;
148  }
149  case Instruction::Xor: {
150    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
151    ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
152                      Depth+1);
153    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
154    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
155
156    // Output known-0 bits are known if clear or set in both the LHS & RHS.
157    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
158    // Output known-1 are known to be set if set in only one of the LHS, RHS.
159    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
160    KnownZero = KnownZeroOut;
161    return;
162  }
163  case Instruction::Mul: {
164    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
165    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
166    ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
167                      Depth+1);
168    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
169    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
170
171    // If low bits are zero in either operand, output low known-0 bits.
172    // Also compute a conserative estimate for high known-0 bits.
173    // More trickiness is possible, but this is sufficient for the
174    // interesting case of alignment computation.
175    KnownOne.clear();
176    unsigned TrailZ = KnownZero.countTrailingOnes() +
177                      KnownZero2.countTrailingOnes();
178    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
179                               KnownZero2.countLeadingOnes(),
180                               BitWidth) - BitWidth;
181
182    TrailZ = std::min(TrailZ, BitWidth);
183    LeadZ = std::min(LeadZ, BitWidth);
184    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
185                APInt::getHighBitsSet(BitWidth, LeadZ);
186    KnownZero &= Mask;
187    return;
188  }
189  case Instruction::UDiv: {
190    // For the purposes of computing leading zeros we can conservatively
191    // treat a udiv as a logical right shift by the power of 2 known to
192    // be less than the denominator.
193    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
194    ComputeMaskedBits(I->getOperand(0),
195                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
196    unsigned LeadZ = KnownZero2.countLeadingOnes();
197
198    KnownOne2.clear();
199    KnownZero2.clear();
200    ComputeMaskedBits(I->getOperand(1),
201                      AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
202    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
203    if (RHSUnknownLeadingOnes != BitWidth)
204      LeadZ = std::min(BitWidth,
205                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
206
207    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
208    return;
209  }
210  case Instruction::Select:
211    ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
212    ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
213                      Depth+1);
214    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
215    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
216
217    // Only known if known in both the LHS and RHS.
218    KnownOne &= KnownOne2;
219    KnownZero &= KnownZero2;
220    return;
221  case Instruction::FPTrunc:
222  case Instruction::FPExt:
223  case Instruction::FPToUI:
224  case Instruction::FPToSI:
225  case Instruction::SIToFP:
226  case Instruction::UIToFP:
227    return; // Can't work with floating point.
228  case Instruction::PtrToInt:
229  case Instruction::IntToPtr:
230    // We can't handle these if we don't know the pointer size.
231    if (!TD) return;
232    // FALL THROUGH and handle them the same as zext/trunc.
233  case Instruction::ZExt:
234  case Instruction::Trunc: {
235    const Type *SrcTy = I->getOperand(0)->getType();
236
237    unsigned SrcBitWidth;
238    // Note that we handle pointer operands here because of inttoptr/ptrtoint
239    // which fall through here.
240    if (isa<PointerType>(SrcTy))
241      SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
242    else
243      SrcBitWidth = SrcTy->getScalarSizeInBits();
244
245    APInt MaskIn(Mask);
246    MaskIn.zextOrTrunc(SrcBitWidth);
247    KnownZero.zextOrTrunc(SrcBitWidth);
248    KnownOne.zextOrTrunc(SrcBitWidth);
249    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
250                      Depth+1);
251    KnownZero.zextOrTrunc(BitWidth);
252    KnownOne.zextOrTrunc(BitWidth);
253    // Any top bits are known to be zero.
254    if (BitWidth > SrcBitWidth)
255      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
256    return;
257  }
258  case Instruction::BitCast: {
259    const Type *SrcTy = I->getOperand(0)->getType();
260    if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
261        // TODO: For now, not handling conversions like:
262        // (bitcast i64 %x to <2 x i32>)
263        !isa<VectorType>(I->getType())) {
264      ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
265                        Depth+1);
266      return;
267    }
268    break;
269  }
270  case Instruction::SExt: {
271    // Compute the bits in the result that are not present in the input.
272    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
273
274    APInt MaskIn(Mask);
275    MaskIn.trunc(SrcBitWidth);
276    KnownZero.trunc(SrcBitWidth);
277    KnownOne.trunc(SrcBitWidth);
278    ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
279                      Depth+1);
280    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
281    KnownZero.zext(BitWidth);
282    KnownOne.zext(BitWidth);
283
284    // If the sign bit of the input is known set or clear, then we know the
285    // top bits of the result.
286    if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
287      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
288    else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
289      KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
290    return;
291  }
292  case Instruction::Shl:
293    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
294    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
295      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
296      APInt Mask2(Mask.lshr(ShiftAmt));
297      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
298                        Depth+1);
299      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
300      KnownZero <<= ShiftAmt;
301      KnownOne  <<= ShiftAmt;
302      KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
303      return;
304    }
305    break;
306  case Instruction::LShr:
307    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
308    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
309      // Compute the new bits that are at the top now.
310      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
311
312      // Unsigned shift right.
313      APInt Mask2(Mask.shl(ShiftAmt));
314      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
315                        Depth+1);
316      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
317      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
318      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
319      // high bits known zero.
320      KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
321      return;
322    }
323    break;
324  case Instruction::AShr:
325    // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
326    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
327      // Compute the new bits that are at the top now.
328      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
329
330      // Signed shift right.
331      APInt Mask2(Mask.shl(ShiftAmt));
332      ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
333                        Depth+1);
334      assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
335      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
336      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
337
338      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
339      if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
340        KnownZero |= HighBits;
341      else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
342        KnownOne |= HighBits;
343      return;
344    }
345    break;
346  case Instruction::Sub: {
347    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
348      // We know that the top bits of C-X are clear if X contains less bits
349      // than C (i.e. no wrap-around can happen).  For example, 20-X is
350      // positive if we can prove that X is >= 0 and < 16.
351      if (!CLHS->getValue().isNegative()) {
352        unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
353        // NLZ can't be BitWidth with no sign bit
354        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
355        ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
356                          TD, Depth+1);
357
358        // If all of the MaskV bits are known to be zero, then we know the
359        // output top bits are zero, because we now know that the output is
360        // from [0-C].
361        if ((KnownZero2 & MaskV) == MaskV) {
362          unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
363          // Top bits known zero.
364          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
365        }
366      }
367    }
368  }
369  // fall through
370  case Instruction::Add: {
371    // If one of the operands has trailing zeros, than the bits that the
372    // other operand has in those bit positions will be preserved in the
373    // result. For an add, this works with either operand. For a subtract,
374    // this only works if the known zeros are in the right operand.
375    APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
376    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
377                                       BitWidth - Mask.countLeadingZeros());
378    ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
379                      Depth+1);
380    assert((LHSKnownZero & LHSKnownOne) == 0 &&
381           "Bits known to be one AND zero?");
382    unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
383
384    ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
385                      Depth+1);
386    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
387    unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
388
389    // Determine which operand has more trailing zeros, and use that
390    // many bits from the other operand.
391    if (LHSKnownZeroOut > RHSKnownZeroOut) {
392      if (I->getOpcode() == Instruction::Add) {
393        APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
394        KnownZero |= KnownZero2 & Mask;
395        KnownOne  |= KnownOne2 & Mask;
396      } else {
397        // If the known zeros are in the left operand for a subtract,
398        // fall back to the minimum known zeros in both operands.
399        KnownZero |= APInt::getLowBitsSet(BitWidth,
400                                          std::min(LHSKnownZeroOut,
401                                                   RHSKnownZeroOut));
402      }
403    } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
404      APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
405      KnownZero |= LHSKnownZero & Mask;
406      KnownOne  |= LHSKnownOne & Mask;
407    }
408    return;
409  }
410  case Instruction::SRem:
411    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
412      APInt RA = Rem->getValue();
413      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
414        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
415        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
416        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
417                          Depth+1);
418
419        // If the sign bit of the first operand is zero, the sign bit of
420        // the result is zero. If the first operand has no one bits below
421        // the second operand's single 1 bit, its sign will be zero.
422        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
423          KnownZero2 |= ~LowBits;
424
425        KnownZero |= KnownZero2 & Mask;
426
427        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
428      }
429    }
430    break;
431  case Instruction::URem: {
432    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
433      APInt RA = Rem->getValue();
434      if (RA.isPowerOf2()) {
435        APInt LowBits = (RA - 1);
436        APInt Mask2 = LowBits & Mask;
437        KnownZero |= ~LowBits & Mask;
438        ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
439                          Depth+1);
440        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
441        break;
442      }
443    }
444
445    // Since the result is less than or equal to either operand, any leading
446    // zero bits in either operand must also exist in the result.
447    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
448    ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
449                      TD, Depth+1);
450    ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
451                      TD, Depth+1);
452
453    unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
454                                KnownZero2.countLeadingOnes());
455    KnownOne.clear();
456    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
457    break;
458  }
459
460  case Instruction::Alloca:
461  case Instruction::Malloc: {
462    AllocationInst *AI = cast<AllocationInst>(V);
463    unsigned Align = AI->getAlignment();
464    if (Align == 0 && TD) {
465      if (isa<AllocaInst>(AI))
466        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
467      else if (isa<MallocInst>(AI)) {
468        // Malloc returns maximally aligned memory.
469        Align = TD->getABITypeAlignment(AI->getType()->getElementType());
470        Align =
471          std::max(Align,
472                   (unsigned)TD->getABITypeAlignment(
473                     Type::getDoubleTy(V->getContext())));
474        Align =
475          std::max(Align,
476                   (unsigned)TD->getABITypeAlignment(
477                      Type::getInt64Ty(V->getContext())));
478      }
479    }
480
481    if (Align > 0)
482      KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
483                                              CountTrailingZeros_32(Align));
484    break;
485  }
486  case Instruction::GetElementPtr: {
487    // Analyze all of the subscripts of this getelementptr instruction
488    // to determine if we can prove known low zero bits.
489    APInt LocalMask = APInt::getAllOnesValue(BitWidth);
490    APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
491    ComputeMaskedBits(I->getOperand(0), LocalMask,
492                      LocalKnownZero, LocalKnownOne, TD, Depth+1);
493    unsigned TrailZ = LocalKnownZero.countTrailingOnes();
494
495    gep_type_iterator GTI = gep_type_begin(I);
496    for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
497      Value *Index = I->getOperand(i);
498      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
499        // Handle struct member offset arithmetic.
500        if (!TD) return;
501        const StructLayout *SL = TD->getStructLayout(STy);
502        unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
503        uint64_t Offset = SL->getElementOffset(Idx);
504        TrailZ = std::min(TrailZ,
505                          CountTrailingZeros_64(Offset));
506      } else {
507        // Handle array index arithmetic.
508        const Type *IndexedTy = GTI.getIndexedType();
509        if (!IndexedTy->isSized()) return;
510        unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
511        uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
512        LocalMask = APInt::getAllOnesValue(GEPOpiBits);
513        LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
514        ComputeMaskedBits(Index, LocalMask,
515                          LocalKnownZero, LocalKnownOne, TD, Depth+1);
516        TrailZ = std::min(TrailZ,
517                          unsigned(CountTrailingZeros_64(TypeSize) +
518                                   LocalKnownZero.countTrailingOnes()));
519      }
520    }
521
522    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
523    break;
524  }
525  case Instruction::PHI: {
526    PHINode *P = cast<PHINode>(I);
527    // Handle the case of a simple two-predecessor recurrence PHI.
528    // There's a lot more that could theoretically be done here, but
529    // this is sufficient to catch some interesting cases.
530    if (P->getNumIncomingValues() == 2) {
531      for (unsigned i = 0; i != 2; ++i) {
532        Value *L = P->getIncomingValue(i);
533        Value *R = P->getIncomingValue(!i);
534        Operator *LU = dyn_cast<Operator>(L);
535        if (!LU)
536          continue;
537        unsigned Opcode = LU->getOpcode();
538        // Check for operations that have the property that if
539        // both their operands have low zero bits, the result
540        // will have low zero bits.
541        if (Opcode == Instruction::Add ||
542            Opcode == Instruction::Sub ||
543            Opcode == Instruction::And ||
544            Opcode == Instruction::Or ||
545            Opcode == Instruction::Mul) {
546          Value *LL = LU->getOperand(0);
547          Value *LR = LU->getOperand(1);
548          // Find a recurrence.
549          if (LL == I)
550            L = LR;
551          else if (LR == I)
552            L = LL;
553          else
554            break;
555          // Ok, we have a PHI of the form L op= R. Check for low
556          // zero bits.
557          APInt Mask2 = APInt::getAllOnesValue(BitWidth);
558          ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
559          Mask2 = APInt::getLowBitsSet(BitWidth,
560                                       KnownZero2.countTrailingOnes());
561
562          // We need to take the minimum number of known bits
563          APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
564          ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
565
566          KnownZero = Mask &
567                      APInt::getLowBitsSet(BitWidth,
568                                           std::min(KnownZero2.countTrailingOnes(),
569                                                    KnownZero3.countTrailingOnes()));
570          break;
571        }
572      }
573    }
574
575    // Otherwise take the unions of the known bit sets of the operands,
576    // taking conservative care to avoid excessive recursion.
577    if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
578      KnownZero = APInt::getAllOnesValue(BitWidth);
579      KnownOne = APInt::getAllOnesValue(BitWidth);
580      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
581        // Skip direct self references.
582        if (P->getIncomingValue(i) == P) continue;
583
584        KnownZero2 = APInt(BitWidth, 0);
585        KnownOne2 = APInt(BitWidth, 0);
586        // Recurse, but cap the recursion to one level, because we don't
587        // want to waste time spinning around in loops.
588        ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
589                          KnownZero2, KnownOne2, TD, MaxDepth-1);
590        KnownZero &= KnownZero2;
591        KnownOne &= KnownOne2;
592        // If all bits have been ruled out, there's no need to check
593        // more operands.
594        if (!KnownZero && !KnownOne)
595          break;
596      }
597    }
598    break;
599  }
600  case Instruction::Call:
601    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
602      switch (II->getIntrinsicID()) {
603      default: break;
604      case Intrinsic::ctpop:
605      case Intrinsic::ctlz:
606      case Intrinsic::cttz: {
607        unsigned LowBits = Log2_32(BitWidth)+1;
608        KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
609        break;
610      }
611      }
612    }
613    break;
614  }
615}
616
617/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
618/// this predicate to simplify operations downstream.  Mask is known to be zero
619/// for bits that V cannot have.
620///
621/// This function is defined on values with integer type, values with pointer
622/// type (but only if TD is non-null), and vectors of integers.  In the case
623/// where V is a vector, the mask, known zero, and known one values are the
624/// same width as the vector element, and the bit is set only if it is true
625/// for all of the elements in the vector.
626bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
627                             const TargetData *TD, unsigned Depth) {
628  APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
629  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
630  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
631  return (KnownZero & Mask) == Mask;
632}
633
634
635
636/// ComputeNumSignBits - Return the number of times the sign bit of the
637/// register is replicated into the other bits.  We know that at least 1 bit
638/// is always equal to the sign bit (itself), but other cases can give us
639/// information.  For example, immediately after an "ashr X, 2", we know that
640/// the top 3 bits are all equal to each other, so we return 3.
641///
642/// 'Op' must have a scalar integer type.
643///
644unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
645                                  unsigned Depth) {
646  assert((TD || V->getType()->isIntOrIntVector()) &&
647         "ComputeNumSignBits requires a TargetData object to operate "
648         "on non-integer values!");
649  const Type *Ty = V->getType();
650  unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
651                         Ty->getScalarSizeInBits();
652  unsigned Tmp, Tmp2;
653  unsigned FirstAnswer = 1;
654
655  // Note that ConstantInt is handled by the general ComputeMaskedBits case
656  // below.
657
658  if (Depth == 6)
659    return 1;  // Limit search depth.
660
661  Operator *U = dyn_cast<Operator>(V);
662  switch (Operator::getOpcode(V)) {
663  default: break;
664  case Instruction::SExt:
665    Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
666    return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
667
668  case Instruction::AShr:
669    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
670    // ashr X, C   -> adds C sign bits.
671    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
672      Tmp += C->getZExtValue();
673      if (Tmp > TyBits) Tmp = TyBits;
674    }
675    return Tmp;
676  case Instruction::Shl:
677    if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
678      // shl destroys sign bits.
679      Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
680      if (C->getZExtValue() >= TyBits ||      // Bad shift.
681          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
682      return Tmp - C->getZExtValue();
683    }
684    break;
685  case Instruction::And:
686  case Instruction::Or:
687  case Instruction::Xor:    // NOT is handled here.
688    // Logical binary ops preserve the number of sign bits at the worst.
689    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
690    if (Tmp != 1) {
691      Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
692      FirstAnswer = std::min(Tmp, Tmp2);
693      // We computed what we know about the sign bits as our first
694      // answer. Now proceed to the generic code that uses
695      // ComputeMaskedBits, and pick whichever answer is better.
696    }
697    break;
698
699  case Instruction::Select:
700    Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
701    if (Tmp == 1) return 1;  // Early out.
702    Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
703    return std::min(Tmp, Tmp2);
704
705  case Instruction::Add:
706    // Add can have at most one carry bit.  Thus we know that the output
707    // is, at worst, one more bit than the inputs.
708    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
709    if (Tmp == 1) return 1;  // Early out.
710
711    // Special case decrementing a value (ADD X, -1):
712    if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
713      if (CRHS->isAllOnesValue()) {
714        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
715        APInt Mask = APInt::getAllOnesValue(TyBits);
716        ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
717                          Depth+1);
718
719        // If the input is known to be 0 or 1, the output is 0/-1, which is all
720        // sign bits set.
721        if ((KnownZero | APInt(TyBits, 1)) == Mask)
722          return TyBits;
723
724        // If we are subtracting one from a positive number, there is no carry
725        // out of the result.
726        if (KnownZero.isNegative())
727          return Tmp;
728      }
729
730    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
731    if (Tmp2 == 1) return 1;
732      return std::min(Tmp, Tmp2)-1;
733    break;
734
735  case Instruction::Sub:
736    Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
737    if (Tmp2 == 1) return 1;
738
739    // Handle NEG.
740    if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
741      if (CLHS->isNullValue()) {
742        APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
743        APInt Mask = APInt::getAllOnesValue(TyBits);
744        ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
745                          TD, Depth+1);
746        // If the input is known to be 0 or 1, the output is 0/-1, which is all
747        // sign bits set.
748        if ((KnownZero | APInt(TyBits, 1)) == Mask)
749          return TyBits;
750
751        // If the input is known to be positive (the sign bit is known clear),
752        // the output of the NEG has the same number of sign bits as the input.
753        if (KnownZero.isNegative())
754          return Tmp2;
755
756        // Otherwise, we treat this like a SUB.
757      }
758
759    // Sub can have at most one carry bit.  Thus we know that the output
760    // is, at worst, one more bit than the inputs.
761    Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
762    if (Tmp == 1) return 1;  // Early out.
763      return std::min(Tmp, Tmp2)-1;
764    break;
765  case Instruction::Trunc:
766    // FIXME: it's tricky to do anything useful for this, but it is an important
767    // case for targets like X86.
768    break;
769  }
770
771  // Finally, if we can prove that the top bits of the result are 0's or 1's,
772  // use this information.
773  APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
774  APInt Mask = APInt::getAllOnesValue(TyBits);
775  ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
776
777  if (KnownZero.isNegative()) {        // sign bit is 0
778    Mask = KnownZero;
779  } else if (KnownOne.isNegative()) {  // sign bit is 1;
780    Mask = KnownOne;
781  } else {
782    // Nothing known.
783    return FirstAnswer;
784  }
785
786  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
787  // the number of identical bits in the top of the input value.
788  Mask = ~Mask;
789  Mask <<= Mask.getBitWidth()-TyBits;
790  // Return # leading zeros.  We use 'min' here in case Val was zero before
791  // shifting.  We don't want to return '64' as for an i32 "0".
792  return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
793}
794
795/// CannotBeNegativeZero - Return true if we can prove that the specified FP
796/// value is never equal to -0.0.
797///
798/// NOTE: this function will need to be revisited when we support non-default
799/// rounding modes!
800///
801bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
802  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
803    return !CFP->getValueAPF().isNegZero();
804
805  if (Depth == 6)
806    return 1;  // Limit search depth.
807
808  const Operator *I = dyn_cast<Operator>(V);
809  if (I == 0) return false;
810
811  // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
812  if (I->getOpcode() == Instruction::FAdd &&
813      isa<ConstantFP>(I->getOperand(1)) &&
814      cast<ConstantFP>(I->getOperand(1))->isNullValue())
815    return true;
816
817  // sitofp and uitofp turn into +0.0 for zero.
818  if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
819    return true;
820
821  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
822    // sqrt(-0.0) = -0.0, no other negative results are possible.
823    if (II->getIntrinsicID() == Intrinsic::sqrt)
824      return CannotBeNegativeZero(II->getOperand(1), Depth+1);
825
826  if (const CallInst *CI = dyn_cast<CallInst>(I))
827    if (const Function *F = CI->getCalledFunction()) {
828      if (F->isDeclaration()) {
829        // abs(x) != -0.0
830        if (F->getName() == "abs") return true;
831        // abs[lf](x) != -0.0
832        if (F->getName() == "absf") return true;
833        if (F->getName() == "absl") return true;
834      }
835    }
836
837  return false;
838}
839
840// This is the recursive version of BuildSubAggregate. It takes a few different
841// arguments. Idxs is the index within the nested struct From that we are
842// looking at now (which is of type IndexedType). IdxSkip is the number of
843// indices from Idxs that should be left out when inserting into the resulting
844// struct. To is the result struct built so far, new insertvalue instructions
845// build on that.
846static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
847                                SmallVector<unsigned, 10> &Idxs,
848                                unsigned IdxSkip,
849                                LLVMContext &Context,
850                                Instruction *InsertBefore) {
851  const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
852  if (STy) {
853    // Save the original To argument so we can modify it
854    Value *OrigTo = To;
855    // General case, the type indexed by Idxs is a struct
856    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
857      // Process each struct element recursively
858      Idxs.push_back(i);
859      Value *PrevTo = To;
860      To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
861                             Context, InsertBefore);
862      Idxs.pop_back();
863      if (!To) {
864        // Couldn't find any inserted value for this index? Cleanup
865        while (PrevTo != OrigTo) {
866          InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
867          PrevTo = Del->getAggregateOperand();
868          Del->eraseFromParent();
869        }
870        // Stop processing elements
871        break;
872      }
873    }
874    // If we succesfully found a value for each of our subaggregates
875    if (To)
876      return To;
877  }
878  // Base case, the type indexed by SourceIdxs is not a struct, or not all of
879  // the struct's elements had a value that was inserted directly. In the latter
880  // case, perhaps we can't determine each of the subelements individually, but
881  // we might be able to find the complete struct somewhere.
882
883  // Find the value that is at that particular spot
884  Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end(), Context);
885
886  if (!V)
887    return NULL;
888
889  // Insert the value in the new (sub) aggregrate
890  return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
891                                       Idxs.end(), "tmp", InsertBefore);
892}
893
894// This helper takes a nested struct and extracts a part of it (which is again a
895// struct) into a new value. For example, given the struct:
896// { a, { b, { c, d }, e } }
897// and the indices "1, 1" this returns
898// { c, d }.
899//
900// It does this by inserting an insertvalue for each element in the resulting
901// struct, as opposed to just inserting a single struct. This will only work if
902// each of the elements of the substruct are known (ie, inserted into From by an
903// insertvalue instruction somewhere).
904//
905// All inserted insertvalue instructions are inserted before InsertBefore
906static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
907                                const unsigned *idx_end, LLVMContext &Context,
908                                Instruction *InsertBefore) {
909  assert(InsertBefore && "Must have someplace to insert!");
910  const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
911                                                             idx_begin,
912                                                             idx_end);
913  Value *To = UndefValue::get(IndexedType);
914  SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
915  unsigned IdxSkip = Idxs.size();
916
917  return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip,
918                           Context, InsertBefore);
919}
920
921/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
922/// the scalar value indexed is already around as a register, for example if it
923/// were inserted directly into the aggregrate.
924///
925/// If InsertBefore is not null, this function will duplicate (modified)
926/// insertvalues when a part of a nested struct is extracted.
927Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
928                         const unsigned *idx_end, LLVMContext &Context,
929                         Instruction *InsertBefore) {
930  // Nothing to index? Just return V then (this is useful at the end of our
931  // recursion)
932  if (idx_begin == idx_end)
933    return V;
934  // We have indices, so V should have an indexable type
935  assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
936         && "Not looking at a struct or array?");
937  assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
938         && "Invalid indices for type?");
939  const CompositeType *PTy = cast<CompositeType>(V->getType());
940
941  if (isa<UndefValue>(V))
942    return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
943                                                              idx_begin,
944                                                              idx_end));
945  else if (isa<ConstantAggregateZero>(V))
946    return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
947                                                                  idx_begin,
948                                                                  idx_end));
949  else if (Constant *C = dyn_cast<Constant>(V)) {
950    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
951      // Recursively process this constant
952      return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
953                               idx_end, Context, InsertBefore);
954  } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
955    // Loop the indices for the insertvalue instruction in parallel with the
956    // requested indices
957    const unsigned *req_idx = idx_begin;
958    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
959         i != e; ++i, ++req_idx) {
960      if (req_idx == idx_end) {
961        if (InsertBefore)
962          // The requested index identifies a part of a nested aggregate. Handle
963          // this specially. For example,
964          // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
965          // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
966          // %C = extractvalue {i32, { i32, i32 } } %B, 1
967          // This can be changed into
968          // %A = insertvalue {i32, i32 } undef, i32 10, 0
969          // %C = insertvalue {i32, i32 } %A, i32 11, 1
970          // which allows the unused 0,0 element from the nested struct to be
971          // removed.
972          return BuildSubAggregate(V, idx_begin, req_idx,
973                                   Context, InsertBefore);
974        else
975          // We can't handle this without inserting insertvalues
976          return 0;
977      }
978
979      // This insert value inserts something else than what we are looking for.
980      // See if the (aggregrate) value inserted into has the value we are
981      // looking for, then.
982      if (*req_idx != *i)
983        return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
984                                 Context, InsertBefore);
985    }
986    // If we end up here, the indices of the insertvalue match with those
987    // requested (though possibly only partially). Now we recursively look at
988    // the inserted value, passing any remaining indices.
989    return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
990                             Context, InsertBefore);
991  } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
992    // If we're extracting a value from an aggregrate that was extracted from
993    // something else, we can extract from that something else directly instead.
994    // However, we will need to chain I's indices with the requested indices.
995
996    // Calculate the number of indices required
997    unsigned size = I->getNumIndices() + (idx_end - idx_begin);
998    // Allocate some space to put the new indices in
999    SmallVector<unsigned, 5> Idxs;
1000    Idxs.reserve(size);
1001    // Add indices from the extract value instruction
1002    for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1003         i != e; ++i)
1004      Idxs.push_back(*i);
1005
1006    // Add requested indices
1007    for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
1008      Idxs.push_back(*i);
1009
1010    assert(Idxs.size() == size
1011           && "Number of indices added not correct?");
1012
1013    return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
1014                             Context, InsertBefore);
1015  }
1016  // Otherwise, we don't know (such as, extracting from a function return value
1017  // or load instruction)
1018  return 0;
1019}
1020
1021/// GetConstantStringInfo - This function computes the length of a
1022/// null-terminated C string pointed to by V.  If successful, it returns true
1023/// and returns the string in Str.  If unsuccessful, it returns false.
1024bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
1025                                 bool StopAtNul) {
1026  // If V is NULL then return false;
1027  if (V == NULL) return false;
1028
1029  // Look through bitcast instructions.
1030  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1031    return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1032
1033  // If the value is not a GEP instruction nor a constant expression with a
1034  // GEP instruction, then return false because ConstantArray can't occur
1035  // any other way
1036  User *GEP = 0;
1037  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1038    GEP = GEPI;
1039  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1040    if (CE->getOpcode() == Instruction::BitCast)
1041      return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1042    if (CE->getOpcode() != Instruction::GetElementPtr)
1043      return false;
1044    GEP = CE;
1045  }
1046
1047  if (GEP) {
1048    // Make sure the GEP has exactly three arguments.
1049    if (GEP->getNumOperands() != 3)
1050      return false;
1051
1052    // Make sure the index-ee is a pointer to array of i8.
1053    const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1054    const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1055    if (AT == 0 || AT->getElementType() != Type::getInt8Ty(V->getContext()))
1056      return false;
1057
1058    // Check to make sure that the first operand of the GEP is an integer and
1059    // has value 0 so that we are sure we're indexing into the initializer.
1060    ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1061    if (FirstIdx == 0 || !FirstIdx->isZero())
1062      return false;
1063
1064    // If the second index isn't a ConstantInt, then this is a variable index
1065    // into the array.  If this occurs, we can't say anything meaningful about
1066    // the string.
1067    uint64_t StartIdx = 0;
1068    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1069      StartIdx = CI->getZExtValue();
1070    else
1071      return false;
1072    return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
1073                                 StopAtNul);
1074  }
1075
1076  if (MDString *MDStr = dyn_cast<MDString>(V)) {
1077    Str = MDStr->getString();
1078    return true;
1079  }
1080
1081  // The GEP instruction, constant or instruction, must reference a global
1082  // variable that is a constant and is initialized. The referenced constant
1083  // initializer is the array that we'll use for optimization.
1084  GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
1085  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1086    return false;
1087  Constant *GlobalInit = GV->getInitializer();
1088
1089  // Handle the ConstantAggregateZero case
1090  if (isa<ConstantAggregateZero>(GlobalInit)) {
1091    // This is a degenerate case. The initializer is constant zero so the
1092    // length of the string must be zero.
1093    Str.clear();
1094    return true;
1095  }
1096
1097  // Must be a Constant Array
1098  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1099  if (Array == 0 ||
1100      Array->getType()->getElementType() != Type::getInt8Ty(V->getContext()))
1101    return false;
1102
1103  // Get the number of elements in the array
1104  uint64_t NumElts = Array->getType()->getNumElements();
1105
1106  if (Offset > NumElts)
1107    return false;
1108
1109  // Traverse the constant array from 'Offset' which is the place the GEP refers
1110  // to in the array.
1111  Str.reserve(NumElts-Offset);
1112  for (unsigned i = Offset; i != NumElts; ++i) {
1113    Constant *Elt = Array->getOperand(i);
1114    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1115    if (!CI) // This array isn't suitable, non-int initializer.
1116      return false;
1117    if (StopAtNul && CI->isZero())
1118      return true; // we found end of string, success!
1119    Str += (char)CI->getZExtValue();
1120  }
1121
1122  // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
1123  return true;
1124}
1125