ScheduleDAGSDNodes.cpp revision 12f0dc6bb556976f22d89ebcf42bce273c9e7d38
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33using namespace llvm;
34
35STATISTIC(LoadsClustered, "Number of loads clustered together");
36
37// This allows latency based scheduler to notice high latency instructions
38// without a target itinerary. The choise if number here has more to do with
39// balancing scheduler heursitics than with the actual machine latency.
40static cl::opt<int> HighLatencyCycles(
41  "sched-high-latency-cycles", cl::Hidden, cl::init(10),
42  cl::desc("Roughly estimate the number of cycles that 'long latency'"
43           "instructions take for targets with no itinerary"));
44
45ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
46  : ScheduleDAG(mf),
47    InstrItins(mf.getTarget().getInstrItineraryData()) {}
48
49/// Run - perform scheduling.
50///
51void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
52                             MachineBasicBlock::iterator insertPos) {
53  DAG = dag;
54  ScheduleDAG::Run(bb, insertPos);
55}
56
57/// NewSUnit - Creates a new SUnit and return a ptr to it.
58///
59SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
60#ifndef NDEBUG
61  const SUnit *Addr = 0;
62  if (!SUnits.empty())
63    Addr = &SUnits[0];
64#endif
65  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
66  assert((Addr == 0 || Addr == &SUnits[0]) &&
67         "SUnits std::vector reallocated on the fly!");
68  SUnits.back().OrigNode = &SUnits.back();
69  SUnit *SU = &SUnits.back();
70  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
71  if (!N ||
72      (N->isMachineOpcode() &&
73       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
74    SU->SchedulingPref = Sched::None;
75  else
76    SU->SchedulingPref = TLI.getSchedulingPreference(N);
77  return SU;
78}
79
80SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
81  SUnit *SU = NewSUnit(Old->getNode());
82  SU->OrigNode = Old->OrigNode;
83  SU->Latency = Old->Latency;
84  SU->isVRegCycle = Old->isVRegCycle;
85  SU->isCall = Old->isCall;
86  SU->isTwoAddress = Old->isTwoAddress;
87  SU->isCommutable = Old->isCommutable;
88  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
89  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
90  SU->isScheduleHigh = Old->isScheduleHigh;
91  SU->isScheduleLow = Old->isScheduleLow;
92  SU->SchedulingPref = Old->SchedulingPref;
93  Old->isCloned = true;
94  return SU;
95}
96
97/// CheckForPhysRegDependency - Check if the dependency between def and use of
98/// a specified operand is a physical register dependency. If so, returns the
99/// register and the cost of copying the register.
100static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
101                                      const TargetRegisterInfo *TRI,
102                                      const TargetInstrInfo *TII,
103                                      unsigned &PhysReg, int &Cost) {
104  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
105    return;
106
107  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
108  if (TargetRegisterInfo::isVirtualRegister(Reg))
109    return;
110
111  unsigned ResNo = User->getOperand(2).getResNo();
112  if (Def->isMachineOpcode()) {
113    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
114    if (ResNo >= II.getNumDefs() &&
115        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
116      PhysReg = Reg;
117      const TargetRegisterClass *RC =
118        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
119      Cost = RC->getCopyCost();
120    }
121  }
122}
123
124static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
125  SmallVector<EVT, 4> VTs;
126  SDNode *GlueDestNode = Glue.getNode();
127
128  // Don't add glue from a node to itself.
129  if (GlueDestNode == N) return;
130
131  // Don't add glue to something which already has glue.
132  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
133
134  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
135    VTs.push_back(N->getValueType(I));
136
137  if (AddGlue)
138    VTs.push_back(MVT::Glue);
139
140  SmallVector<SDValue, 4> Ops;
141  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
142    Ops.push_back(N->getOperand(I));
143
144  if (GlueDestNode)
145    Ops.push_back(Glue);
146
147  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
148  MachineSDNode::mmo_iterator Begin = 0, End = 0;
149  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
150
151  // Store memory references.
152  if (MN) {
153    Begin = MN->memoperands_begin();
154    End = MN->memoperands_end();
155  }
156
157  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
158
159  // Reset the memory references
160  if (MN)
161    MN->setMemRefs(Begin, End);
162}
163
164/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
165/// This function finds loads of the same base and different offsets. If the
166/// offsets are not far apart (target specific), it add MVT::Glue inputs and
167/// outputs to ensure they are scheduled together and in order. This
168/// optimization may benefit some targets by improving cache locality.
169void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
170  SDNode *Chain = 0;
171  unsigned NumOps = Node->getNumOperands();
172  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
173    Chain = Node->getOperand(NumOps-1).getNode();
174  if (!Chain)
175    return;
176
177  // Look for other loads of the same chain. Find loads that are loading from
178  // the same base pointer and different offsets.
179  SmallPtrSet<SDNode*, 16> Visited;
180  SmallVector<int64_t, 4> Offsets;
181  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
182  bool Cluster = false;
183  SDNode *Base = Node;
184  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
185       I != E; ++I) {
186    SDNode *User = *I;
187    if (User == Node || !Visited.insert(User))
188      continue;
189    int64_t Offset1, Offset2;
190    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
191        Offset1 == Offset2)
192      // FIXME: Should be ok if they addresses are identical. But earlier
193      // optimizations really should have eliminated one of the loads.
194      continue;
195    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
196      Offsets.push_back(Offset1);
197    O2SMap.insert(std::make_pair(Offset2, User));
198    Offsets.push_back(Offset2);
199    if (Offset2 < Offset1)
200      Base = User;
201    Cluster = true;
202  }
203
204  if (!Cluster)
205    return;
206
207  // Sort them in increasing order.
208  std::sort(Offsets.begin(), Offsets.end());
209
210  // Check if the loads are close enough.
211  SmallVector<SDNode*, 4> Loads;
212  unsigned NumLoads = 0;
213  int64_t BaseOff = Offsets[0];
214  SDNode *BaseLoad = O2SMap[BaseOff];
215  Loads.push_back(BaseLoad);
216  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
217    int64_t Offset = Offsets[i];
218    SDNode *Load = O2SMap[Offset];
219    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
220      break; // Stop right here. Ignore loads that are further away.
221    Loads.push_back(Load);
222    ++NumLoads;
223  }
224
225  if (NumLoads == 0)
226    return;
227
228  // Cluster loads by adding MVT::Glue outputs and inputs. This also
229  // ensure they are scheduled in order of increasing addresses.
230  SDNode *Lead = Loads[0];
231  AddGlue(Lead, SDValue(0, 0), true, DAG);
232
233  SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
234  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
235    bool OutGlue = I < E - 1;
236    SDNode *Load = Loads[I];
237
238    AddGlue(Load, InGlue, OutGlue, DAG);
239
240    if (OutGlue)
241      InGlue = SDValue(Load, Load->getNumValues() - 1);
242
243    ++LoadsClustered;
244  }
245}
246
247/// ClusterNodes - Cluster certain nodes which should be scheduled together.
248///
249void ScheduleDAGSDNodes::ClusterNodes() {
250  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
251       E = DAG->allnodes_end(); NI != E; ++NI) {
252    SDNode *Node = &*NI;
253    if (!Node || !Node->isMachineOpcode())
254      continue;
255
256    unsigned Opc = Node->getMachineOpcode();
257    const TargetInstrDesc &TID = TII->get(Opc);
258    if (TID.mayLoad())
259      // Cluster loads from "near" addresses into combined SUnits.
260      ClusterNeighboringLoads(Node);
261  }
262}
263
264void ScheduleDAGSDNodes::BuildSchedUnits() {
265  // During scheduling, the NodeId field of SDNode is used to map SDNodes
266  // to their associated SUnits by holding SUnits table indices. A value
267  // of -1 means the SDNode does not yet have an associated SUnit.
268  unsigned NumNodes = 0;
269  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
270       E = DAG->allnodes_end(); NI != E; ++NI) {
271    NI->setNodeId(-1);
272    ++NumNodes;
273  }
274
275  // Reserve entries in the vector for each of the SUnits we are creating.  This
276  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
277  // invalidated.
278  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
279  // This is a temporary workaround.
280  SUnits.reserve(NumNodes * 2);
281
282  // Add all nodes in depth first order.
283  SmallVector<SDNode*, 64> Worklist;
284  SmallPtrSet<SDNode*, 64> Visited;
285  Worklist.push_back(DAG->getRoot().getNode());
286  Visited.insert(DAG->getRoot().getNode());
287
288  while (!Worklist.empty()) {
289    SDNode *NI = Worklist.pop_back_val();
290
291    // Add all operands to the worklist unless they've already been added.
292    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
293      if (Visited.insert(NI->getOperand(i).getNode()))
294        Worklist.push_back(NI->getOperand(i).getNode());
295
296    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
297      continue;
298
299    // If this node has already been processed, stop now.
300    if (NI->getNodeId() != -1) continue;
301
302    SUnit *NodeSUnit = NewSUnit(NI);
303
304    // See if anything is glued to this node, if so, add them to glued
305    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
306    // is required to be the last operand and result of a node.
307
308    // Scan up to find glued preds.
309    SDNode *N = NI;
310    while (N->getNumOperands() &&
311           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
312      N = N->getOperand(N->getNumOperands()-1).getNode();
313      assert(N->getNodeId() == -1 && "Node already inserted!");
314      N->setNodeId(NodeSUnit->NodeNum);
315      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
316        NodeSUnit->isCall = true;
317    }
318
319    // Scan down to find any glued succs.
320    N = NI;
321    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
322      SDValue GlueVal(N, N->getNumValues()-1);
323
324      // There are either zero or one users of the Glue result.
325      bool HasGlueUse = false;
326      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
327           UI != E; ++UI)
328        if (GlueVal.isOperandOf(*UI)) {
329          HasGlueUse = true;
330          assert(N->getNodeId() == -1 && "Node already inserted!");
331          N->setNodeId(NodeSUnit->NodeNum);
332          N = *UI;
333          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
334            NodeSUnit->isCall = true;
335          break;
336        }
337      if (!HasGlueUse) break;
338    }
339
340    // Schedule zero-latency TokenFactor below any nodes that may increase the
341    // schedule height. Otherwise, ancestors of the TokenFactor may appear to
342    // have false stalls.
343    if (NI->getOpcode() == ISD::TokenFactor)
344      NodeSUnit->isScheduleLow = true;
345
346    // If there are glue operands involved, N is now the bottom-most node
347    // of the sequence of nodes that are glued together.
348    // Update the SUnit.
349    NodeSUnit->setNode(N);
350    assert(N->getNodeId() == -1 && "Node already inserted!");
351    N->setNodeId(NodeSUnit->NodeNum);
352
353    // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
354    InitNumRegDefsLeft(NodeSUnit);
355
356    // Assign the Latency field of NodeSUnit using target-provided information.
357    ComputeLatency(NodeSUnit);
358  }
359}
360
361void ScheduleDAGSDNodes::AddSchedEdges() {
362  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
363
364  // Check to see if the scheduler cares about latencies.
365  bool UnitLatencies = ForceUnitLatencies();
366
367  // Pass 2: add the preds, succs, etc.
368  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
369    SUnit *SU = &SUnits[su];
370    SDNode *MainNode = SU->getNode();
371
372    if (MainNode->isMachineOpcode()) {
373      unsigned Opc = MainNode->getMachineOpcode();
374      const TargetInstrDesc &TID = TII->get(Opc);
375      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
376        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
377          SU->isTwoAddress = true;
378          break;
379        }
380      }
381      if (TID.isCommutable())
382        SU->isCommutable = true;
383    }
384
385    // Find all predecessors and successors of the group.
386    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
387      if (N->isMachineOpcode() &&
388          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
389        SU->hasPhysRegClobbers = true;
390        unsigned NumUsed = InstrEmitter::CountResults(N);
391        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
392          --NumUsed;    // Skip over unused values at the end.
393        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
394          SU->hasPhysRegDefs = true;
395      }
396
397      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
398        SDNode *OpN = N->getOperand(i).getNode();
399        if (isPassiveNode(OpN)) continue;   // Not scheduled.
400        SUnit *OpSU = &SUnits[OpN->getNodeId()];
401        assert(OpSU && "Node has no SUnit!");
402        if (OpSU == SU) continue;           // In the same group.
403
404        EVT OpVT = N->getOperand(i).getValueType();
405        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
406        bool isChain = OpVT == MVT::Other;
407
408        unsigned PhysReg = 0;
409        int Cost = 1;
410        // Determine if this is a physical register dependency.
411        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
412        assert((PhysReg == 0 || !isChain) &&
413               "Chain dependence via physreg data?");
414        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
415        // emits a copy from the physical register to a virtual register unless
416        // it requires a cross class copy (cost < 0). That means we are only
417        // treating "expensive to copy" register dependency as physical register
418        // dependency. This may change in the future though.
419        if (Cost >= 0)
420          PhysReg = 0;
421
422        // If this is a ctrl dep, latency is 1.
423        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
424        // Special-case TokenFactor chains as zero-latency.
425        if(isChain && OpN->getOpcode() == ISD::TokenFactor)
426          OpLatency = 0;
427
428        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
429                               OpLatency, PhysReg);
430        if (!isChain && !UnitLatencies) {
431          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
432          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
433        }
434
435        if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
436          // Multiple register uses are combined in the same SUnit. For example,
437          // we could have a set of glued nodes with all their defs consumed by
438          // another set of glued nodes. Register pressure tracking sees this as
439          // a single use, so to keep pressure balanced we reduce the defs.
440          //
441          // We can't tell (without more book-keeping) if this results from
442          // glued nodes or duplicate operands. As long as we don't reduce
443          // NumRegDefsLeft to zero, we handle the common cases well.
444          --OpSU->NumRegDefsLeft;
445        }
446      }
447    }
448  }
449}
450
451/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
452/// are input.  This SUnit graph is similar to the SelectionDAG, but
453/// excludes nodes that aren't interesting to scheduling, and represents
454/// glued together nodes with a single SUnit.
455void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
456  // Cluster certain nodes which should be scheduled together.
457  ClusterNodes();
458  // Populate the SUnits array.
459  BuildSchedUnits();
460  // Compute all the scheduling dependencies between nodes.
461  AddSchedEdges();
462}
463
464// Initialize NumNodeDefs for the current Node's opcode.
465void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
466  // Check for phys reg copy.
467  if (!Node)
468    return;
469
470  if (!Node->isMachineOpcode()) {
471    if (Node->getOpcode() == ISD::CopyFromReg)
472      NodeNumDefs = 1;
473    else
474      NodeNumDefs = 0;
475    return;
476  }
477  unsigned POpc = Node->getMachineOpcode();
478  if (POpc == TargetOpcode::IMPLICIT_DEF) {
479    // No register need be allocated for this.
480    NodeNumDefs = 0;
481    return;
482  }
483  unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
484  // Some instructions define regs that are not represented in the selection DAG
485  // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
486  NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
487  DefIdx = 0;
488}
489
490// Construct a RegDefIter for this SUnit and find the first valid value.
491ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
492                                           const ScheduleDAGSDNodes *SD)
493  : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
494  InitNodeNumDefs();
495  Advance();
496}
497
498// Advance to the next valid value defined by the SUnit.
499void ScheduleDAGSDNodes::RegDefIter::Advance() {
500  for (;Node;) { // Visit all glued nodes.
501    for (;DefIdx < NodeNumDefs; ++DefIdx) {
502      if (!Node->hasAnyUseOfValue(DefIdx))
503        continue;
504      if (Node->isMachineOpcode() &&
505          Node->getMachineOpcode() == TargetOpcode::EXTRACT_SUBREG) {
506        // Propagate the incoming (full-register) type. I doubt it's needed.
507        ValueType = Node->getOperand(0).getValueType();
508      }
509      else {
510        ValueType = Node->getValueType(DefIdx);
511      }
512      ++DefIdx;
513      return; // Found a normal regdef.
514    }
515    Node = Node->getGluedNode();
516    if (Node == NULL) {
517      return; // No values left to visit.
518    }
519    InitNodeNumDefs();
520  }
521}
522
523void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
524  assert(SU->NumRegDefsLeft == 0 && "expect a new node");
525  for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
526    assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
527    ++SU->NumRegDefsLeft;
528  }
529}
530
531void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
532  SDNode *N = SU->getNode();
533
534  // TokenFactor operands are considered zero latency, and some schedulers
535  // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
536  // whenever node latency is nonzero.
537  if (N && N->getOpcode() == ISD::TokenFactor) {
538    SU->Latency = 0;
539    return;
540  }
541
542  // Check to see if the scheduler cares about latencies.
543  if (ForceUnitLatencies()) {
544    SU->Latency = 1;
545    return;
546  }
547
548  if (!InstrItins || InstrItins->isEmpty()) {
549    if (N && N->isMachineOpcode() &&
550        TII->isHighLatencyDef(N->getMachineOpcode()))
551      SU->Latency = HighLatencyCycles;
552    else
553      SU->Latency = 1;
554    return;
555  }
556
557  // Compute the latency for the node.  We use the sum of the latencies for
558  // all nodes glued together into this SUnit.
559  SU->Latency = 0;
560  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
561    if (N->isMachineOpcode())
562      SU->Latency += TII->getInstrLatency(InstrItins, N);
563}
564
565void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
566                                               unsigned OpIdx, SDep& dep) const{
567  // Check to see if the scheduler cares about latencies.
568  if (ForceUnitLatencies())
569    return;
570
571  if (dep.getKind() != SDep::Data)
572    return;
573
574  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
575  if (Use->isMachineOpcode())
576    // Adjust the use operand index by num of defs.
577    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
578  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
579  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
580      !BB->succ_empty()) {
581    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
582    if (TargetRegisterInfo::isVirtualRegister(Reg))
583      // This copy is a liveout value. It is likely coalesced, so reduce the
584      // latency so not to penalize the def.
585      // FIXME: need target specific adjustment here?
586      Latency = (Latency > 1) ? Latency - 1 : 1;
587  }
588  if (Latency >= 0)
589    dep.setLatency(Latency);
590}
591
592void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
593  if (!SU->getNode()) {
594    dbgs() << "PHYS REG COPY\n";
595    return;
596  }
597
598  SU->getNode()->dump(DAG);
599  dbgs() << "\n";
600  SmallVector<SDNode *, 4> GluedNodes;
601  for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
602    GluedNodes.push_back(N);
603  while (!GluedNodes.empty()) {
604    dbgs() << "    ";
605    GluedNodes.back()->dump(DAG);
606    dbgs() << "\n";
607    GluedNodes.pop_back();
608  }
609}
610
611namespace {
612  struct OrderSorter {
613    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
614                    const std::pair<unsigned, MachineInstr*> &B) {
615      return A.first < B.first;
616    }
617  };
618}
619
620/// ProcessSDDbgValues - Process SDDbgValues assoicated with this node.
621static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
622                               InstrEmitter &Emitter,
623                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
624                            DenseMap<SDValue, unsigned> &VRBaseMap,
625                            unsigned Order) {
626  if (!N->getHasDebugValue())
627    return;
628
629  // Opportunistically insert immediate dbg_value uses, i.e. those with source
630  // order number right after the N.
631  MachineBasicBlock *BB = Emitter.getBlock();
632  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
633  SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
634  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
635    if (DVs[i]->isInvalidated())
636      continue;
637    unsigned DVOrder = DVs[i]->getOrder();
638    if (!Order || DVOrder == ++Order) {
639      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
640      if (DbgMI) {
641        Orders.push_back(std::make_pair(DVOrder, DbgMI));
642        BB->insert(InsertPos, DbgMI);
643      }
644      DVs[i]->setIsInvalidated();
645    }
646  }
647}
648
649// ProcessSourceNode - Process nodes with source order numbers. These are added
650// to a vector which EmitSchedule uses to determine how to insert dbg_value
651// instructions in the right order.
652static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
653                           InstrEmitter &Emitter,
654                           DenseMap<SDValue, unsigned> &VRBaseMap,
655                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
656                           SmallSet<unsigned, 8> &Seen) {
657  unsigned Order = DAG->GetOrdering(N);
658  if (!Order || !Seen.insert(Order)) {
659    // Process any valid SDDbgValues even if node does not have any order
660    // assigned.
661    ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
662    return;
663  }
664
665  MachineBasicBlock *BB = Emitter.getBlock();
666  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
667    // Did not insert any instruction.
668    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
669    return;
670  }
671
672  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
673  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
674}
675
676
677/// EmitSchedule - Emit the machine code in scheduled order.
678MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
679  InstrEmitter Emitter(BB, InsertPos);
680  DenseMap<SDValue, unsigned> VRBaseMap;
681  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
682  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
683  SmallSet<unsigned, 8> Seen;
684  bool HasDbg = DAG->hasDebugValues();
685
686  // If this is the first BB, emit byval parameter dbg_value's.
687  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
688    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
689    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
690    for (; PDI != PDE; ++PDI) {
691      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
692      if (DbgMI)
693        BB->insert(InsertPos, DbgMI);
694    }
695  }
696
697  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
698    SUnit *SU = Sequence[i];
699    if (!SU) {
700      // Null SUnit* is a noop.
701      EmitNoop();
702      continue;
703    }
704
705    // For pre-regalloc scheduling, create instructions corresponding to the
706    // SDNode and any glued SDNodes and append them to the block.
707    if (!SU->getNode()) {
708      // Emit a copy.
709      EmitPhysRegCopy(SU, CopyVRBaseMap);
710      continue;
711    }
712
713    SmallVector<SDNode *, 4> GluedNodes;
714    for (SDNode *N = SU->getNode()->getGluedNode(); N;
715         N = N->getGluedNode())
716      GluedNodes.push_back(N);
717    while (!GluedNodes.empty()) {
718      SDNode *N = GluedNodes.back();
719      Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
720                       VRBaseMap);
721      // Remember the source order of the inserted instruction.
722      if (HasDbg)
723        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
724      GluedNodes.pop_back();
725    }
726    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
727                     VRBaseMap);
728    // Remember the source order of the inserted instruction.
729    if (HasDbg)
730      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
731                        Seen);
732  }
733
734  // Insert all the dbg_values which have not already been inserted in source
735  // order sequence.
736  if (HasDbg) {
737    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
738
739    // Sort the source order instructions and use the order to insert debug
740    // values.
741    std::sort(Orders.begin(), Orders.end(), OrderSorter());
742
743    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
744    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
745    // Now emit the rest according to source order.
746    unsigned LastOrder = 0;
747    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
748      unsigned Order = Orders[i].first;
749      MachineInstr *MI = Orders[i].second;
750      // Insert all SDDbgValue's whose order(s) are before "Order".
751      if (!MI)
752        continue;
753      for (; DI != DE &&
754             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
755        if ((*DI)->isInvalidated())
756          continue;
757        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
758        if (DbgMI) {
759          if (!LastOrder)
760            // Insert to start of the BB (after PHIs).
761            BB->insert(BBBegin, DbgMI);
762          else {
763            // Insert at the instruction, which may be in a different
764            // block, if the block was split by a custom inserter.
765            MachineBasicBlock::iterator Pos = MI;
766            MI->getParent()->insert(llvm::next(Pos), DbgMI);
767          }
768        }
769      }
770      LastOrder = Order;
771    }
772    // Add trailing DbgValue's before the terminator. FIXME: May want to add
773    // some of them before one or more conditional branches?
774    while (DI != DE) {
775      MachineBasicBlock *InsertBB = Emitter.getBlock();
776      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
777      if (!(*DI)->isInvalidated()) {
778        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
779        if (DbgMI)
780          InsertBB->insert(Pos, DbgMI);
781      }
782      ++DI;
783    }
784  }
785
786  BB = Emitter.getBlock();
787  InsertPos = Emitter.getInsertPos();
788  return BB;
789}
790