ScheduleDAGSDNodes.cpp revision 3eb4319313b3fb9189cd4be5b3e5375be9bdc2f9
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetRegisterInfo.h"
24#include "llvm/Target/TargetSubtarget.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33using namespace llvm;
34
35STATISTIC(LoadsClustered, "Number of loads clustered together");
36
37// This allows latency based scheduler to notice high latency instructions
38// without a target itinerary. The choise if number here has more to do with
39// balancing scheduler heursitics than with the actual machine latency.
40static cl::opt<int> HighLatencyCycles(
41  "sched-high-latency-cycles", cl::Hidden, cl::init(10),
42  cl::desc("Roughly estimate the number of cycles that 'long latency'"
43           "instructions take for targets with no itinerary"));
44
45ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
46  : ScheduleDAG(mf),
47    InstrItins(mf.getTarget().getInstrItineraryData()) {}
48
49/// Run - perform scheduling.
50///
51void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb,
52                             MachineBasicBlock::iterator insertPos) {
53  DAG = dag;
54  ScheduleDAG::Run(bb, insertPos);
55}
56
57/// NewSUnit - Creates a new SUnit and return a ptr to it.
58///
59SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
60#ifndef NDEBUG
61  const SUnit *Addr = 0;
62  if (!SUnits.empty())
63    Addr = &SUnits[0];
64#endif
65  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
66  assert((Addr == 0 || Addr == &SUnits[0]) &&
67         "SUnits std::vector reallocated on the fly!");
68  SUnits.back().OrigNode = &SUnits.back();
69  SUnit *SU = &SUnits.back();
70  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
71  if (!N ||
72      (N->isMachineOpcode() &&
73       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
74    SU->SchedulingPref = Sched::None;
75  else
76    SU->SchedulingPref = TLI.getSchedulingPreference(N);
77  return SU;
78}
79
80SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
81  SUnit *SU = NewSUnit(Old->getNode());
82  SU->OrigNode = Old->OrigNode;
83  SU->Latency = Old->Latency;
84  SU->isVRegCycle = Old->isVRegCycle;
85  SU->isCall = Old->isCall;
86  SU->isTwoAddress = Old->isTwoAddress;
87  SU->isCommutable = Old->isCommutable;
88  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
89  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
90  SU->SchedulingPref = Old->SchedulingPref;
91  Old->isCloned = true;
92  return SU;
93}
94
95/// CheckForPhysRegDependency - Check if the dependency between def and use of
96/// a specified operand is a physical register dependency. If so, returns the
97/// register and the cost of copying the register.
98static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
99                                      const TargetRegisterInfo *TRI,
100                                      const TargetInstrInfo *TII,
101                                      unsigned &PhysReg, int &Cost) {
102  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
103    return;
104
105  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
106  if (TargetRegisterInfo::isVirtualRegister(Reg))
107    return;
108
109  unsigned ResNo = User->getOperand(2).getResNo();
110  if (Def->isMachineOpcode()) {
111    const TargetInstrDesc &II = TII->get(Def->getMachineOpcode());
112    if (ResNo >= II.getNumDefs() &&
113        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
114      PhysReg = Reg;
115      const TargetRegisterClass *RC =
116        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
117      Cost = RC->getCopyCost();
118    }
119  }
120}
121
122static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
123  SmallVector<EVT, 4> VTs;
124  SDNode *GlueDestNode = Glue.getNode();
125
126  // Don't add glue from a node to itself.
127  if (GlueDestNode == N) return;
128
129  // Don't add glue to something which already has glue.
130  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
131
132  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
133    VTs.push_back(N->getValueType(I));
134
135  if (AddGlue)
136    VTs.push_back(MVT::Glue);
137
138  SmallVector<SDValue, 4> Ops;
139  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
140    Ops.push_back(N->getOperand(I));
141
142  if (GlueDestNode)
143    Ops.push_back(Glue);
144
145  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
146  MachineSDNode::mmo_iterator Begin = 0, End = 0;
147  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
148
149  // Store memory references.
150  if (MN) {
151    Begin = MN->memoperands_begin();
152    End = MN->memoperands_end();
153  }
154
155  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
156
157  // Reset the memory references
158  if (MN)
159    MN->setMemRefs(Begin, End);
160}
161
162/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
163/// This function finds loads of the same base and different offsets. If the
164/// offsets are not far apart (target specific), it add MVT::Glue inputs and
165/// outputs to ensure they are scheduled together and in order. This
166/// optimization may benefit some targets by improving cache locality.
167void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
168  SDNode *Chain = 0;
169  unsigned NumOps = Node->getNumOperands();
170  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
171    Chain = Node->getOperand(NumOps-1).getNode();
172  if (!Chain)
173    return;
174
175  // Look for other loads of the same chain. Find loads that are loading from
176  // the same base pointer and different offsets.
177  SmallPtrSet<SDNode*, 16> Visited;
178  SmallVector<int64_t, 4> Offsets;
179  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
180  bool Cluster = false;
181  SDNode *Base = Node;
182  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
183       I != E; ++I) {
184    SDNode *User = *I;
185    if (User == Node || !Visited.insert(User))
186      continue;
187    int64_t Offset1, Offset2;
188    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
189        Offset1 == Offset2)
190      // FIXME: Should be ok if they addresses are identical. But earlier
191      // optimizations really should have eliminated one of the loads.
192      continue;
193    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
194      Offsets.push_back(Offset1);
195    O2SMap.insert(std::make_pair(Offset2, User));
196    Offsets.push_back(Offset2);
197    if (Offset2 < Offset1)
198      Base = User;
199    Cluster = true;
200  }
201
202  if (!Cluster)
203    return;
204
205  // Sort them in increasing order.
206  std::sort(Offsets.begin(), Offsets.end());
207
208  // Check if the loads are close enough.
209  SmallVector<SDNode*, 4> Loads;
210  unsigned NumLoads = 0;
211  int64_t BaseOff = Offsets[0];
212  SDNode *BaseLoad = O2SMap[BaseOff];
213  Loads.push_back(BaseLoad);
214  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
215    int64_t Offset = Offsets[i];
216    SDNode *Load = O2SMap[Offset];
217    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
218      break; // Stop right here. Ignore loads that are further away.
219    Loads.push_back(Load);
220    ++NumLoads;
221  }
222
223  if (NumLoads == 0)
224    return;
225
226  // Cluster loads by adding MVT::Glue outputs and inputs. This also
227  // ensure they are scheduled in order of increasing addresses.
228  SDNode *Lead = Loads[0];
229  AddGlue(Lead, SDValue(0, 0), true, DAG);
230
231  SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
232  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
233    bool OutGlue = I < E - 1;
234    SDNode *Load = Loads[I];
235
236    AddGlue(Load, InGlue, OutGlue, DAG);
237
238    if (OutGlue)
239      InGlue = SDValue(Load, Load->getNumValues() - 1);
240
241    ++LoadsClustered;
242  }
243}
244
245/// ClusterNodes - Cluster certain nodes which should be scheduled together.
246///
247void ScheduleDAGSDNodes::ClusterNodes() {
248  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
249       E = DAG->allnodes_end(); NI != E; ++NI) {
250    SDNode *Node = &*NI;
251    if (!Node || !Node->isMachineOpcode())
252      continue;
253
254    unsigned Opc = Node->getMachineOpcode();
255    const TargetInstrDesc &TID = TII->get(Opc);
256    if (TID.mayLoad())
257      // Cluster loads from "near" addresses into combined SUnits.
258      ClusterNeighboringLoads(Node);
259  }
260}
261
262void ScheduleDAGSDNodes::BuildSchedUnits() {
263  // During scheduling, the NodeId field of SDNode is used to map SDNodes
264  // to their associated SUnits by holding SUnits table indices. A value
265  // of -1 means the SDNode does not yet have an associated SUnit.
266  unsigned NumNodes = 0;
267  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
268       E = DAG->allnodes_end(); NI != E; ++NI) {
269    NI->setNodeId(-1);
270    ++NumNodes;
271  }
272
273  // Reserve entries in the vector for each of the SUnits we are creating.  This
274  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
275  // invalidated.
276  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
277  // This is a temporary workaround.
278  SUnits.reserve(NumNodes * 2);
279
280  // Add all nodes in depth first order.
281  SmallVector<SDNode*, 64> Worklist;
282  SmallPtrSet<SDNode*, 64> Visited;
283  Worklist.push_back(DAG->getRoot().getNode());
284  Visited.insert(DAG->getRoot().getNode());
285
286  while (!Worklist.empty()) {
287    SDNode *NI = Worklist.pop_back_val();
288
289    // Add all operands to the worklist unless they've already been added.
290    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
291      if (Visited.insert(NI->getOperand(i).getNode()))
292        Worklist.push_back(NI->getOperand(i).getNode());
293
294    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
295      continue;
296
297    // If this node has already been processed, stop now.
298    if (NI->getNodeId() != -1) continue;
299
300    SUnit *NodeSUnit = NewSUnit(NI);
301
302    // See if anything is glued to this node, if so, add them to glued
303    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
304    // is required to be the last operand and result of a node.
305
306    // Scan up to find glued preds.
307    SDNode *N = NI;
308    while (N->getNumOperands() &&
309           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
310      N = N->getOperand(N->getNumOperands()-1).getNode();
311      assert(N->getNodeId() == -1 && "Node already inserted!");
312      N->setNodeId(NodeSUnit->NodeNum);
313      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
314        NodeSUnit->isCall = true;
315    }
316
317    // Scan down to find any glued succs.
318    N = NI;
319    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
320      SDValue GlueVal(N, N->getNumValues()-1);
321
322      // There are either zero or one users of the Glue result.
323      bool HasGlueUse = false;
324      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
325           UI != E; ++UI)
326        if (GlueVal.isOperandOf(*UI)) {
327          HasGlueUse = true;
328          assert(N->getNodeId() == -1 && "Node already inserted!");
329          N->setNodeId(NodeSUnit->NodeNum);
330          N = *UI;
331          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
332            NodeSUnit->isCall = true;
333          break;
334        }
335      if (!HasGlueUse) break;
336    }
337
338    // If there are glue operands involved, N is now the bottom-most node
339    // of the sequence of nodes that are glued together.
340    // Update the SUnit.
341    NodeSUnit->setNode(N);
342    assert(N->getNodeId() == -1 && "Node already inserted!");
343    N->setNodeId(NodeSUnit->NodeNum);
344
345    // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
346    InitNumRegDefsLeft(NodeSUnit);
347
348    // Assign the Latency field of NodeSUnit using target-provided information.
349    ComputeLatency(NodeSUnit);
350  }
351}
352
353void ScheduleDAGSDNodes::AddSchedEdges() {
354  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
355
356  // Check to see if the scheduler cares about latencies.
357  bool UnitLatencies = ForceUnitLatencies();
358
359  // Pass 2: add the preds, succs, etc.
360  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
361    SUnit *SU = &SUnits[su];
362    SDNode *MainNode = SU->getNode();
363
364    if (MainNode->isMachineOpcode()) {
365      unsigned Opc = MainNode->getMachineOpcode();
366      const TargetInstrDesc &TID = TII->get(Opc);
367      for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
368        if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
369          SU->isTwoAddress = true;
370          break;
371        }
372      }
373      if (TID.isCommutable())
374        SU->isCommutable = true;
375    }
376
377    // Find all predecessors and successors of the group.
378    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
379      if (N->isMachineOpcode() &&
380          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
381        SU->hasPhysRegClobbers = true;
382        unsigned NumUsed = InstrEmitter::CountResults(N);
383        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
384          --NumUsed;    // Skip over unused values at the end.
385        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
386          SU->hasPhysRegDefs = true;
387      }
388
389      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
390        SDNode *OpN = N->getOperand(i).getNode();
391        if (isPassiveNode(OpN)) continue;   // Not scheduled.
392        SUnit *OpSU = &SUnits[OpN->getNodeId()];
393        assert(OpSU && "Node has no SUnit!");
394        if (OpSU == SU) continue;           // In the same group.
395
396        EVT OpVT = N->getOperand(i).getValueType();
397        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
398        bool isChain = OpVT == MVT::Other;
399
400        unsigned PhysReg = 0;
401        int Cost = 1;
402        // Determine if this is a physical register dependency.
403        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
404        assert((PhysReg == 0 || !isChain) &&
405               "Chain dependence via physreg data?");
406        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
407        // emits a copy from the physical register to a virtual register unless
408        // it requires a cross class copy (cost < 0). That means we are only
409        // treating "expensive to copy" register dependency as physical register
410        // dependency. This may change in the future though.
411        if (Cost >= 0)
412          PhysReg = 0;
413
414        // If this is a ctrl dep, latency is 1.
415        // Special-case TokenFactor chains as zero-latency.
416        unsigned OpLatency = 1;
417        if (!isChain && OpSU->Latency > 0)
418          OpLatency = OpSU->Latency;
419        else if(isChain && OpN->getOpcode() == ISD::TokenFactor)
420          OpLatency = 0;
421
422        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
423                               OpLatency, PhysReg);
424        if (!isChain && !UnitLatencies) {
425          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
426          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
427        }
428
429        if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
430          // Multiple register uses are combined in the same SUnit. For example,
431          // we could have a set of glued nodes with all their defs consumed by
432          // another set of glued nodes. Register pressure tracking sees this as
433          // a single use, so to keep pressure balanced we reduce the defs.
434          //
435          // We can't tell (without more book-keeping) if this results from
436          // glued nodes or duplicate operands. As long as we don't reduce
437          // NumRegDefsLeft to zero, we handle the common cases well.
438          --OpSU->NumRegDefsLeft;
439        }
440      }
441    }
442  }
443}
444
445/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
446/// are input.  This SUnit graph is similar to the SelectionDAG, but
447/// excludes nodes that aren't interesting to scheduling, and represents
448/// glued together nodes with a single SUnit.
449void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
450  // Cluster certain nodes which should be scheduled together.
451  ClusterNodes();
452  // Populate the SUnits array.
453  BuildSchedUnits();
454  // Compute all the scheduling dependencies between nodes.
455  AddSchedEdges();
456}
457
458// Initialize NumNodeDefs for the current Node's opcode.
459void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
460  // Check for phys reg copy.
461  if (!Node)
462    return;
463
464  if (!Node->isMachineOpcode()) {
465    if (Node->getOpcode() == ISD::CopyFromReg)
466      NodeNumDefs = 1;
467    else
468      NodeNumDefs = 0;
469    return;
470  }
471  unsigned POpc = Node->getMachineOpcode();
472  if (POpc == TargetOpcode::IMPLICIT_DEF) {
473    // No register need be allocated for this.
474    NodeNumDefs = 0;
475    return;
476  }
477  unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
478  // Some instructions define regs that are not represented in the selection DAG
479  // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
480  NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
481  DefIdx = 0;
482}
483
484// Construct a RegDefIter for this SUnit and find the first valid value.
485ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
486                                           const ScheduleDAGSDNodes *SD)
487  : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
488  InitNodeNumDefs();
489  Advance();
490}
491
492// Advance to the next valid value defined by the SUnit.
493void ScheduleDAGSDNodes::RegDefIter::Advance() {
494  for (;Node;) { // Visit all glued nodes.
495    for (;DefIdx < NodeNumDefs; ++DefIdx) {
496      if (!Node->hasAnyUseOfValue(DefIdx))
497        continue;
498      if (Node->isMachineOpcode() &&
499          Node->getMachineOpcode() == TargetOpcode::EXTRACT_SUBREG) {
500        // Propagate the incoming (full-register) type. I doubt it's needed.
501        ValueType = Node->getOperand(0).getValueType();
502      }
503      else {
504        ValueType = Node->getValueType(DefIdx);
505      }
506      ++DefIdx;
507      return; // Found a normal regdef.
508    }
509    Node = Node->getGluedNode();
510    if (Node == NULL) {
511      return; // No values left to visit.
512    }
513    InitNodeNumDefs();
514  }
515}
516
517void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
518  assert(SU->NumRegDefsLeft == 0 && "expect a new node");
519  for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
520    assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
521    ++SU->NumRegDefsLeft;
522  }
523}
524
525void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
526  // Check to see if the scheduler cares about latencies.
527  if (ForceUnitLatencies()) {
528    SU->Latency = 1;
529    return;
530  }
531
532  if (!InstrItins || InstrItins->isEmpty()) {
533    SDNode *N = SU->getNode();
534    if (N && N->isMachineOpcode() &&
535        TII->isHighLatencyDef(N->getMachineOpcode()))
536      SU->Latency = HighLatencyCycles;
537    else
538      SU->Latency = 1;
539    return;
540  }
541
542  // Compute the latency for the node.  We use the sum of the latencies for
543  // all nodes glued together into this SUnit.
544  SU->Latency = 0;
545  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
546    if (N->isMachineOpcode())
547      SU->Latency += TII->getInstrLatency(InstrItins, N);
548}
549
550void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
551                                               unsigned OpIdx, SDep& dep) const{
552  // Check to see if the scheduler cares about latencies.
553  if (ForceUnitLatencies())
554    return;
555
556  if (dep.getKind() != SDep::Data)
557    return;
558
559  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
560  if (Use->isMachineOpcode())
561    // Adjust the use operand index by num of defs.
562    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
563  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
564  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
565      !BB->succ_empty()) {
566    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
567    if (TargetRegisterInfo::isVirtualRegister(Reg))
568      // This copy is a liveout value. It is likely coalesced, so reduce the
569      // latency so not to penalize the def.
570      // FIXME: need target specific adjustment here?
571      Latency = (Latency > 1) ? Latency - 1 : 1;
572  }
573  if (Latency >= 0)
574    dep.setLatency(Latency);
575}
576
577void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
578  if (!SU->getNode()) {
579    dbgs() << "PHYS REG COPY\n";
580    return;
581  }
582
583  SU->getNode()->dump(DAG);
584  dbgs() << "\n";
585  SmallVector<SDNode *, 4> GluedNodes;
586  for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
587    GluedNodes.push_back(N);
588  while (!GluedNodes.empty()) {
589    dbgs() << "    ";
590    GluedNodes.back()->dump(DAG);
591    dbgs() << "\n";
592    GluedNodes.pop_back();
593  }
594}
595
596namespace {
597  struct OrderSorter {
598    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
599                    const std::pair<unsigned, MachineInstr*> &B) {
600      return A.first < B.first;
601    }
602  };
603}
604
605/// ProcessSDDbgValues - Process SDDbgValues assoicated with this node.
606static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
607                               InstrEmitter &Emitter,
608                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
609                            DenseMap<SDValue, unsigned> &VRBaseMap,
610                            unsigned Order) {
611  if (!N->getHasDebugValue())
612    return;
613
614  // Opportunistically insert immediate dbg_value uses, i.e. those with source
615  // order number right after the N.
616  MachineBasicBlock *BB = Emitter.getBlock();
617  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
618  SmallVector<SDDbgValue*,2> &DVs = DAG->GetDbgValues(N);
619  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
620    if (DVs[i]->isInvalidated())
621      continue;
622    unsigned DVOrder = DVs[i]->getOrder();
623    if (!Order || DVOrder == ++Order) {
624      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
625      if (DbgMI) {
626        Orders.push_back(std::make_pair(DVOrder, DbgMI));
627        BB->insert(InsertPos, DbgMI);
628      }
629      DVs[i]->setIsInvalidated();
630    }
631  }
632}
633
634// ProcessSourceNode - Process nodes with source order numbers. These are added
635// to a vector which EmitSchedule uses to determine how to insert dbg_value
636// instructions in the right order.
637static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
638                           InstrEmitter &Emitter,
639                           DenseMap<SDValue, unsigned> &VRBaseMap,
640                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
641                           SmallSet<unsigned, 8> &Seen) {
642  unsigned Order = DAG->GetOrdering(N);
643  if (!Order || !Seen.insert(Order)) {
644    // Process any valid SDDbgValues even if node does not have any order
645    // assigned.
646    ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
647    return;
648  }
649
650  MachineBasicBlock *BB = Emitter.getBlock();
651  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
652    // Did not insert any instruction.
653    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
654    return;
655  }
656
657  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
658  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
659}
660
661
662/// EmitSchedule - Emit the machine code in scheduled order.
663MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
664  InstrEmitter Emitter(BB, InsertPos);
665  DenseMap<SDValue, unsigned> VRBaseMap;
666  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
667  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
668  SmallSet<unsigned, 8> Seen;
669  bool HasDbg = DAG->hasDebugValues();
670
671  // If this is the first BB, emit byval parameter dbg_value's.
672  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
673    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
674    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
675    for (; PDI != PDE; ++PDI) {
676      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
677      if (DbgMI)
678        BB->insert(InsertPos, DbgMI);
679    }
680  }
681
682  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
683    SUnit *SU = Sequence[i];
684    if (!SU) {
685      // Null SUnit* is a noop.
686      EmitNoop();
687      continue;
688    }
689
690    // For pre-regalloc scheduling, create instructions corresponding to the
691    // SDNode and any glued SDNodes and append them to the block.
692    if (!SU->getNode()) {
693      // Emit a copy.
694      EmitPhysRegCopy(SU, CopyVRBaseMap);
695      continue;
696    }
697
698    SmallVector<SDNode *, 4> GluedNodes;
699    for (SDNode *N = SU->getNode()->getGluedNode(); N;
700         N = N->getGluedNode())
701      GluedNodes.push_back(N);
702    while (!GluedNodes.empty()) {
703      SDNode *N = GluedNodes.back();
704      Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
705                       VRBaseMap);
706      // Remember the source order of the inserted instruction.
707      if (HasDbg)
708        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
709      GluedNodes.pop_back();
710    }
711    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
712                     VRBaseMap);
713    // Remember the source order of the inserted instruction.
714    if (HasDbg)
715      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
716                        Seen);
717  }
718
719  // Insert all the dbg_values which have not already been inserted in source
720  // order sequence.
721  if (HasDbg) {
722    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
723
724    // Sort the source order instructions and use the order to insert debug
725    // values.
726    std::sort(Orders.begin(), Orders.end(), OrderSorter());
727
728    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
729    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
730    // Now emit the rest according to source order.
731    unsigned LastOrder = 0;
732    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
733      unsigned Order = Orders[i].first;
734      MachineInstr *MI = Orders[i].second;
735      // Insert all SDDbgValue's whose order(s) are before "Order".
736      if (!MI)
737        continue;
738      for (; DI != DE &&
739             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
740        if ((*DI)->isInvalidated())
741          continue;
742        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
743        if (DbgMI) {
744          if (!LastOrder)
745            // Insert to start of the BB (after PHIs).
746            BB->insert(BBBegin, DbgMI);
747          else {
748            // Insert at the instruction, which may be in a different
749            // block, if the block was split by a custom inserter.
750            MachineBasicBlock::iterator Pos = MI;
751            MI->getParent()->insert(llvm::next(Pos), DbgMI);
752          }
753        }
754      }
755      LastOrder = Order;
756    }
757    // Add trailing DbgValue's before the terminator. FIXME: May want to add
758    // some of them before one or more conditional branches?
759    while (DI != DE) {
760      MachineBasicBlock *InsertBB = Emitter.getBlock();
761      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
762      if (!(*DI)->isInvalidated()) {
763        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
764        if (DbgMI)
765          InsertBB->insert(Pos, DbgMI);
766      }
767      ++DI;
768    }
769  }
770
771  BB = Emitter.getBlock();
772  InsertPos = Emitter.getInsertPos();
773  return BB;
774}
775