ScheduleDAGSDNodes.cpp revision 47c144505b9be28ed22c626b3a407c11dba2fec5
1//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "SDNodeDbgValue.h"
17#include "ScheduleDAGSDNodes.h"
18#include "InstrEmitter.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/MC/MCInstrItineraries.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetSubtargetInfo.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/raw_ostream.h"
36using namespace llvm;
37
38STATISTIC(LoadsClustered, "Number of loads clustered together");
39
40// This allows latency based scheduler to notice high latency instructions
41// without a target itinerary. The choise if number here has more to do with
42// balancing scheduler heursitics than with the actual machine latency.
43static cl::opt<int> HighLatencyCycles(
44  "sched-high-latency-cycles", cl::Hidden, cl::init(10),
45  cl::desc("Roughly estimate the number of cycles that 'long latency'"
46           "instructions take for targets with no itinerary"));
47
48ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
49  : ScheduleDAG(mf), BB(0), DAG(0),
50    InstrItins(mf.getTarget().getInstrItineraryData()) {}
51
52/// Run - perform scheduling.
53///
54void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
55  BB = bb;
56  DAG = dag;
57
58  // Clear the scheduler's SUnit DAG.
59  ScheduleDAG::clearDAG();
60  Sequence.clear();
61
62  // Invoke the target's selection of scheduler.
63  Schedule();
64}
65
66/// NewSUnit - Creates a new SUnit and return a ptr to it.
67///
68SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) {
69#ifndef NDEBUG
70  const SUnit *Addr = 0;
71  if (!SUnits.empty())
72    Addr = &SUnits[0];
73#endif
74  SUnits.push_back(SUnit(N, (unsigned)SUnits.size()));
75  assert((Addr == 0 || Addr == &SUnits[0]) &&
76         "SUnits std::vector reallocated on the fly!");
77  SUnits.back().OrigNode = &SUnits.back();
78  SUnit *SU = &SUnits.back();
79  const TargetLowering &TLI = DAG->getTargetLoweringInfo();
80  if (!N ||
81      (N->isMachineOpcode() &&
82       N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
83    SU->SchedulingPref = Sched::None;
84  else
85    SU->SchedulingPref = TLI.getSchedulingPreference(N);
86  return SU;
87}
88
89SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
90  SUnit *SU = NewSUnit(Old->getNode());
91  SU->OrigNode = Old->OrigNode;
92  SU->Latency = Old->Latency;
93  SU->isVRegCycle = Old->isVRegCycle;
94  SU->isCall = Old->isCall;
95  SU->isCallOp = Old->isCallOp;
96  SU->isTwoAddress = Old->isTwoAddress;
97  SU->isCommutable = Old->isCommutable;
98  SU->hasPhysRegDefs = Old->hasPhysRegDefs;
99  SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
100  SU->isScheduleHigh = Old->isScheduleHigh;
101  SU->isScheduleLow = Old->isScheduleLow;
102  SU->SchedulingPref = Old->SchedulingPref;
103  Old->isCloned = true;
104  return SU;
105}
106
107/// CheckForPhysRegDependency - Check if the dependency between def and use of
108/// a specified operand is a physical register dependency. If so, returns the
109/// register and the cost of copying the register.
110static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
111                                      const TargetRegisterInfo *TRI,
112                                      const TargetInstrInfo *TII,
113                                      unsigned &PhysReg, int &Cost) {
114  if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
115    return;
116
117  unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118  if (TargetRegisterInfo::isVirtualRegister(Reg))
119    return;
120
121  unsigned ResNo = User->getOperand(2).getResNo();
122  if (Def->isMachineOpcode()) {
123    const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
124    if (ResNo >= II.getNumDefs() &&
125        II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) {
126      PhysReg = Reg;
127      const TargetRegisterClass *RC =
128        TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo));
129      Cost = RC->getCopyCost();
130    }
131  }
132}
133
134static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
135  SmallVector<EVT, 4> VTs;
136  SDNode *GlueDestNode = Glue.getNode();
137
138  // Don't add glue from a node to itself.
139  if (GlueDestNode == N) return;
140
141  // Don't add glue to something which already has glue.
142  if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return;
143
144  for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
145    VTs.push_back(N->getValueType(I));
146
147  if (AddGlue)
148    VTs.push_back(MVT::Glue);
149
150  SmallVector<SDValue, 4> Ops;
151  for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I)
152    Ops.push_back(N->getOperand(I));
153
154  if (GlueDestNode)
155    Ops.push_back(Glue);
156
157  SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size());
158  MachineSDNode::mmo_iterator Begin = 0, End = 0;
159  MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
160
161  // Store memory references.
162  if (MN) {
163    Begin = MN->memoperands_begin();
164    End = MN->memoperands_end();
165  }
166
167  DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size());
168
169  // Reset the memory references
170  if (MN)
171    MN->setMemRefs(Begin, End);
172}
173
174/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
175/// This function finds loads of the same base and different offsets. If the
176/// offsets are not far apart (target specific), it add MVT::Glue inputs and
177/// outputs to ensure they are scheduled together and in order. This
178/// optimization may benefit some targets by improving cache locality.
179void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
180  SDNode *Chain = 0;
181  unsigned NumOps = Node->getNumOperands();
182  if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
183    Chain = Node->getOperand(NumOps-1).getNode();
184  if (!Chain)
185    return;
186
187  // Look for other loads of the same chain. Find loads that are loading from
188  // the same base pointer and different offsets.
189  SmallPtrSet<SDNode*, 16> Visited;
190  SmallVector<int64_t, 4> Offsets;
191  DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
192  bool Cluster = false;
193  SDNode *Base = Node;
194  for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
195       I != E; ++I) {
196    SDNode *User = *I;
197    if (User == Node || !Visited.insert(User))
198      continue;
199    int64_t Offset1, Offset2;
200    if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
201        Offset1 == Offset2)
202      // FIXME: Should be ok if they addresses are identical. But earlier
203      // optimizations really should have eliminated one of the loads.
204      continue;
205    if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
206      Offsets.push_back(Offset1);
207    O2SMap.insert(std::make_pair(Offset2, User));
208    Offsets.push_back(Offset2);
209    if (Offset2 < Offset1)
210      Base = User;
211    Cluster = true;
212  }
213
214  if (!Cluster)
215    return;
216
217  // Sort them in increasing order.
218  std::sort(Offsets.begin(), Offsets.end());
219
220  // Check if the loads are close enough.
221  SmallVector<SDNode*, 4> Loads;
222  unsigned NumLoads = 0;
223  int64_t BaseOff = Offsets[0];
224  SDNode *BaseLoad = O2SMap[BaseOff];
225  Loads.push_back(BaseLoad);
226  for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
227    int64_t Offset = Offsets[i];
228    SDNode *Load = O2SMap[Offset];
229    if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
230      break; // Stop right here. Ignore loads that are further away.
231    Loads.push_back(Load);
232    ++NumLoads;
233  }
234
235  if (NumLoads == 0)
236    return;
237
238  // Cluster loads by adding MVT::Glue outputs and inputs. This also
239  // ensure they are scheduled in order of increasing addresses.
240  SDNode *Lead = Loads[0];
241  AddGlue(Lead, SDValue(0, 0), true, DAG);
242
243  SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1);
244  for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
245    bool OutGlue = I < E - 1;
246    SDNode *Load = Loads[I];
247
248    AddGlue(Load, InGlue, OutGlue, DAG);
249
250    if (OutGlue)
251      InGlue = SDValue(Load, Load->getNumValues() - 1);
252
253    ++LoadsClustered;
254  }
255}
256
257/// ClusterNodes - Cluster certain nodes which should be scheduled together.
258///
259void ScheduleDAGSDNodes::ClusterNodes() {
260  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
261       E = DAG->allnodes_end(); NI != E; ++NI) {
262    SDNode *Node = &*NI;
263    if (!Node || !Node->isMachineOpcode())
264      continue;
265
266    unsigned Opc = Node->getMachineOpcode();
267    const MCInstrDesc &MCID = TII->get(Opc);
268    if (MCID.mayLoad())
269      // Cluster loads from "near" addresses into combined SUnits.
270      ClusterNeighboringLoads(Node);
271  }
272}
273
274void ScheduleDAGSDNodes::BuildSchedUnits() {
275  // During scheduling, the NodeId field of SDNode is used to map SDNodes
276  // to their associated SUnits by holding SUnits table indices. A value
277  // of -1 means the SDNode does not yet have an associated SUnit.
278  unsigned NumNodes = 0;
279  for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(),
280       E = DAG->allnodes_end(); NI != E; ++NI) {
281    NI->setNodeId(-1);
282    ++NumNodes;
283  }
284
285  // Reserve entries in the vector for each of the SUnits we are creating.  This
286  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
287  // invalidated.
288  // FIXME: Multiply by 2 because we may clone nodes during scheduling.
289  // This is a temporary workaround.
290  SUnits.reserve(NumNodes * 2);
291
292  // Add all nodes in depth first order.
293  SmallVector<SDNode*, 64> Worklist;
294  SmallPtrSet<SDNode*, 64> Visited;
295  Worklist.push_back(DAG->getRoot().getNode());
296  Visited.insert(DAG->getRoot().getNode());
297
298  SmallVector<SUnit*, 8> CallSUnits;
299  while (!Worklist.empty()) {
300    SDNode *NI = Worklist.pop_back_val();
301
302    // Add all operands to the worklist unless they've already been added.
303    for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i)
304      if (Visited.insert(NI->getOperand(i).getNode()))
305        Worklist.push_back(NI->getOperand(i).getNode());
306
307    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
308      continue;
309
310    // If this node has already been processed, stop now.
311    if (NI->getNodeId() != -1) continue;
312
313    SUnit *NodeSUnit = NewSUnit(NI);
314
315    // See if anything is glued to this node, if so, add them to glued
316    // nodes.  Nodes can have at most one glue input and one glue output.  Glue
317    // is required to be the last operand and result of a node.
318
319    // Scan up to find glued preds.
320    SDNode *N = NI;
321    while (N->getNumOperands() &&
322           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
323      N = N->getOperand(N->getNumOperands()-1).getNode();
324      assert(N->getNodeId() == -1 && "Node already inserted!");
325      N->setNodeId(NodeSUnit->NodeNum);
326      if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
327        NodeSUnit->isCall = true;
328    }
329
330    // Scan down to find any glued succs.
331    N = NI;
332    while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
333      SDValue GlueVal(N, N->getNumValues()-1);
334
335      // There are either zero or one users of the Glue result.
336      bool HasGlueUse = false;
337      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
338           UI != E; ++UI)
339        if (GlueVal.isOperandOf(*UI)) {
340          HasGlueUse = true;
341          assert(N->getNodeId() == -1 && "Node already inserted!");
342          N->setNodeId(NodeSUnit->NodeNum);
343          N = *UI;
344          if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
345            NodeSUnit->isCall = true;
346          break;
347        }
348      if (!HasGlueUse) break;
349    }
350
351    if (NodeSUnit->isCall)
352      CallSUnits.push_back(NodeSUnit);
353
354    // Schedule zero-latency TokenFactor below any nodes that may increase the
355    // schedule height. Otherwise, ancestors of the TokenFactor may appear to
356    // have false stalls.
357    if (NI->getOpcode() == ISD::TokenFactor)
358      NodeSUnit->isScheduleLow = true;
359
360    // If there are glue operands involved, N is now the bottom-most node
361    // of the sequence of nodes that are glued together.
362    // Update the SUnit.
363    NodeSUnit->setNode(N);
364    assert(N->getNodeId() == -1 && "Node already inserted!");
365    N->setNodeId(NodeSUnit->NodeNum);
366
367    // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
368    InitNumRegDefsLeft(NodeSUnit);
369
370    // Assign the Latency field of NodeSUnit using target-provided information.
371    ComputeLatency(NodeSUnit);
372  }
373
374  // Find all call operands.
375  while (!CallSUnits.empty()) {
376    SUnit *SU = CallSUnits.pop_back_val();
377    for (const SDNode *SUNode = SU->getNode(); SUNode;
378         SUNode = SUNode->getGluedNode()) {
379      if (SUNode->getOpcode() != ISD::CopyToReg)
380        continue;
381      SDNode *SrcN = SUNode->getOperand(2).getNode();
382      if (isPassiveNode(SrcN)) continue;   // Not scheduled.
383      SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
384      SrcSU->isCallOp = true;
385    }
386  }
387}
388
389void ScheduleDAGSDNodes::AddSchedEdges() {
390  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
391
392  // Check to see if the scheduler cares about latencies.
393  bool UnitLatencies = ForceUnitLatencies();
394
395  // Pass 2: add the preds, succs, etc.
396  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
397    SUnit *SU = &SUnits[su];
398    SDNode *MainNode = SU->getNode();
399
400    if (MainNode->isMachineOpcode()) {
401      unsigned Opc = MainNode->getMachineOpcode();
402      const MCInstrDesc &MCID = TII->get(Opc);
403      for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
404        if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
405          SU->isTwoAddress = true;
406          break;
407        }
408      }
409      if (MCID.isCommutable())
410        SU->isCommutable = true;
411    }
412
413    // Find all predecessors and successors of the group.
414    for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
415      if (N->isMachineOpcode() &&
416          TII->get(N->getMachineOpcode()).getImplicitDefs()) {
417        SU->hasPhysRegClobbers = true;
418        unsigned NumUsed = InstrEmitter::CountResults(N);
419        while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
420          --NumUsed;    // Skip over unused values at the end.
421        if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
422          SU->hasPhysRegDefs = true;
423      }
424
425      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
426        SDNode *OpN = N->getOperand(i).getNode();
427        if (isPassiveNode(OpN)) continue;   // Not scheduled.
428        SUnit *OpSU = &SUnits[OpN->getNodeId()];
429        assert(OpSU && "Node has no SUnit!");
430        if (OpSU == SU) continue;           // In the same group.
431
432        EVT OpVT = N->getOperand(i).getValueType();
433        assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
434        bool isChain = OpVT == MVT::Other;
435
436        unsigned PhysReg = 0;
437        int Cost = 1;
438        // Determine if this is a physical register dependency.
439        CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
440        assert((PhysReg == 0 || !isChain) &&
441               "Chain dependence via physreg data?");
442        // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
443        // emits a copy from the physical register to a virtual register unless
444        // it requires a cross class copy (cost < 0). That means we are only
445        // treating "expensive to copy" register dependency as physical register
446        // dependency. This may change in the future though.
447        if (Cost >= 0 && !StressSched)
448          PhysReg = 0;
449
450        // If this is a ctrl dep, latency is 1.
451        unsigned OpLatency = isChain ? 1 : OpSU->Latency;
452        // Special-case TokenFactor chains as zero-latency.
453        if(isChain && OpN->getOpcode() == ISD::TokenFactor)
454          OpLatency = 0;
455
456        const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data,
457                               OpLatency, PhysReg);
458        if (!isChain && !UnitLatencies) {
459          ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep));
460          ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep));
461        }
462
463        if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
464          // Multiple register uses are combined in the same SUnit. For example,
465          // we could have a set of glued nodes with all their defs consumed by
466          // another set of glued nodes. Register pressure tracking sees this as
467          // a single use, so to keep pressure balanced we reduce the defs.
468          //
469          // We can't tell (without more book-keeping) if this results from
470          // glued nodes or duplicate operands. As long as we don't reduce
471          // NumRegDefsLeft to zero, we handle the common cases well.
472          --OpSU->NumRegDefsLeft;
473        }
474      }
475    }
476  }
477}
478
479/// BuildSchedGraph - Build the SUnit graph from the selection dag that we
480/// are input.  This SUnit graph is similar to the SelectionDAG, but
481/// excludes nodes that aren't interesting to scheduling, and represents
482/// glued together nodes with a single SUnit.
483void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
484  // Cluster certain nodes which should be scheduled together.
485  ClusterNodes();
486  // Populate the SUnits array.
487  BuildSchedUnits();
488  // Compute all the scheduling dependencies between nodes.
489  AddSchedEdges();
490}
491
492// Initialize NumNodeDefs for the current Node's opcode.
493void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
494  // Check for phys reg copy.
495  if (!Node)
496    return;
497
498  if (!Node->isMachineOpcode()) {
499    if (Node->getOpcode() == ISD::CopyFromReg)
500      NodeNumDefs = 1;
501    else
502      NodeNumDefs = 0;
503    return;
504  }
505  unsigned POpc = Node->getMachineOpcode();
506  if (POpc == TargetOpcode::IMPLICIT_DEF) {
507    // No register need be allocated for this.
508    NodeNumDefs = 0;
509    return;
510  }
511  unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
512  // Some instructions define regs that are not represented in the selection DAG
513  // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
514  NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
515  DefIdx = 0;
516}
517
518// Construct a RegDefIter for this SUnit and find the first valid value.
519ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
520                                           const ScheduleDAGSDNodes *SD)
521  : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
522  InitNodeNumDefs();
523  Advance();
524}
525
526// Advance to the next valid value defined by the SUnit.
527void ScheduleDAGSDNodes::RegDefIter::Advance() {
528  for (;Node;) { // Visit all glued nodes.
529    for (;DefIdx < NodeNumDefs; ++DefIdx) {
530      if (!Node->hasAnyUseOfValue(DefIdx))
531        continue;
532      ValueType = Node->getValueType(DefIdx);
533      ++DefIdx;
534      return; // Found a normal regdef.
535    }
536    Node = Node->getGluedNode();
537    if (Node == NULL) {
538      return; // No values left to visit.
539    }
540    InitNodeNumDefs();
541  }
542}
543
544void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
545  assert(SU->NumRegDefsLeft == 0 && "expect a new node");
546  for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
547    assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
548    ++SU->NumRegDefsLeft;
549  }
550}
551
552void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) {
553  SDNode *N = SU->getNode();
554
555  // TokenFactor operands are considered zero latency, and some schedulers
556  // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
557  // whenever node latency is nonzero.
558  if (N && N->getOpcode() == ISD::TokenFactor) {
559    SU->Latency = 0;
560    return;
561  }
562
563  // Check to see if the scheduler cares about latencies.
564  if (ForceUnitLatencies()) {
565    SU->Latency = 1;
566    return;
567  }
568
569  if (!InstrItins || InstrItins->isEmpty()) {
570    if (N && N->isMachineOpcode() &&
571        TII->isHighLatencyDef(N->getMachineOpcode()))
572      SU->Latency = HighLatencyCycles;
573    else
574      SU->Latency = 1;
575    return;
576  }
577
578  // Compute the latency for the node.  We use the sum of the latencies for
579  // all nodes glued together into this SUnit.
580  SU->Latency = 0;
581  for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
582    if (N->isMachineOpcode())
583      SU->Latency += TII->getInstrLatency(InstrItins, N);
584}
585
586void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use,
587                                               unsigned OpIdx, SDep& dep) const{
588  // Check to see if the scheduler cares about latencies.
589  if (ForceUnitLatencies())
590    return;
591
592  if (dep.getKind() != SDep::Data)
593    return;
594
595  unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
596  if (Use->isMachineOpcode())
597    // Adjust the use operand index by num of defs.
598    OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
599  int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
600  if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
601      !BB->succ_empty()) {
602    unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
603    if (TargetRegisterInfo::isVirtualRegister(Reg))
604      // This copy is a liveout value. It is likely coalesced, so reduce the
605      // latency so not to penalize the def.
606      // FIXME: need target specific adjustment here?
607      Latency = (Latency > 1) ? Latency - 1 : 1;
608  }
609  if (Latency >= 0)
610    dep.setLatency(Latency);
611}
612
613void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
614  if (!SU->getNode()) {
615    dbgs() << "PHYS REG COPY\n";
616    return;
617  }
618
619  SU->getNode()->dump(DAG);
620  dbgs() << "\n";
621  SmallVector<SDNode *, 4> GluedNodes;
622  for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
623    GluedNodes.push_back(N);
624  while (!GluedNodes.empty()) {
625    dbgs() << "    ";
626    GluedNodes.back()->dump(DAG);
627    dbgs() << "\n";
628    GluedNodes.pop_back();
629  }
630}
631
632void ScheduleDAGSDNodes::dumpSchedule() const {
633  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
634    if (SUnit *SU = Sequence[i])
635      SU->dump(this);
636    else
637      dbgs() << "**** NOOP ****\n";
638  }
639}
640
641#ifndef NDEBUG
642/// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
643/// their state is consistent with the nodes listed in Sequence.
644///
645void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
646  unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
647  unsigned Noops = 0;
648  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
649    if (!Sequence[i])
650      ++Noops;
651  assert(Sequence.size() - Noops == ScheduledNodes &&
652         "The number of nodes scheduled doesn't match the expected number!");
653}
654#endif // NDEBUG
655
656namespace {
657  struct OrderSorter {
658    bool operator()(const std::pair<unsigned, MachineInstr*> &A,
659                    const std::pair<unsigned, MachineInstr*> &B) {
660      return A.first < B.first;
661    }
662  };
663}
664
665/// ProcessSDDbgValues - Process SDDbgValues associated with this node.
666static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG,
667                               InstrEmitter &Emitter,
668                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
669                            DenseMap<SDValue, unsigned> &VRBaseMap,
670                            unsigned Order) {
671  if (!N->getHasDebugValue())
672    return;
673
674  // Opportunistically insert immediate dbg_value uses, i.e. those with source
675  // order number right after the N.
676  MachineBasicBlock *BB = Emitter.getBlock();
677  MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
678  ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N);
679  for (unsigned i = 0, e = DVs.size(); i != e; ++i) {
680    if (DVs[i]->isInvalidated())
681      continue;
682    unsigned DVOrder = DVs[i]->getOrder();
683    if (!Order || DVOrder == ++Order) {
684      MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap);
685      if (DbgMI) {
686        Orders.push_back(std::make_pair(DVOrder, DbgMI));
687        BB->insert(InsertPos, DbgMI);
688      }
689      DVs[i]->setIsInvalidated();
690    }
691  }
692}
693
694// ProcessSourceNode - Process nodes with source order numbers. These are added
695// to a vector which EmitSchedule uses to determine how to insert dbg_value
696// instructions in the right order.
697static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
698                           InstrEmitter &Emitter,
699                           DenseMap<SDValue, unsigned> &VRBaseMap,
700                    SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders,
701                           SmallSet<unsigned, 8> &Seen) {
702  unsigned Order = DAG->GetOrdering(N);
703  if (!Order || !Seen.insert(Order)) {
704    // Process any valid SDDbgValues even if node does not have any order
705    // assigned.
706    ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
707    return;
708  }
709
710  MachineBasicBlock *BB = Emitter.getBlock();
711  if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
712    // Did not insert any instruction.
713    Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
714    return;
715  }
716
717  Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
718  ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
719}
720
721void ScheduleDAGSDNodes::
722EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
723                MachineBasicBlock::iterator InsertPos) {
724  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
725       I != E; ++I) {
726    if (I->isCtrl()) continue;  // ignore chain preds
727    if (I->getSUnit()->CopyDstRC) {
728      // Copy to physical register.
729      DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
730      assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
731      // Find the destination physical register.
732      unsigned Reg = 0;
733      for (SUnit::const_succ_iterator II = SU->Succs.begin(),
734             EE = SU->Succs.end(); II != EE; ++II) {
735        if (II->isCtrl()) continue;  // ignore chain preds
736        if (II->getReg()) {
737          Reg = II->getReg();
738          break;
739        }
740      }
741      BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
742        .addReg(VRI->second);
743    } else {
744      // Copy from physical register.
745      assert(I->getReg() && "Unknown physical register!");
746      unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
747      bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
748      (void)isNew; // Silence compiler warning.
749      assert(isNew && "Node emitted out of order - early");
750      BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
751        .addReg(I->getReg());
752    }
753    break;
754  }
755}
756
757/// EmitSchedule - Emit the machine code in scheduled order. Return the new
758/// InsertPos and MachineBasicBlock that contains this insertion
759/// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
760/// not necessarily refer to returned BB. The emitter may split blocks.
761MachineBasicBlock *ScheduleDAGSDNodes::
762EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
763  InstrEmitter Emitter(BB, InsertPos);
764  DenseMap<SDValue, unsigned> VRBaseMap;
765  DenseMap<SUnit*, unsigned> CopyVRBaseMap;
766  SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
767  SmallSet<unsigned, 8> Seen;
768  bool HasDbg = DAG->hasDebugValues();
769
770  // If this is the first BB, emit byval parameter dbg_value's.
771  if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
772    SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
773    SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
774    for (; PDI != PDE; ++PDI) {
775      MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
776      if (DbgMI)
777        BB->insert(InsertPos, DbgMI);
778    }
779  }
780
781  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
782    SUnit *SU = Sequence[i];
783    if (!SU) {
784      // Null SUnit* is a noop.
785      TII->insertNoop(*Emitter.getBlock(), InsertPos);
786      continue;
787    }
788
789    // For pre-regalloc scheduling, create instructions corresponding to the
790    // SDNode and any glued SDNodes and append them to the block.
791    if (!SU->getNode()) {
792      // Emit a copy.
793      EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
794      continue;
795    }
796
797    SmallVector<SDNode *, 4> GluedNodes;
798    for (SDNode *N = SU->getNode()->getGluedNode(); N;
799         N = N->getGluedNode())
800      GluedNodes.push_back(N);
801    while (!GluedNodes.empty()) {
802      SDNode *N = GluedNodes.back();
803      Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned,
804                       VRBaseMap);
805      // Remember the source order of the inserted instruction.
806      if (HasDbg)
807        ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
808      GluedNodes.pop_back();
809    }
810    Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
811                     VRBaseMap);
812    // Remember the source order of the inserted instruction.
813    if (HasDbg)
814      ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
815                        Seen);
816  }
817
818  // Insert all the dbg_values which have not already been inserted in source
819  // order sequence.
820  if (HasDbg) {
821    MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
822
823    // Sort the source order instructions and use the order to insert debug
824    // values.
825    std::sort(Orders.begin(), Orders.end(), OrderSorter());
826
827    SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
828    SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
829    // Now emit the rest according to source order.
830    unsigned LastOrder = 0;
831    for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
832      unsigned Order = Orders[i].first;
833      MachineInstr *MI = Orders[i].second;
834      // Insert all SDDbgValue's whose order(s) are before "Order".
835      if (!MI)
836        continue;
837      for (; DI != DE &&
838             (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) {
839        if ((*DI)->isInvalidated())
840          continue;
841        MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
842        if (DbgMI) {
843          if (!LastOrder)
844            // Insert to start of the BB (after PHIs).
845            BB->insert(BBBegin, DbgMI);
846          else {
847            // Insert at the instruction, which may be in a different
848            // block, if the block was split by a custom inserter.
849            MachineBasicBlock::iterator Pos = MI;
850            MI->getParent()->insert(llvm::next(Pos), DbgMI);
851          }
852        }
853      }
854      LastOrder = Order;
855    }
856    // Add trailing DbgValue's before the terminator. FIXME: May want to add
857    // some of them before one or more conditional branches?
858    while (DI != DE) {
859      MachineBasicBlock *InsertBB = Emitter.getBlock();
860      MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator();
861      if (!(*DI)->isInvalidated()) {
862        MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap);
863        if (DbgMI)
864          InsertBB->insert(Pos, DbgMI);
865      }
866      ++DI;
867    }
868  }
869
870  InsertPos = Emitter.getInsertPos();
871  return Emitter.getBlock();
872}
873
874/// Return the basic block label.
875std::string ScheduleDAGSDNodes::getDAGName() const {
876  return "sunit-dag." + BB->getFullName();
877}
878