SelectionDAGISel.cpp revision 4b993b19f9837fdf2db55a3e042e8adab3d63c26
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/SSARegMap.h"
36#include "llvm/Target/MRegisterInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/Compiler.h"
46#include <algorithm>
47using namespace llvm;
48
49#ifndef NDEBUG
50static cl::opt<bool>
51ViewISelDAGs("view-isel-dags", cl::Hidden,
52          cl::desc("Pop up a window to show isel dags as they are selected"));
53static cl::opt<bool>
54ViewSchedDAGs("view-sched-dags", cl::Hidden,
55          cl::desc("Pop up a window to show sched dags as they are processed"));
56#else
57static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
58#endif
59
60//===---------------------------------------------------------------------===//
61///
62/// RegisterScheduler class - Track the registration of instruction schedulers.
63///
64//===---------------------------------------------------------------------===//
65MachinePassRegistry RegisterScheduler::Registry;
66
67//===---------------------------------------------------------------------===//
68///
69/// ISHeuristic command line option for instruction schedulers.
70///
71//===---------------------------------------------------------------------===//
72namespace {
73  cl::opt<RegisterScheduler::FunctionPassCtor, false,
74          RegisterPassParser<RegisterScheduler> >
75  ISHeuristic("sched",
76              cl::init(&createDefaultScheduler),
77              cl::desc("Instruction schedulers available:"));
78
79  static RegisterScheduler
80  defaultListDAGScheduler("default", "  Best scheduler for the target",
81                          createDefaultScheduler);
82} // namespace
83
84namespace {
85  /// RegsForValue - This struct represents the physical registers that a
86  /// particular value is assigned and the type information about the value.
87  /// This is needed because values can be promoted into larger registers and
88  /// expanded into multiple smaller registers than the value.
89  struct VISIBILITY_HIDDEN RegsForValue {
90    /// Regs - This list hold the register (for legal and promoted values)
91    /// or register set (for expanded values) that the value should be assigned
92    /// to.
93    std::vector<unsigned> Regs;
94
95    /// RegVT - The value type of each register.
96    ///
97    MVT::ValueType RegVT;
98
99    /// ValueVT - The value type of the LLVM value, which may be promoted from
100    /// RegVT or made from merging the two expanded parts.
101    MVT::ValueType ValueVT;
102
103    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
104
105    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
106      : RegVT(regvt), ValueVT(valuevt) {
107        Regs.push_back(Reg);
108    }
109    RegsForValue(const std::vector<unsigned> &regs,
110                 MVT::ValueType regvt, MVT::ValueType valuevt)
111      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
112    }
113
114    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
115    /// this value and returns the result as a ValueVT value.  This uses
116    /// Chain/Flag as the input and updates them for the output Chain/Flag.
117    SDOperand getCopyFromRegs(SelectionDAG &DAG,
118                              SDOperand &Chain, SDOperand &Flag) const;
119
120    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
121    /// specified value into the registers specified by this object.  This uses
122    /// Chain/Flag as the input and updates them for the output Chain/Flag.
123    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
124                       SDOperand &Chain, SDOperand &Flag,
125                       MVT::ValueType PtrVT) const;
126
127    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
128    /// operand list.  This adds the code marker and includes the number of
129    /// values added into it.
130    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
131                              std::vector<SDOperand> &Ops) const;
132  };
133}
134
135namespace llvm {
136  //===--------------------------------------------------------------------===//
137  /// createDefaultScheduler - This creates an instruction scheduler appropriate
138  /// for the target.
139  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
140                                      SelectionDAG *DAG,
141                                      MachineBasicBlock *BB) {
142    TargetLowering &TLI = IS->getTargetLowering();
143
144    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
145      return createTDListDAGScheduler(IS, DAG, BB);
146    } else {
147      assert(TLI.getSchedulingPreference() ==
148           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
149      return createBURRListDAGScheduler(IS, DAG, BB);
150    }
151  }
152
153
154  //===--------------------------------------------------------------------===//
155  /// FunctionLoweringInfo - This contains information that is global to a
156  /// function that is used when lowering a region of the function.
157  class FunctionLoweringInfo {
158  public:
159    TargetLowering &TLI;
160    Function &Fn;
161    MachineFunction &MF;
162    SSARegMap *RegMap;
163
164    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
165
166    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
167    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
168
169    /// ValueMap - Since we emit code for the function a basic block at a time,
170    /// we must remember which virtual registers hold the values for
171    /// cross-basic-block values.
172    DenseMap<const Value*, unsigned> ValueMap;
173
174    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
175    /// the entry block.  This allows the allocas to be efficiently referenced
176    /// anywhere in the function.
177    std::map<const AllocaInst*, int> StaticAllocaMap;
178
179    unsigned MakeReg(MVT::ValueType VT) {
180      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
181    }
182
183    /// isExportedInst - Return true if the specified value is an instruction
184    /// exported from its block.
185    bool isExportedInst(const Value *V) {
186      return ValueMap.count(V);
187    }
188
189    unsigned CreateRegForValue(const Value *V);
190
191    unsigned InitializeRegForValue(const Value *V) {
192      unsigned &R = ValueMap[V];
193      assert(R == 0 && "Already initialized this value register!");
194      return R = CreateRegForValue(V);
195    }
196  };
197}
198
199/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
200/// PHI nodes or outside of the basic block that defines it, or used by a
201/// switch instruction, which may expand to multiple basic blocks.
202static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
203  if (isa<PHINode>(I)) return true;
204  BasicBlock *BB = I->getParent();
205  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
206    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
207        // FIXME: Remove switchinst special case.
208        isa<SwitchInst>(*UI))
209      return true;
210  return false;
211}
212
213/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
214/// entry block, return true.  This includes arguments used by switches, since
215/// the switch may expand into multiple basic blocks.
216static bool isOnlyUsedInEntryBlock(Argument *A) {
217  BasicBlock *Entry = A->getParent()->begin();
218  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
219    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
220      return false;  // Use not in entry block.
221  return true;
222}
223
224FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
225                                           Function &fn, MachineFunction &mf)
226    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
227
228  // Create a vreg for each argument register that is not dead and is used
229  // outside of the entry block for the function.
230  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
231       AI != E; ++AI)
232    if (!isOnlyUsedInEntryBlock(AI))
233      InitializeRegForValue(AI);
234
235  // Initialize the mapping of values to registers.  This is only set up for
236  // instruction values that are used outside of the block that defines
237  // them.
238  Function::iterator BB = Fn.begin(), EB = Fn.end();
239  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
240    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
241      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
242        const Type *Ty = AI->getAllocatedType();
243        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
244        unsigned Align =
245          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
246                   AI->getAlignment());
247
248        TySize *= CUI->getZExtValue();   // Get total allocated size.
249        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
250        StaticAllocaMap[AI] =
251          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
252      }
253
254  for (; BB != EB; ++BB)
255    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
256      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
257        if (!isa<AllocaInst>(I) ||
258            !StaticAllocaMap.count(cast<AllocaInst>(I)))
259          InitializeRegForValue(I);
260
261  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
262  // also creates the initial PHI MachineInstrs, though none of the input
263  // operands are populated.
264  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
265    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
266    MBBMap[BB] = MBB;
267    MF.getBasicBlockList().push_back(MBB);
268
269    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
270    // appropriate.
271    PHINode *PN;
272    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
273      if (PN->use_empty()) continue;
274
275      MVT::ValueType VT = TLI.getValueType(PN->getType());
276      unsigned NumElements;
277      if (VT != MVT::Vector)
278        NumElements = TLI.getNumElements(VT);
279      else {
280        MVT::ValueType VT1,VT2;
281        NumElements =
282          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
283                                     VT1, VT2);
284      }
285      unsigned PHIReg = ValueMap[PN];
286      assert(PHIReg && "PHI node does not have an assigned virtual register!");
287      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
288      for (unsigned i = 0; i != NumElements; ++i)
289        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
290    }
291  }
292}
293
294/// CreateRegForValue - Allocate the appropriate number of virtual registers of
295/// the correctly promoted or expanded types.  Assign these registers
296/// consecutive vreg numbers and return the first assigned number.
297unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
298  MVT::ValueType VT = TLI.getValueType(V->getType());
299
300  // The number of multiples of registers that we need, to, e.g., split up
301  // a <2 x int64> -> 4 x i32 registers.
302  unsigned NumVectorRegs = 1;
303
304  // If this is a vector type, figure out what type it will decompose into
305  // and how many of the elements it will use.
306  if (VT == MVT::Vector) {
307    const VectorType *PTy = cast<VectorType>(V->getType());
308    unsigned NumElts = PTy->getNumElements();
309    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
310
311    // Divide the input until we get to a supported size.  This will always
312    // end with a scalar if the target doesn't support vectors.
313    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
314      NumElts >>= 1;
315      NumVectorRegs <<= 1;
316    }
317    if (NumElts == 1)
318      VT = EltTy;
319    else
320      VT = getVectorType(EltTy, NumElts);
321  }
322
323  // The common case is that we will only create one register for this
324  // value.  If we have that case, create and return the virtual register.
325  unsigned NV = TLI.getNumElements(VT);
326  if (NV == 1) {
327    // If we are promoting this value, pick the next largest supported type.
328    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
329    unsigned Reg = MakeReg(PromotedType);
330    // If this is a vector of supported or promoted types (e.g. 4 x i16),
331    // create all of the registers.
332    for (unsigned i = 1; i != NumVectorRegs; ++i)
333      MakeReg(PromotedType);
334    return Reg;
335  }
336
337  // If this value is represented with multiple target registers, make sure
338  // to create enough consecutive registers of the right (smaller) type.
339  VT = TLI.getTypeToExpandTo(VT);
340  unsigned R = MakeReg(VT);
341  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
342    MakeReg(VT);
343  return R;
344}
345
346//===----------------------------------------------------------------------===//
347/// SelectionDAGLowering - This is the common target-independent lowering
348/// implementation that is parameterized by a TargetLowering object.
349/// Also, targets can overload any lowering method.
350///
351namespace llvm {
352class SelectionDAGLowering {
353  MachineBasicBlock *CurMBB;
354
355  DenseMap<const Value*, SDOperand> NodeMap;
356
357  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
358  /// them up and then emit token factor nodes when possible.  This allows us to
359  /// get simple disambiguation between loads without worrying about alias
360  /// analysis.
361  std::vector<SDOperand> PendingLoads;
362
363  /// Case - A struct to record the Value for a switch case, and the
364  /// case's target basic block.
365  struct Case {
366    Constant* Low;
367    Constant* High;
368    MachineBasicBlock* BB;
369
370    Case() : Low(0), High(0), BB(0) { }
371    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
372      Low(low), High(high), BB(bb) { }
373    uint64_t size() const {
374      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
375      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
376      return (rHigh - rLow + 1ULL);
377    }
378  };
379
380  typedef std::vector<Case>           CaseVector;
381  typedef CaseVector::iterator        CaseItr;
382  typedef std::pair<CaseItr, CaseItr> CaseRange;
383
384  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
385  /// of conditional branches.
386  struct CaseRec {
387    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
388    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
389
390    /// CaseBB - The MBB in which to emit the compare and branch
391    MachineBasicBlock *CaseBB;
392    /// LT, GE - If nonzero, we know the current case value must be less-than or
393    /// greater-than-or-equal-to these Constants.
394    Constant *LT;
395    Constant *GE;
396    /// Range - A pair of iterators representing the range of case values to be
397    /// processed at this point in the binary search tree.
398    CaseRange Range;
399  };
400
401  typedef std::vector<CaseRec> CaseRecVector;
402
403  /// The comparison function for sorting the switch case values in the vector.
404  /// WARNING: Case ranges should be disjoint!
405  struct CaseCmp {
406    bool operator () (const Case& C1,
407                      const Case& C2) {
408
409      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
410      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
411      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
412      return CI1->getValue().slt(CI2->getValue());
413    }
414  };
415
416  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
417
418public:
419  // TLI - This is information that describes the available target features we
420  // need for lowering.  This indicates when operations are unavailable,
421  // implemented with a libcall, etc.
422  TargetLowering &TLI;
423  SelectionDAG &DAG;
424  const TargetData *TD;
425
426  /// SwitchCases - Vector of CaseBlock structures used to communicate
427  /// SwitchInst code generation information.
428  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
429  /// JTCases - Vector of JumpTable structures used to communicate
430  /// SwitchInst code generation information.
431  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
432
433  /// FuncInfo - Information about the function as a whole.
434  ///
435  FunctionLoweringInfo &FuncInfo;
436
437  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
438                       FunctionLoweringInfo &funcinfo)
439    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
440      FuncInfo(funcinfo) {
441  }
442
443  /// getRoot - Return the current virtual root of the Selection DAG.
444  ///
445  SDOperand getRoot() {
446    if (PendingLoads.empty())
447      return DAG.getRoot();
448
449    if (PendingLoads.size() == 1) {
450      SDOperand Root = PendingLoads[0];
451      DAG.setRoot(Root);
452      PendingLoads.clear();
453      return Root;
454    }
455
456    // Otherwise, we have to make a token factor node.
457    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
458                                 &PendingLoads[0], PendingLoads.size());
459    PendingLoads.clear();
460    DAG.setRoot(Root);
461    return Root;
462  }
463
464  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
465
466  void visit(Instruction &I) { visit(I.getOpcode(), I); }
467
468  void visit(unsigned Opcode, User &I) {
469    // Note: this doesn't use InstVisitor, because it has to work with
470    // ConstantExpr's in addition to instructions.
471    switch (Opcode) {
472    default: assert(0 && "Unknown instruction type encountered!");
473             abort();
474      // Build the switch statement using the Instruction.def file.
475#define HANDLE_INST(NUM, OPCODE, CLASS) \
476    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
477#include "llvm/Instruction.def"
478    }
479  }
480
481  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
482
483  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
484                        const Value *SV, SDOperand Root,
485                        bool isVolatile);
486
487  SDOperand getIntPtrConstant(uint64_t Val) {
488    return DAG.getConstant(Val, TLI.getPointerTy());
489  }
490
491  SDOperand getValue(const Value *V);
492
493  void setValue(const Value *V, SDOperand NewN) {
494    SDOperand &N = NodeMap[V];
495    assert(N.Val == 0 && "Already set a value for this node!");
496    N = NewN;
497  }
498
499  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
500                                    MVT::ValueType VT,
501                                    bool OutReg, bool InReg,
502                                    std::set<unsigned> &OutputRegs,
503                                    std::set<unsigned> &InputRegs);
504
505  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
506                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
507                            unsigned Opc);
508  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
509  void ExportFromCurrentBlock(Value *V);
510  void LowerCallTo(Instruction &I,
511                   const Type *CalledValueTy, unsigned CallingConv,
512                   bool IsTailCall, SDOperand Callee, unsigned OpIdx);
513
514  // Terminator instructions.
515  void visitRet(ReturnInst &I);
516  void visitBr(BranchInst &I);
517  void visitSwitch(SwitchInst &I);
518  void visitUnreachable(UnreachableInst &I) { /* noop */ }
519
520  // Helpers for visitSwitch
521  bool handleSmallSwitchRange(CaseRec& CR,
522                              CaseRecVector& WorkList,
523                              Value* SV,
524                              MachineBasicBlock* Default);
525  bool handleJTSwitchCase(CaseRec& CR,
526                          CaseRecVector& WorkList,
527                          Value* SV,
528                          MachineBasicBlock* Default);
529  bool handleBTSplitSwitchCase(CaseRec& CR,
530                               CaseRecVector& WorkList,
531                               Value* SV,
532                               MachineBasicBlock* Default);
533  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
534  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
535  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
536                            SelectionDAGISel::JumpTableHeader &JTH);
537
538  // These all get lowered before this pass.
539  void visitInvoke(InvokeInst &I);
540  void visitInvoke(InvokeInst &I, bool AsTerminator);
541  void visitUnwind(UnwindInst &I);
542
543  void visitScalarBinary(User &I, unsigned OpCode);
544  void visitVectorBinary(User &I, unsigned OpCode);
545  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
546  void visitShift(User &I, unsigned Opcode);
547  void visitAdd(User &I) {
548    if (isa<VectorType>(I.getType()))
549      visitVectorBinary(I, ISD::VADD);
550    else if (I.getType()->isFloatingPoint())
551      visitScalarBinary(I, ISD::FADD);
552    else
553      visitScalarBinary(I, ISD::ADD);
554  }
555  void visitSub(User &I);
556  void visitMul(User &I) {
557    if (isa<VectorType>(I.getType()))
558      visitVectorBinary(I, ISD::VMUL);
559    else if (I.getType()->isFloatingPoint())
560      visitScalarBinary(I, ISD::FMUL);
561    else
562      visitScalarBinary(I, ISD::MUL);
563  }
564  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
565  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
566  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
567  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
568  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
569  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
570  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
571  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
572  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
573  void visitShl (User &I) { visitShift(I, ISD::SHL); }
574  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
575  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
576  void visitICmp(User &I);
577  void visitFCmp(User &I);
578  // Visit the conversion instructions
579  void visitTrunc(User &I);
580  void visitZExt(User &I);
581  void visitSExt(User &I);
582  void visitFPTrunc(User &I);
583  void visitFPExt(User &I);
584  void visitFPToUI(User &I);
585  void visitFPToSI(User &I);
586  void visitUIToFP(User &I);
587  void visitSIToFP(User &I);
588  void visitPtrToInt(User &I);
589  void visitIntToPtr(User &I);
590  void visitBitCast(User &I);
591
592  void visitExtractElement(User &I);
593  void visitInsertElement(User &I);
594  void visitShuffleVector(User &I);
595
596  void visitGetElementPtr(User &I);
597  void visitSelect(User &I);
598
599  void visitMalloc(MallocInst &I);
600  void visitFree(FreeInst &I);
601  void visitAlloca(AllocaInst &I);
602  void visitLoad(LoadInst &I);
603  void visitStore(StoreInst &I);
604  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
605  void visitCall(CallInst &I);
606  void visitInlineAsm(CallInst &I);
607  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
608  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
609
610  void visitVAStart(CallInst &I);
611  void visitVAArg(VAArgInst &I);
612  void visitVAEnd(CallInst &I);
613  void visitVACopy(CallInst &I);
614
615  void visitMemIntrinsic(CallInst &I, unsigned Op);
616
617  void visitUserOp1(Instruction &I) {
618    assert(0 && "UserOp1 should not exist at instruction selection time!");
619    abort();
620  }
621  void visitUserOp2(Instruction &I) {
622    assert(0 && "UserOp2 should not exist at instruction selection time!");
623    abort();
624  }
625};
626} // end namespace llvm
627
628SDOperand SelectionDAGLowering::getValue(const Value *V) {
629  SDOperand &N = NodeMap[V];
630  if (N.Val) return N;
631
632  const Type *VTy = V->getType();
633  MVT::ValueType VT = TLI.getValueType(VTy);
634  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
635    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
636      visit(CE->getOpcode(), *CE);
637      SDOperand N1 = NodeMap[V];
638      assert(N1.Val && "visit didn't populate the ValueMap!");
639      return N1;
640    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
641      return N = DAG.getGlobalAddress(GV, VT);
642    } else if (isa<ConstantPointerNull>(C)) {
643      return N = DAG.getConstant(0, TLI.getPointerTy());
644    } else if (isa<UndefValue>(C)) {
645      if (!isa<VectorType>(VTy))
646        return N = DAG.getNode(ISD::UNDEF, VT);
647
648      // Create a VBUILD_VECTOR of undef nodes.
649      const VectorType *PTy = cast<VectorType>(VTy);
650      unsigned NumElements = PTy->getNumElements();
651      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
652
653      SmallVector<SDOperand, 8> Ops;
654      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
655
656      // Create a VConstant node with generic Vector type.
657      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
658      Ops.push_back(DAG.getValueType(PVT));
659      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
660                             &Ops[0], Ops.size());
661    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
662      return N = DAG.getConstantFP(CFP->getValue(), VT);
663    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
664      unsigned NumElements = PTy->getNumElements();
665      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
666
667      // Now that we know the number and type of the elements, push a
668      // Constant or ConstantFP node onto the ops list for each element of
669      // the packed constant.
670      SmallVector<SDOperand, 8> Ops;
671      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
672        for (unsigned i = 0; i != NumElements; ++i)
673          Ops.push_back(getValue(CP->getOperand(i)));
674      } else {
675        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
676        SDOperand Op;
677        if (MVT::isFloatingPoint(PVT))
678          Op = DAG.getConstantFP(0, PVT);
679        else
680          Op = DAG.getConstant(0, PVT);
681        Ops.assign(NumElements, Op);
682      }
683
684      // Create a VBUILD_VECTOR node with generic Vector type.
685      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
686      Ops.push_back(DAG.getValueType(PVT));
687      return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
688                                      Ops.size());
689    } else {
690      // Canonicalize all constant ints to be unsigned.
691      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
692    }
693  }
694
695  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
696    std::map<const AllocaInst*, int>::iterator SI =
697    FuncInfo.StaticAllocaMap.find(AI);
698    if (SI != FuncInfo.StaticAllocaMap.end())
699      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
700  }
701
702  unsigned InReg = FuncInfo.ValueMap[V];
703  assert(InReg && "Value not in map!");
704
705  // If this type is not legal, make it so now.
706  if (VT != MVT::Vector) {
707    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
708      // Source must be expanded.  This input value is actually coming from the
709      // register pair InReg and InReg+1.
710      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
711      unsigned NumVals = TLI.getNumElements(VT);
712      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
713      if (NumVals == 1)
714        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
715      else {
716        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
717        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
718                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
719      }
720    } else {
721      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
722      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
723      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
724        N = MVT::isFloatingPoint(VT)
725          ? DAG.getNode(ISD::FP_ROUND, VT, N)
726          : DAG.getNode(ISD::TRUNCATE, VT, N);
727    }
728  } else {
729    // Otherwise, if this is a vector, make it available as a generic vector
730    // here.
731    MVT::ValueType PTyElementVT, PTyLegalElementVT;
732    const VectorType *PTy = cast<VectorType>(VTy);
733    unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
734                                             PTyLegalElementVT);
735
736    // Build a VBUILD_VECTOR with the input registers.
737    SmallVector<SDOperand, 8> Ops;
738    if (PTyElementVT == PTyLegalElementVT) {
739      // If the value types are legal, just VBUILD the CopyFromReg nodes.
740      for (unsigned i = 0; i != NE; ++i)
741        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
742                                         PTyElementVT));
743    } else if (PTyElementVT < PTyLegalElementVT) {
744      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
745      for (unsigned i = 0; i != NE; ++i) {
746        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
747                                          PTyElementVT);
748        if (MVT::isFloatingPoint(PTyElementVT))
749          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
750        else
751          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
752        Ops.push_back(Op);
753      }
754    } else {
755      // If the register was expanded, use BUILD_PAIR.
756      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
757      for (unsigned i = 0; i != NE/2; ++i) {
758        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
759                                           PTyElementVT);
760        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
761                                           PTyElementVT);
762        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
763      }
764    }
765
766    Ops.push_back(DAG.getConstant(NE, MVT::i32));
767    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
768    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
769
770    // Finally, use a VBIT_CONVERT to make this available as the appropriate
771    // vector type.
772    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
773                    DAG.getConstant(PTy->getNumElements(),
774                                    MVT::i32),
775                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
776  }
777
778  return N;
779}
780
781
782void SelectionDAGLowering::visitRet(ReturnInst &I) {
783  if (I.getNumOperands() == 0) {
784    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
785    return;
786  }
787  SmallVector<SDOperand, 8> NewValues;
788  NewValues.push_back(getRoot());
789  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
790    SDOperand RetOp = getValue(I.getOperand(i));
791
792    // If this is an integer return value, we need to promote it ourselves to
793    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
794    // than sign/zero.
795    // FIXME: C calling convention requires the return type to be promoted to
796    // at least 32-bit. But this is not necessary for non-C calling conventions.
797    if (MVT::isInteger(RetOp.getValueType()) &&
798        RetOp.getValueType() < MVT::i64) {
799      MVT::ValueType TmpVT;
800      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
801        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
802      else
803        TmpVT = MVT::i32;
804      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
805      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
806      if (FTy->paramHasAttr(0, FunctionType::SExtAttribute))
807        ExtendKind = ISD::SIGN_EXTEND;
808      if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute))
809        ExtendKind = ISD::ZERO_EXTEND;
810      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
811    }
812    NewValues.push_back(RetOp);
813    NewValues.push_back(DAG.getConstant(false, MVT::i32));
814  }
815  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
816                          &NewValues[0], NewValues.size()));
817}
818
819/// ExportFromCurrentBlock - If this condition isn't known to be exported from
820/// the current basic block, add it to ValueMap now so that we'll get a
821/// CopyTo/FromReg.
822void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
823  // No need to export constants.
824  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
825
826  // Already exported?
827  if (FuncInfo.isExportedInst(V)) return;
828
829  unsigned Reg = FuncInfo.InitializeRegForValue(V);
830  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
831}
832
833bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
834                                                    const BasicBlock *FromBB) {
835  // The operands of the setcc have to be in this block.  We don't know
836  // how to export them from some other block.
837  if (Instruction *VI = dyn_cast<Instruction>(V)) {
838    // Can export from current BB.
839    if (VI->getParent() == FromBB)
840      return true;
841
842    // Is already exported, noop.
843    return FuncInfo.isExportedInst(V);
844  }
845
846  // If this is an argument, we can export it if the BB is the entry block or
847  // if it is already exported.
848  if (isa<Argument>(V)) {
849    if (FromBB == &FromBB->getParent()->getEntryBlock())
850      return true;
851
852    // Otherwise, can only export this if it is already exported.
853    return FuncInfo.isExportedInst(V);
854  }
855
856  // Otherwise, constants can always be exported.
857  return true;
858}
859
860static bool InBlock(const Value *V, const BasicBlock *BB) {
861  if (const Instruction *I = dyn_cast<Instruction>(V))
862    return I->getParent() == BB;
863  return true;
864}
865
866/// FindMergedConditions - If Cond is an expression like
867void SelectionDAGLowering::FindMergedConditions(Value *Cond,
868                                                MachineBasicBlock *TBB,
869                                                MachineBasicBlock *FBB,
870                                                MachineBasicBlock *CurBB,
871                                                unsigned Opc) {
872  // If this node is not part of the or/and tree, emit it as a branch.
873  Instruction *BOp = dyn_cast<Instruction>(Cond);
874
875  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
876      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
877      BOp->getParent() != CurBB->getBasicBlock() ||
878      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
879      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
880    const BasicBlock *BB = CurBB->getBasicBlock();
881
882    // If the leaf of the tree is a comparison, merge the condition into
883    // the caseblock.
884    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
885        // The operands of the cmp have to be in this block.  We don't know
886        // how to export them from some other block.  If this is the first block
887        // of the sequence, no exporting is needed.
888        (CurBB == CurMBB ||
889         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
890          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
891      BOp = cast<Instruction>(Cond);
892      ISD::CondCode Condition;
893      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
894        switch (IC->getPredicate()) {
895        default: assert(0 && "Unknown icmp predicate opcode!");
896        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
897        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
898        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
899        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
900        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
901        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
902        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
903        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
904        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
905        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
906        }
907      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
908        ISD::CondCode FPC, FOC;
909        switch (FC->getPredicate()) {
910        default: assert(0 && "Unknown fcmp predicate opcode!");
911        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
912        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
913        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
914        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
915        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
916        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
917        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
918        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
919        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
920        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
921        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
922        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
923        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
924        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
925        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
926        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
927        }
928        if (FiniteOnlyFPMath())
929          Condition = FOC;
930        else
931          Condition = FPC;
932      } else {
933        Condition = ISD::SETEQ; // silence warning.
934        assert(0 && "Unknown compare instruction");
935      }
936
937      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
938                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
939      SwitchCases.push_back(CB);
940      return;
941    }
942
943    // Create a CaseBlock record representing this branch.
944    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
945                                   NULL, TBB, FBB, CurBB);
946    SwitchCases.push_back(CB);
947    return;
948  }
949
950
951  //  Create TmpBB after CurBB.
952  MachineFunction::iterator BBI = CurBB;
953  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
954  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
955
956  if (Opc == Instruction::Or) {
957    // Codegen X | Y as:
958    //   jmp_if_X TBB
959    //   jmp TmpBB
960    // TmpBB:
961    //   jmp_if_Y TBB
962    //   jmp FBB
963    //
964
965    // Emit the LHS condition.
966    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
967
968    // Emit the RHS condition into TmpBB.
969    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
970  } else {
971    assert(Opc == Instruction::And && "Unknown merge op!");
972    // Codegen X & Y as:
973    //   jmp_if_X TmpBB
974    //   jmp FBB
975    // TmpBB:
976    //   jmp_if_Y TBB
977    //   jmp FBB
978    //
979    //  This requires creation of TmpBB after CurBB.
980
981    // Emit the LHS condition.
982    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
983
984    // Emit the RHS condition into TmpBB.
985    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
986  }
987}
988
989/// If the set of cases should be emitted as a series of branches, return true.
990/// If we should emit this as a bunch of and/or'd together conditions, return
991/// false.
992static bool
993ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
994  if (Cases.size() != 2) return true;
995
996  // If this is two comparisons of the same values or'd or and'd together, they
997  // will get folded into a single comparison, so don't emit two blocks.
998  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
999       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1000      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1001       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1002    return false;
1003  }
1004
1005  return true;
1006}
1007
1008void SelectionDAGLowering::visitBr(BranchInst &I) {
1009  // Update machine-CFG edges.
1010  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1011
1012  // Figure out which block is immediately after the current one.
1013  MachineBasicBlock *NextBlock = 0;
1014  MachineFunction::iterator BBI = CurMBB;
1015  if (++BBI != CurMBB->getParent()->end())
1016    NextBlock = BBI;
1017
1018  if (I.isUnconditional()) {
1019    // If this is not a fall-through branch, emit the branch.
1020    if (Succ0MBB != NextBlock)
1021      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1022                              DAG.getBasicBlock(Succ0MBB)));
1023
1024    // Update machine-CFG edges.
1025    CurMBB->addSuccessor(Succ0MBB);
1026
1027    return;
1028  }
1029
1030  // If this condition is one of the special cases we handle, do special stuff
1031  // now.
1032  Value *CondVal = I.getCondition();
1033  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1034
1035  // If this is a series of conditions that are or'd or and'd together, emit
1036  // this as a sequence of branches instead of setcc's with and/or operations.
1037  // For example, instead of something like:
1038  //     cmp A, B
1039  //     C = seteq
1040  //     cmp D, E
1041  //     F = setle
1042  //     or C, F
1043  //     jnz foo
1044  // Emit:
1045  //     cmp A, B
1046  //     je foo
1047  //     cmp D, E
1048  //     jle foo
1049  //
1050  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1051    if (BOp->hasOneUse() &&
1052        (BOp->getOpcode() == Instruction::And ||
1053         BOp->getOpcode() == Instruction::Or)) {
1054      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1055      // If the compares in later blocks need to use values not currently
1056      // exported from this block, export them now.  This block should always
1057      // be the first entry.
1058      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1059
1060      // Allow some cases to be rejected.
1061      if (ShouldEmitAsBranches(SwitchCases)) {
1062        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1063          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1064          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1065        }
1066
1067        // Emit the branch for this block.
1068        visitSwitchCase(SwitchCases[0]);
1069        SwitchCases.erase(SwitchCases.begin());
1070        return;
1071      }
1072
1073      // Okay, we decided not to do this, remove any inserted MBB's and clear
1074      // SwitchCases.
1075      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1076        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1077
1078      SwitchCases.clear();
1079    }
1080  }
1081
1082  // Create a CaseBlock record representing this branch.
1083  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1084                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1085  // Use visitSwitchCase to actually insert the fast branch sequence for this
1086  // cond branch.
1087  visitSwitchCase(CB);
1088}
1089
1090/// visitSwitchCase - Emits the necessary code to represent a single node in
1091/// the binary search tree resulting from lowering a switch instruction.
1092void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1093  SDOperand Cond;
1094  SDOperand CondLHS = getValue(CB.CmpLHS);
1095
1096  // Build the setcc now.
1097  if (CB.CmpMHS == NULL) {
1098    // Fold "(X == true)" to X and "(X == false)" to !X to
1099    // handle common cases produced by branch lowering.
1100    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1101      Cond = CondLHS;
1102    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1103      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1104      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1105    } else
1106      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1107  } else {
1108    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1109
1110    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1111    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1112
1113    SDOperand CmpOp = getValue(CB.CmpMHS);
1114    MVT::ValueType VT = CmpOp.getValueType();
1115
1116    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1117      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1118    } else {
1119      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1120      Cond = DAG.getSetCC(MVT::i1, SUB,
1121                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1122    }
1123
1124  }
1125
1126  // Set NextBlock to be the MBB immediately after the current one, if any.
1127  // This is used to avoid emitting unnecessary branches to the next block.
1128  MachineBasicBlock *NextBlock = 0;
1129  MachineFunction::iterator BBI = CurMBB;
1130  if (++BBI != CurMBB->getParent()->end())
1131    NextBlock = BBI;
1132
1133  // If the lhs block is the next block, invert the condition so that we can
1134  // fall through to the lhs instead of the rhs block.
1135  if (CB.TrueBB == NextBlock) {
1136    std::swap(CB.TrueBB, CB.FalseBB);
1137    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1138    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1139  }
1140  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1141                                 DAG.getBasicBlock(CB.TrueBB));
1142  if (CB.FalseBB == NextBlock)
1143    DAG.setRoot(BrCond);
1144  else
1145    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1146                            DAG.getBasicBlock(CB.FalseBB)));
1147  // Update successor info
1148  CurMBB->addSuccessor(CB.TrueBB);
1149  CurMBB->addSuccessor(CB.FalseBB);
1150}
1151
1152/// visitJumpTable - Emit JumpTable node in the current MBB
1153void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1154  // Emit the code for the jump table
1155  assert(JT.Reg != -1UL && "Should lower JT Header first!");
1156  MVT::ValueType PTy = TLI.getPointerTy();
1157  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1158  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1159  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1160                          Table, Index));
1161  return;
1162}
1163
1164/// visitJumpTableHeader - This function emits necessary code to produce index
1165/// in the JumpTable from switch case.
1166void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1167                                         SelectionDAGISel::JumpTableHeader &JTH) {
1168  // Subtract the lowest switch case value from the value being switched on
1169  // and conditional branch to default mbb if the result is greater than the
1170  // difference between smallest and largest cases.
1171  SDOperand SwitchOp = getValue(JTH.SValue);
1172  MVT::ValueType VT = SwitchOp.getValueType();
1173  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1174                              DAG.getConstant(JTH.First, VT));
1175
1176  // The SDNode we just created, which holds the value being switched on
1177  // minus the the smallest case value, needs to be copied to a virtual
1178  // register so it can be used as an index into the jump table in a
1179  // subsequent basic block.  This value may be smaller or larger than the
1180  // target's pointer type, and therefore require extension or truncating.
1181  if (VT > TLI.getPointerTy())
1182    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1183  else
1184    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1185
1186  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1187  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1188  JT.Reg = JumpTableReg;
1189
1190  // Emit the range check for the jump table, and branch to the default
1191  // block for the switch statement if the value being switched on exceeds
1192  // the largest case in the switch.
1193  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1194                               DAG.getConstant(JTH.Last-JTH.First,VT),
1195                               ISD::SETUGT);
1196
1197  // Set NextBlock to be the MBB immediately after the current one, if any.
1198  // This is used to avoid emitting unnecessary branches to the next block.
1199  MachineBasicBlock *NextBlock = 0;
1200  MachineFunction::iterator BBI = CurMBB;
1201  if (++BBI != CurMBB->getParent()->end())
1202    NextBlock = BBI;
1203
1204  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1205                                 DAG.getBasicBlock(JT.Default));
1206
1207  if (JT.MBB == NextBlock)
1208    DAG.setRoot(BrCond);
1209  else
1210    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1211                            DAG.getBasicBlock(JT.MBB)));
1212}
1213
1214
1215void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1216  assert(0 && "Should never be visited directly");
1217}
1218void SelectionDAGLowering::visitInvoke(InvokeInst &I, bool AsTerminator) {
1219  // Retrieve successors.
1220  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1221  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1222
1223  if (!AsTerminator) {
1224    // Mark landing pad so that it doesn't get deleted in branch folding.
1225    LandingPad->setIsLandingPad();
1226
1227    // Insert a label before the invoke call to mark the try range.
1228    // This can be used to detect deletion of the invoke via the
1229    // MachineModuleInfo.
1230    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1231    unsigned BeginLabel = MMI->NextLabelID();
1232    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1233                            DAG.getConstant(BeginLabel, MVT::i32)));
1234
1235    LowerCallTo(I, I.getCalledValue()->getType(),
1236                   I.getCallingConv(),
1237                   false,
1238                   getValue(I.getOperand(0)),
1239                   3);
1240
1241    // Insert a label before the invoke call to mark the try range.
1242    // This can be used to detect deletion of the invoke via the
1243    // MachineModuleInfo.
1244    unsigned EndLabel = MMI->NextLabelID();
1245    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1246                            DAG.getConstant(EndLabel, MVT::i32)));
1247
1248    // Inform MachineModuleInfo of range.
1249    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
1250
1251    // Update successor info
1252    CurMBB->addSuccessor(Return);
1253    CurMBB->addSuccessor(LandingPad);
1254  } else {
1255    // Drop into normal successor.
1256    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1257                            DAG.getBasicBlock(Return)));
1258  }
1259}
1260
1261void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1262}
1263
1264/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1265/// small case ranges).
1266bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1267                                                  CaseRecVector& WorkList,
1268                                                  Value* SV,
1269                                                  MachineBasicBlock* Default) {
1270  Case& BackCase  = *(CR.Range.second-1);
1271
1272  // Size is the number of Cases represented by this range.
1273  unsigned Size = CR.Range.second - CR.Range.first;
1274  if (Size >=3)
1275    return false;
1276
1277  // Get the MachineFunction which holds the current MBB.  This is used when
1278  // inserting any additional MBBs necessary to represent the switch.
1279  MachineFunction *CurMF = CurMBB->getParent();
1280
1281  // Figure out which block is immediately after the current one.
1282  MachineBasicBlock *NextBlock = 0;
1283  MachineFunction::iterator BBI = CR.CaseBB;
1284
1285  if (++BBI != CurMBB->getParent()->end())
1286    NextBlock = BBI;
1287
1288  // TODO: If any two of the cases has the same destination, and if one value
1289  // is the same as the other, but has one bit unset that the other has set,
1290  // use bit manipulation to do two compares at once.  For example:
1291  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1292
1293  // Rearrange the case blocks so that the last one falls through if possible.
1294  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1295    // The last case block won't fall through into 'NextBlock' if we emit the
1296    // branches in this order.  See if rearranging a case value would help.
1297    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1298      if (I->BB == NextBlock) {
1299        std::swap(*I, BackCase);
1300        break;
1301      }
1302    }
1303  }
1304
1305  // Create a CaseBlock record representing a conditional branch to
1306  // the Case's target mbb if the value being switched on SV is equal
1307  // to C.
1308  MachineBasicBlock *CurBlock = CR.CaseBB;
1309  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1310    MachineBasicBlock *FallThrough;
1311    if (I != E-1) {
1312      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1313      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1314    } else {
1315      // If the last case doesn't match, go to the default block.
1316      FallThrough = Default;
1317    }
1318
1319    Value *RHS, *LHS, *MHS;
1320    ISD::CondCode CC;
1321    if (I->High == I->Low) {
1322      // This is just small small case range :) containing exactly 1 case
1323      CC = ISD::SETEQ;
1324      LHS = SV; RHS = I->High; MHS = NULL;
1325    } else {
1326      CC = ISD::SETLE;
1327      LHS = I->Low; MHS = SV; RHS = I->High;
1328    }
1329    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1330                                   I->BB, FallThrough, CurBlock);
1331
1332    // If emitting the first comparison, just call visitSwitchCase to emit the
1333    // code into the current block.  Otherwise, push the CaseBlock onto the
1334    // vector to be later processed by SDISel, and insert the node's MBB
1335    // before the next MBB.
1336    if (CurBlock == CurMBB)
1337      visitSwitchCase(CB);
1338    else
1339      SwitchCases.push_back(CB);
1340
1341    CurBlock = FallThrough;
1342  }
1343
1344  return true;
1345}
1346
1347/// handleJTSwitchCase - Emit jumptable for current switch case range
1348bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1349                                              CaseRecVector& WorkList,
1350                                              Value* SV,
1351                                              MachineBasicBlock* Default) {
1352  Case& FrontCase = *CR.Range.first;
1353  Case& BackCase  = *(CR.Range.second-1);
1354
1355  // Size is the number of Cases represented by this range.
1356  unsigned Size = CR.Range.second - CR.Range.first;
1357
1358  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1359  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1360
1361  uint64_t TSize = 0;
1362  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1363       I!=E; ++I)
1364    TSize += I->size();
1365
1366  if ((!TLI.isOperationLegal(ISD::BR_JT, MVT::Other) &&
1367       !TLI.isOperationLegal(ISD::BRIND, MVT::Other)) ||
1368      Size <= 5)
1369    return false;
1370
1371  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1372  if (Density < 0.4)
1373    return false;
1374
1375  DOUT << "Lowering jump table\n"
1376       << "First entry: " << First << ". Last entry: " << Last << "\n"
1377       << "Size: " << TSize << ". Density: " << Density << "\n";
1378
1379  // Get the MachineFunction which holds the current MBB.  This is used when
1380  // inserting any additional MBBs necessary to represent the switch.
1381  MachineFunction *CurMF = CurMBB->getParent();
1382
1383  // Figure out which block is immediately after the current one.
1384  MachineBasicBlock *NextBlock = 0;
1385  MachineFunction::iterator BBI = CR.CaseBB;
1386
1387  if (++BBI != CurMBB->getParent()->end())
1388    NextBlock = BBI;
1389
1390  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1391
1392  // Create a new basic block to hold the code for loading the address
1393  // of the jump table, and jumping to it.  Update successor information;
1394  // we will either branch to the default case for the switch, or the jump
1395  // table.
1396  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1397  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1398  CR.CaseBB->addSuccessor(Default);
1399  CR.CaseBB->addSuccessor(JumpTableBB);
1400
1401  // Build a vector of destination BBs, corresponding to each target
1402  // of the jump table.  If the value of the jump table slot corresponds to
1403  // a case statement, push the case's BB onto the vector, otherwise, push
1404  // the default BB.
1405  std::vector<MachineBasicBlock*> DestBBs;
1406  int64_t TEI = First;
1407  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1408    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1409    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1410
1411    if ((Low <= TEI) && (TEI <= High)) {
1412      DestBBs.push_back(I->BB);
1413      if (TEI==High)
1414        ++I;
1415    } else {
1416      DestBBs.push_back(Default);
1417    }
1418  }
1419
1420  // Update successor info. Add one edge to each unique successor.
1421  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1422  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1423         E = DestBBs.end(); I != E; ++I) {
1424    if (!SuccsHandled[(*I)->getNumber()]) {
1425      SuccsHandled[(*I)->getNumber()] = true;
1426      JumpTableBB->addSuccessor(*I);
1427    }
1428  }
1429
1430  // Create a jump table index for this jump table, or return an existing
1431  // one.
1432  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1433
1434  // Set the jump table information so that we can codegen it as a second
1435  // MachineBasicBlock
1436  SelectionDAGISel::JumpTable JT(-1UL, JTI, JumpTableBB, Default);
1437  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1438                                        (CR.CaseBB == CurMBB));
1439  if (CR.CaseBB == CurMBB)
1440    visitJumpTableHeader(JT, JTH);
1441
1442  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1443
1444  return true;
1445}
1446
1447/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1448/// 2 subtrees.
1449bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1450                                                   CaseRecVector& WorkList,
1451                                                   Value* SV,
1452                                                   MachineBasicBlock* Default) {
1453  // Get the MachineFunction which holds the current MBB.  This is used when
1454  // inserting any additional MBBs necessary to represent the switch.
1455  MachineFunction *CurMF = CurMBB->getParent();
1456
1457  // Figure out which block is immediately after the current one.
1458  MachineBasicBlock *NextBlock = 0;
1459  MachineFunction::iterator BBI = CR.CaseBB;
1460
1461  if (++BBI != CurMBB->getParent()->end())
1462    NextBlock = BBI;
1463
1464  Case& FrontCase = *CR.Range.first;
1465  Case& BackCase  = *(CR.Range.second-1);
1466  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1467
1468  // Size is the number of Cases represented by this range.
1469  unsigned Size = CR.Range.second - CR.Range.first;
1470
1471  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1472  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1473  double Density = 0;
1474  CaseItr Pivot = CR.Range.first + Size/2;
1475
1476  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1477  // (heuristically) allow us to emit JumpTable's later.
1478  uint64_t TSize = 0;
1479  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1480       I!=E; ++I)
1481    TSize += I->size();
1482
1483  uint64_t LSize = FrontCase.size();
1484  uint64_t RSize = TSize-LSize;
1485  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1486       J!=E; ++I, ++J) {
1487    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1488    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1489    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1490    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1491    if (Density < (LDensity + RDensity)) {
1492      Pivot = J;
1493      Density = LDensity + RDensity;
1494    }
1495
1496    LSize += J->size();
1497    RSize -= J->size();
1498  }
1499
1500  CaseRange LHSR(CR.Range.first, Pivot);
1501  CaseRange RHSR(Pivot, CR.Range.second);
1502  Constant *C = Pivot->Low;
1503  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1504
1505  // We know that we branch to the LHS if the Value being switched on is
1506  // less than the Pivot value, C.  We use this to optimize our binary
1507  // tree a bit, by recognizing that if SV is greater than or equal to the
1508  // LHS's Case Value, and that Case Value is exactly one less than the
1509  // Pivot's Value, then we can branch directly to the LHS's Target,
1510  // rather than creating a leaf node for it.
1511  if ((LHSR.second - LHSR.first) == 1 &&
1512      LHSR.first->High == CR.GE &&
1513      cast<ConstantInt>(C)->getSExtValue() ==
1514      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1515    TrueBB = LHSR.first->BB;
1516  } else {
1517    TrueBB = new MachineBasicBlock(LLVMBB);
1518    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1519    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1520  }
1521
1522  // Similar to the optimization above, if the Value being switched on is
1523  // known to be less than the Constant CR.LT, and the current Case Value
1524  // is CR.LT - 1, then we can branch directly to the target block for
1525  // the current Case Value, rather than emitting a RHS leaf node for it.
1526  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1527      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1528      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1529    FalseBB = RHSR.first->BB;
1530  } else {
1531    FalseBB = new MachineBasicBlock(LLVMBB);
1532    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1533    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1534  }
1535
1536  // Create a CaseBlock record representing a conditional branch to
1537  // the LHS node if the value being switched on SV is less than C.
1538  // Otherwise, branch to LHS.
1539  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1540                                 TrueBB, FalseBB, CR.CaseBB);
1541
1542  if (CR.CaseBB == CurMBB)
1543    visitSwitchCase(CB);
1544  else
1545    SwitchCases.push_back(CB);
1546
1547  return true;
1548}
1549
1550// Clusterify - Transform simple list of Cases into list of CaseRange's
1551unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1552                                          const SwitchInst& SI) {
1553  unsigned numCmps = 0;
1554
1555  // Start with "simple" cases
1556  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1557    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1558    Cases.push_back(Case(SI.getSuccessorValue(i),
1559                         SI.getSuccessorValue(i),
1560                         SMBB));
1561  }
1562  sort(Cases.begin(), Cases.end(), CaseCmp());
1563
1564  // Merge case into clusters
1565  if (Cases.size()>=2)
1566    for (CaseItr I=Cases.begin(), J=++(Cases.begin()), E=Cases.end(); J!=E; ) {
1567      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1568      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1569      MachineBasicBlock* nextBB = J->BB;
1570      MachineBasicBlock* currentBB = I->BB;
1571
1572      // If the two neighboring cases go to the same destination, merge them
1573      // into a single case.
1574      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1575        I->High = J->High;
1576        J = Cases.erase(J);
1577      } else {
1578        I = J++;
1579      }
1580    }
1581
1582  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1583    if (I->Low != I->High)
1584      // A range counts double, since it requires two compares.
1585      ++numCmps;
1586  }
1587
1588  return numCmps;
1589}
1590
1591void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1592  // Figure out which block is immediately after the current one.
1593  MachineBasicBlock *NextBlock = 0;
1594  MachineFunction::iterator BBI = CurMBB;
1595
1596  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1597
1598  // If there is only the default destination, branch to it if it is not the
1599  // next basic block.  Otherwise, just fall through.
1600  if (SI.getNumOperands() == 2) {
1601    // Update machine-CFG edges.
1602
1603    // If this is not a fall-through branch, emit the branch.
1604    if (Default != NextBlock)
1605      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1606                              DAG.getBasicBlock(Default)));
1607
1608    CurMBB->addSuccessor(Default);
1609    return;
1610  }
1611
1612  // If there are any non-default case statements, create a vector of Cases
1613  // representing each one, and sort the vector so that we can efficiently
1614  // create a binary search tree from them.
1615  CaseVector Cases;
1616  unsigned numCmps = Clusterify(Cases, SI);
1617  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1618       << ". Total compares: " << numCmps << "\n";
1619
1620  // Get the Value to be switched on and default basic blocks, which will be
1621  // inserted into CaseBlock records, representing basic blocks in the binary
1622  // search tree.
1623  Value *SV = SI.getOperand(0);
1624
1625  // Push the initial CaseRec onto the worklist
1626  CaseRecVector WorkList;
1627  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1628
1629  while (!WorkList.empty()) {
1630    // Grab a record representing a case range to process off the worklist
1631    CaseRec CR = WorkList.back();
1632    WorkList.pop_back();
1633
1634    // If the range has few cases (two or less) emit a series of specific
1635    // tests.
1636    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1637      continue;
1638
1639    // If the switch has more than 5 blocks, and at least 31.25% dense, and the
1640    // target supports indirect branches, then emit a jump table rather than
1641    // lowering the switch to a binary tree of conditional branches.
1642    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1643      continue;
1644
1645    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1646    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1647    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1648  }
1649}
1650
1651
1652void SelectionDAGLowering::visitSub(User &I) {
1653  // -0.0 - X --> fneg
1654  const Type *Ty = I.getType();
1655  if (isa<VectorType>(Ty)) {
1656    visitVectorBinary(I, ISD::VSUB);
1657  } else if (Ty->isFloatingPoint()) {
1658    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1659      if (CFP->isExactlyValue(-0.0)) {
1660        SDOperand Op2 = getValue(I.getOperand(1));
1661        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1662        return;
1663      }
1664    visitScalarBinary(I, ISD::FSUB);
1665  } else
1666    visitScalarBinary(I, ISD::SUB);
1667}
1668
1669void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1670  SDOperand Op1 = getValue(I.getOperand(0));
1671  SDOperand Op2 = getValue(I.getOperand(1));
1672
1673  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1674}
1675
1676void
1677SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1678  assert(isa<VectorType>(I.getType()));
1679  const VectorType *Ty = cast<VectorType>(I.getType());
1680  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1681
1682  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1683                           getValue(I.getOperand(0)),
1684                           getValue(I.getOperand(1)),
1685                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1686                           Typ));
1687}
1688
1689void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1690                                             unsigned VectorOp) {
1691  if (isa<VectorType>(I.getType()))
1692    visitVectorBinary(I, VectorOp);
1693  else
1694    visitScalarBinary(I, ScalarOp);
1695}
1696
1697void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1698  SDOperand Op1 = getValue(I.getOperand(0));
1699  SDOperand Op2 = getValue(I.getOperand(1));
1700
1701  if (TLI.getShiftAmountTy() < Op2.getValueType())
1702    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1703  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1704    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1705
1706  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1707}
1708
1709void SelectionDAGLowering::visitICmp(User &I) {
1710  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1711  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1712    predicate = IC->getPredicate();
1713  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1714    predicate = ICmpInst::Predicate(IC->getPredicate());
1715  SDOperand Op1 = getValue(I.getOperand(0));
1716  SDOperand Op2 = getValue(I.getOperand(1));
1717  ISD::CondCode Opcode;
1718  switch (predicate) {
1719    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1720    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1721    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1722    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1723    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1724    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1725    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1726    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1727    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1728    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1729    default:
1730      assert(!"Invalid ICmp predicate value");
1731      Opcode = ISD::SETEQ;
1732      break;
1733  }
1734  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1735}
1736
1737void SelectionDAGLowering::visitFCmp(User &I) {
1738  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1739  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1740    predicate = FC->getPredicate();
1741  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1742    predicate = FCmpInst::Predicate(FC->getPredicate());
1743  SDOperand Op1 = getValue(I.getOperand(0));
1744  SDOperand Op2 = getValue(I.getOperand(1));
1745  ISD::CondCode Condition, FOC, FPC;
1746  switch (predicate) {
1747    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1748    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1749    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1750    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1751    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1752    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1753    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1754    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1755    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1756    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1757    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1758    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1759    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1760    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1761    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1762    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1763    default:
1764      assert(!"Invalid FCmp predicate value");
1765      FOC = FPC = ISD::SETFALSE;
1766      break;
1767  }
1768  if (FiniteOnlyFPMath())
1769    Condition = FOC;
1770  else
1771    Condition = FPC;
1772  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1773}
1774
1775void SelectionDAGLowering::visitSelect(User &I) {
1776  SDOperand Cond     = getValue(I.getOperand(0));
1777  SDOperand TrueVal  = getValue(I.getOperand(1));
1778  SDOperand FalseVal = getValue(I.getOperand(2));
1779  if (!isa<VectorType>(I.getType())) {
1780    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1781                             TrueVal, FalseVal));
1782  } else {
1783    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1784                             *(TrueVal.Val->op_end()-2),
1785                             *(TrueVal.Val->op_end()-1)));
1786  }
1787}
1788
1789
1790void SelectionDAGLowering::visitTrunc(User &I) {
1791  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1792  SDOperand N = getValue(I.getOperand(0));
1793  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1794  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1795}
1796
1797void SelectionDAGLowering::visitZExt(User &I) {
1798  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1799  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1800  SDOperand N = getValue(I.getOperand(0));
1801  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1802  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1803}
1804
1805void SelectionDAGLowering::visitSExt(User &I) {
1806  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1807  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1808  SDOperand N = getValue(I.getOperand(0));
1809  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1810  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1811}
1812
1813void SelectionDAGLowering::visitFPTrunc(User &I) {
1814  // FPTrunc is never a no-op cast, no need to check
1815  SDOperand N = getValue(I.getOperand(0));
1816  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1817  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1818}
1819
1820void SelectionDAGLowering::visitFPExt(User &I){
1821  // FPTrunc is never a no-op cast, no need to check
1822  SDOperand N = getValue(I.getOperand(0));
1823  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1824  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1825}
1826
1827void SelectionDAGLowering::visitFPToUI(User &I) {
1828  // FPToUI is never a no-op cast, no need to check
1829  SDOperand N = getValue(I.getOperand(0));
1830  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1831  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1832}
1833
1834void SelectionDAGLowering::visitFPToSI(User &I) {
1835  // FPToSI is never a no-op cast, no need to check
1836  SDOperand N = getValue(I.getOperand(0));
1837  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1838  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1839}
1840
1841void SelectionDAGLowering::visitUIToFP(User &I) {
1842  // UIToFP is never a no-op cast, no need to check
1843  SDOperand N = getValue(I.getOperand(0));
1844  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1845  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1846}
1847
1848void SelectionDAGLowering::visitSIToFP(User &I){
1849  // UIToFP is never a no-op cast, no need to check
1850  SDOperand N = getValue(I.getOperand(0));
1851  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1852  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1853}
1854
1855void SelectionDAGLowering::visitPtrToInt(User &I) {
1856  // What to do depends on the size of the integer and the size of the pointer.
1857  // We can either truncate, zero extend, or no-op, accordingly.
1858  SDOperand N = getValue(I.getOperand(0));
1859  MVT::ValueType SrcVT = N.getValueType();
1860  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1861  SDOperand Result;
1862  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1863    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1864  else
1865    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1866    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1867  setValue(&I, Result);
1868}
1869
1870void SelectionDAGLowering::visitIntToPtr(User &I) {
1871  // What to do depends on the size of the integer and the size of the pointer.
1872  // We can either truncate, zero extend, or no-op, accordingly.
1873  SDOperand N = getValue(I.getOperand(0));
1874  MVT::ValueType SrcVT = N.getValueType();
1875  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1876  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1877    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1878  else
1879    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1880    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1881}
1882
1883void SelectionDAGLowering::visitBitCast(User &I) {
1884  SDOperand N = getValue(I.getOperand(0));
1885  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1886  if (DestVT == MVT::Vector) {
1887    // This is a cast to a vector from something else.
1888    // Get information about the output vector.
1889    const VectorType *DestTy = cast<VectorType>(I.getType());
1890    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1891    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1892                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1893                             DAG.getValueType(EltVT)));
1894    return;
1895  }
1896  MVT::ValueType SrcVT = N.getValueType();
1897  if (SrcVT == MVT::Vector) {
1898    // This is a cast from a vctor to something else.
1899    // Get information about the input vector.
1900    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1901    return;
1902  }
1903
1904  // BitCast assures us that source and destination are the same size so this
1905  // is either a BIT_CONVERT or a no-op.
1906  if (DestVT != N.getValueType())
1907    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
1908  else
1909    setValue(&I, N); // noop cast.
1910}
1911
1912void SelectionDAGLowering::visitInsertElement(User &I) {
1913  SDOperand InVec = getValue(I.getOperand(0));
1914  SDOperand InVal = getValue(I.getOperand(1));
1915  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1916                                getValue(I.getOperand(2)));
1917
1918  SDOperand Num = *(InVec.Val->op_end()-2);
1919  SDOperand Typ = *(InVec.Val->op_end()-1);
1920  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1921                           InVec, InVal, InIdx, Num, Typ));
1922}
1923
1924void SelectionDAGLowering::visitExtractElement(User &I) {
1925  SDOperand InVec = getValue(I.getOperand(0));
1926  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1927                                getValue(I.getOperand(1)));
1928  SDOperand Typ = *(InVec.Val->op_end()-1);
1929  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1930                           TLI.getValueType(I.getType()), InVec, InIdx));
1931}
1932
1933void SelectionDAGLowering::visitShuffleVector(User &I) {
1934  SDOperand V1   = getValue(I.getOperand(0));
1935  SDOperand V2   = getValue(I.getOperand(1));
1936  SDOperand Mask = getValue(I.getOperand(2));
1937
1938  SDOperand Num = *(V1.Val->op_end()-2);
1939  SDOperand Typ = *(V2.Val->op_end()-1);
1940  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1941                           V1, V2, Mask, Num, Typ));
1942}
1943
1944
1945void SelectionDAGLowering::visitGetElementPtr(User &I) {
1946  SDOperand N = getValue(I.getOperand(0));
1947  const Type *Ty = I.getOperand(0)->getType();
1948
1949  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1950       OI != E; ++OI) {
1951    Value *Idx = *OI;
1952    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1953      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1954      if (Field) {
1955        // N = N + Offset
1956        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
1957        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1958                        getIntPtrConstant(Offset));
1959      }
1960      Ty = StTy->getElementType(Field);
1961    } else {
1962      Ty = cast<SequentialType>(Ty)->getElementType();
1963
1964      // If this is a constant subscript, handle it quickly.
1965      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1966        if (CI->getZExtValue() == 0) continue;
1967        uint64_t Offs =
1968            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1969        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1970        continue;
1971      }
1972
1973      // N = N + Idx * ElementSize;
1974      uint64_t ElementSize = TD->getTypeSize(Ty);
1975      SDOperand IdxN = getValue(Idx);
1976
1977      // If the index is smaller or larger than intptr_t, truncate or extend
1978      // it.
1979      if (IdxN.getValueType() < N.getValueType()) {
1980        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1981      } else if (IdxN.getValueType() > N.getValueType())
1982        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1983
1984      // If this is a multiply by a power of two, turn it into a shl
1985      // immediately.  This is a very common case.
1986      if (isPowerOf2_64(ElementSize)) {
1987        unsigned Amt = Log2_64(ElementSize);
1988        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1989                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1990        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1991        continue;
1992      }
1993
1994      SDOperand Scale = getIntPtrConstant(ElementSize);
1995      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1996      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1997    }
1998  }
1999  setValue(&I, N);
2000}
2001
2002void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2003  // If this is a fixed sized alloca in the entry block of the function,
2004  // allocate it statically on the stack.
2005  if (FuncInfo.StaticAllocaMap.count(&I))
2006    return;   // getValue will auto-populate this.
2007
2008  const Type *Ty = I.getAllocatedType();
2009  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2010  unsigned Align =
2011    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2012             I.getAlignment());
2013
2014  SDOperand AllocSize = getValue(I.getArraySize());
2015  MVT::ValueType IntPtr = TLI.getPointerTy();
2016  if (IntPtr < AllocSize.getValueType())
2017    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2018  else if (IntPtr > AllocSize.getValueType())
2019    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2020
2021  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2022                          getIntPtrConstant(TySize));
2023
2024  // Handle alignment.  If the requested alignment is less than or equal to the
2025  // stack alignment, ignore it and round the size of the allocation up to the
2026  // stack alignment size.  If the size is greater than the stack alignment, we
2027  // note this in the DYNAMIC_STACKALLOC node.
2028  unsigned StackAlign =
2029    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2030  if (Align <= StackAlign) {
2031    Align = 0;
2032    // Add SA-1 to the size.
2033    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2034                            getIntPtrConstant(StackAlign-1));
2035    // Mask out the low bits for alignment purposes.
2036    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2037                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2038  }
2039
2040  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2041  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2042                                                    MVT::Other);
2043  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2044  setValue(&I, DSA);
2045  DAG.setRoot(DSA.getValue(1));
2046
2047  // Inform the Frame Information that we have just allocated a variable-sized
2048  // object.
2049  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2050}
2051
2052void SelectionDAGLowering::visitLoad(LoadInst &I) {
2053  SDOperand Ptr = getValue(I.getOperand(0));
2054
2055  SDOperand Root;
2056  if (I.isVolatile())
2057    Root = getRoot();
2058  else {
2059    // Do not serialize non-volatile loads against each other.
2060    Root = DAG.getRoot();
2061  }
2062
2063  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2064                           Root, I.isVolatile()));
2065}
2066
2067SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2068                                            const Value *SV, SDOperand Root,
2069                                            bool isVolatile) {
2070  SDOperand L;
2071  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
2072    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
2073    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
2074                       DAG.getSrcValue(SV));
2075  } else {
2076    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
2077  }
2078
2079  if (isVolatile)
2080    DAG.setRoot(L.getValue(1));
2081  else
2082    PendingLoads.push_back(L.getValue(1));
2083
2084  return L;
2085}
2086
2087
2088void SelectionDAGLowering::visitStore(StoreInst &I) {
2089  Value *SrcV = I.getOperand(0);
2090  SDOperand Src = getValue(SrcV);
2091  SDOperand Ptr = getValue(I.getOperand(1));
2092  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2093                           I.isVolatile()));
2094}
2095
2096/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2097/// access memory and has no other side effects at all.
2098static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2099#define GET_NO_MEMORY_INTRINSICS
2100#include "llvm/Intrinsics.gen"
2101#undef GET_NO_MEMORY_INTRINSICS
2102  return false;
2103}
2104
2105// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2106// have any side-effects or if it only reads memory.
2107static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2108#define GET_SIDE_EFFECT_INFO
2109#include "llvm/Intrinsics.gen"
2110#undef GET_SIDE_EFFECT_INFO
2111  return false;
2112}
2113
2114/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2115/// node.
2116void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2117                                                unsigned Intrinsic) {
2118  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2119  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2120
2121  // Build the operand list.
2122  SmallVector<SDOperand, 8> Ops;
2123  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2124    if (OnlyLoad) {
2125      // We don't need to serialize loads against other loads.
2126      Ops.push_back(DAG.getRoot());
2127    } else {
2128      Ops.push_back(getRoot());
2129    }
2130  }
2131
2132  // Add the intrinsic ID as an integer operand.
2133  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2134
2135  // Add all operands of the call to the operand list.
2136  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2137    SDOperand Op = getValue(I.getOperand(i));
2138
2139    // If this is a vector type, force it to the right vector type.
2140    if (Op.getValueType() == MVT::Vector) {
2141      const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
2142      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
2143
2144      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
2145      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
2146      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
2147    }
2148
2149    assert(TLI.isTypeLegal(Op.getValueType()) &&
2150           "Intrinsic uses a non-legal type?");
2151    Ops.push_back(Op);
2152  }
2153
2154  std::vector<MVT::ValueType> VTs;
2155  if (I.getType() != Type::VoidTy) {
2156    MVT::ValueType VT = TLI.getValueType(I.getType());
2157    if (VT == MVT::Vector) {
2158      const VectorType *DestTy = cast<VectorType>(I.getType());
2159      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2160
2161      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2162      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2163    }
2164
2165    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2166    VTs.push_back(VT);
2167  }
2168  if (HasChain)
2169    VTs.push_back(MVT::Other);
2170
2171  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2172
2173  // Create the node.
2174  SDOperand Result;
2175  if (!HasChain)
2176    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2177                         &Ops[0], Ops.size());
2178  else if (I.getType() != Type::VoidTy)
2179    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2180                         &Ops[0], Ops.size());
2181  else
2182    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2183                         &Ops[0], Ops.size());
2184
2185  if (HasChain) {
2186    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2187    if (OnlyLoad)
2188      PendingLoads.push_back(Chain);
2189    else
2190      DAG.setRoot(Chain);
2191  }
2192  if (I.getType() != Type::VoidTy) {
2193    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2194      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
2195      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
2196                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
2197                           DAG.getValueType(EVT));
2198    }
2199    setValue(&I, Result);
2200  }
2201}
2202
2203/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2204/// we want to emit this as a call to a named external function, return the name
2205/// otherwise lower it and return null.
2206const char *
2207SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2208  switch (Intrinsic) {
2209  default:
2210    // By default, turn this into a target intrinsic node.
2211    visitTargetIntrinsic(I, Intrinsic);
2212    return 0;
2213  case Intrinsic::vastart:  visitVAStart(I); return 0;
2214  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2215  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2216  case Intrinsic::returnaddress:
2217    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2218                             getValue(I.getOperand(1))));
2219    return 0;
2220  case Intrinsic::frameaddress:
2221    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2222                             getValue(I.getOperand(1))));
2223    return 0;
2224  case Intrinsic::setjmp:
2225    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2226    break;
2227  case Intrinsic::longjmp:
2228    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2229    break;
2230  case Intrinsic::memcpy_i32:
2231  case Intrinsic::memcpy_i64:
2232    visitMemIntrinsic(I, ISD::MEMCPY);
2233    return 0;
2234  case Intrinsic::memset_i32:
2235  case Intrinsic::memset_i64:
2236    visitMemIntrinsic(I, ISD::MEMSET);
2237    return 0;
2238  case Intrinsic::memmove_i32:
2239  case Intrinsic::memmove_i64:
2240    visitMemIntrinsic(I, ISD::MEMMOVE);
2241    return 0;
2242
2243  case Intrinsic::dbg_stoppoint: {
2244    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2245    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2246    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2247      SDOperand Ops[5];
2248
2249      Ops[0] = getRoot();
2250      Ops[1] = getValue(SPI.getLineValue());
2251      Ops[2] = getValue(SPI.getColumnValue());
2252
2253      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2254      assert(DD && "Not a debug information descriptor");
2255      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2256
2257      Ops[3] = DAG.getString(CompileUnit->getFileName());
2258      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2259
2260      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2261    }
2262
2263    return 0;
2264  }
2265  case Intrinsic::dbg_region_start: {
2266    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2267    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2268    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2269      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2270      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2271                              DAG.getConstant(LabelID, MVT::i32)));
2272    }
2273
2274    return 0;
2275  }
2276  case Intrinsic::dbg_region_end: {
2277    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2278    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2279    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2280      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2281      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2282                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2283    }
2284
2285    return 0;
2286  }
2287  case Intrinsic::dbg_func_start: {
2288    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2289    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2290    if (MMI && FSI.getSubprogram() &&
2291        MMI->Verify(FSI.getSubprogram())) {
2292      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2293      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2294                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2295    }
2296
2297    return 0;
2298  }
2299  case Intrinsic::dbg_declare: {
2300    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2301    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2302    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2303      SDOperand AddressOp  = getValue(DI.getAddress());
2304      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2305        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2306    }
2307
2308    return 0;
2309  }
2310
2311  case Intrinsic::eh_exception: {
2312    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2313
2314    if (MMI) {
2315      // Add a label to mark the beginning of the landing pad.  Deletion of the
2316      // landing pad can thus be detected via the MachineModuleInfo.
2317      unsigned LabelID = MMI->addLandingPad(CurMBB);
2318      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
2319                              DAG.getConstant(LabelID, MVT::i32)));
2320
2321      // Mark exception register as live in.
2322      unsigned Reg = TLI.getExceptionAddressRegister();
2323      if (Reg) CurMBB->addLiveIn(Reg);
2324
2325      // Insert the EXCEPTIONADDR instruction.
2326      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2327      SDOperand Ops[1];
2328      Ops[0] = DAG.getRoot();
2329      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2330      setValue(&I, Op);
2331      DAG.setRoot(Op.getValue(1));
2332    } else {
2333      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2334    }
2335    return 0;
2336  }
2337
2338  case Intrinsic::eh_selector:
2339  case Intrinsic::eh_filter:{
2340    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2341
2342    if (MMI) {
2343      // Inform the MachineModuleInfo of the personality for this landing pad.
2344      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
2345      assert(CE && CE->getOpcode() == Instruction::BitCast &&
2346             isa<Function>(CE->getOperand(0)) &&
2347             "Personality should be a function");
2348      MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
2349      if (Intrinsic == Intrinsic::eh_filter)
2350        MMI->setIsFilterLandingPad(CurMBB);
2351
2352      // Gather all the type infos for this landing pad and pass them along to
2353      // MachineModuleInfo.
2354      std::vector<GlobalVariable *> TyInfo;
2355      for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
2356        ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i));
2357        if (CE && CE->getOpcode() == Instruction::BitCast &&
2358            isa<GlobalVariable>(CE->getOperand(0))) {
2359          TyInfo.push_back(cast<GlobalVariable>(CE->getOperand(0)));
2360        } else {
2361          ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i));
2362          assert(CI && CI->getZExtValue() == 0 &&
2363            "TypeInfo must be a global variable typeinfo or NULL");
2364          TyInfo.push_back(NULL);
2365        }
2366      }
2367      MMI->addCatchTypeInfo(CurMBB, TyInfo);
2368
2369      // Mark exception selector register as live in.
2370      unsigned Reg = TLI.getExceptionSelectorRegister();
2371      if (Reg) CurMBB->addLiveIn(Reg);
2372
2373      // Insert the EHSELECTION instruction.
2374      SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2375      SDOperand Ops[2];
2376      Ops[0] = getValue(I.getOperand(1));
2377      Ops[1] = getRoot();
2378      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2379      setValue(&I, Op);
2380      DAG.setRoot(Op.getValue(1));
2381    } else {
2382      setValue(&I, DAG.getConstant(0, MVT::i32));
2383    }
2384
2385    return 0;
2386  }
2387
2388  case Intrinsic::eh_typeid_for: {
2389    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2390
2391    if (MMI) {
2392      // Find the type id for the given typeinfo.
2393      GlobalVariable *GV = NULL;
2394      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(1));
2395      if (CE && CE->getOpcode() == Instruction::BitCast &&
2396          isa<GlobalVariable>(CE->getOperand(0))) {
2397        GV = cast<GlobalVariable>(CE->getOperand(0));
2398      } else {
2399        ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2400        assert(CI && CI->getZExtValue() == 0 &&
2401          "TypeInfo must be a global variable typeinfo or NULL");
2402        GV = NULL;
2403      }
2404
2405      unsigned TypeID = MMI->getTypeIDFor(GV);
2406      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2407    } else {
2408      setValue(&I, DAG.getConstant(0, MVT::i32));
2409    }
2410
2411    return 0;
2412  }
2413
2414  case Intrinsic::sqrt_f32:
2415  case Intrinsic::sqrt_f64:
2416    setValue(&I, DAG.getNode(ISD::FSQRT,
2417                             getValue(I.getOperand(1)).getValueType(),
2418                             getValue(I.getOperand(1))));
2419    return 0;
2420  case Intrinsic::powi_f32:
2421  case Intrinsic::powi_f64:
2422    setValue(&I, DAG.getNode(ISD::FPOWI,
2423                             getValue(I.getOperand(1)).getValueType(),
2424                             getValue(I.getOperand(1)),
2425                             getValue(I.getOperand(2))));
2426    return 0;
2427  case Intrinsic::pcmarker: {
2428    SDOperand Tmp = getValue(I.getOperand(1));
2429    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2430    return 0;
2431  }
2432  case Intrinsic::readcyclecounter: {
2433    SDOperand Op = getRoot();
2434    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2435                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2436                                &Op, 1);
2437    setValue(&I, Tmp);
2438    DAG.setRoot(Tmp.getValue(1));
2439    return 0;
2440  }
2441  case Intrinsic::bit_part_select: {
2442    // Currently not implemented: just abort
2443    assert(0 && "bit_part_select intrinsic not implemented");
2444    abort();
2445  }
2446  case Intrinsic::bswap:
2447    setValue(&I, DAG.getNode(ISD::BSWAP,
2448                             getValue(I.getOperand(1)).getValueType(),
2449                             getValue(I.getOperand(1))));
2450    return 0;
2451  case Intrinsic::cttz: {
2452    SDOperand Arg = getValue(I.getOperand(1));
2453    MVT::ValueType Ty = Arg.getValueType();
2454    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2455    if (Ty < MVT::i32)
2456      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2457    else if (Ty > MVT::i32)
2458      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2459    setValue(&I, result);
2460    return 0;
2461  }
2462  case Intrinsic::ctlz: {
2463    SDOperand Arg = getValue(I.getOperand(1));
2464    MVT::ValueType Ty = Arg.getValueType();
2465    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2466    if (Ty < MVT::i32)
2467      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2468    else if (Ty > MVT::i32)
2469      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2470    setValue(&I, result);
2471    return 0;
2472  }
2473  case Intrinsic::ctpop: {
2474    SDOperand Arg = getValue(I.getOperand(1));
2475    MVT::ValueType Ty = Arg.getValueType();
2476    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2477    if (Ty < MVT::i32)
2478      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2479    else if (Ty > MVT::i32)
2480      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2481    setValue(&I, result);
2482    return 0;
2483  }
2484  case Intrinsic::stacksave: {
2485    SDOperand Op = getRoot();
2486    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2487              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2488    setValue(&I, Tmp);
2489    DAG.setRoot(Tmp.getValue(1));
2490    return 0;
2491  }
2492  case Intrinsic::stackrestore: {
2493    SDOperand Tmp = getValue(I.getOperand(1));
2494    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2495    return 0;
2496  }
2497  case Intrinsic::prefetch:
2498    // FIXME: Currently discarding prefetches.
2499    return 0;
2500  }
2501}
2502
2503
2504void SelectionDAGLowering::LowerCallTo(Instruction &I,
2505                                       const Type *CalledValueTy,
2506                                       unsigned CallingConv,
2507                                       bool IsTailCall,
2508                                       SDOperand Callee, unsigned OpIdx) {
2509  const PointerType *PT = cast<PointerType>(CalledValueTy);
2510  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2511
2512  TargetLowering::ArgListTy Args;
2513  TargetLowering::ArgListEntry Entry;
2514  Args.reserve(I.getNumOperands());
2515  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2516    Value *Arg = I.getOperand(i);
2517    SDOperand ArgNode = getValue(Arg);
2518    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2519    Entry.isSExt   = FTy->paramHasAttr(i, FunctionType::SExtAttribute);
2520    Entry.isZExt   = FTy->paramHasAttr(i, FunctionType::ZExtAttribute);
2521    Entry.isInReg  = FTy->paramHasAttr(i, FunctionType::InRegAttribute);
2522    Entry.isSRet   = FTy->paramHasAttr(i, FunctionType::StructRetAttribute);
2523    Args.push_back(Entry);
2524  }
2525
2526  std::pair<SDOperand,SDOperand> Result =
2527    TLI.LowerCallTo(getRoot(), I.getType(),
2528                    FTy->paramHasAttr(0,FunctionType::SExtAttribute),
2529                    FTy->isVarArg(), CallingConv, IsTailCall,
2530                    Callee, Args, DAG);
2531  if (I.getType() != Type::VoidTy)
2532    setValue(&I, Result.first);
2533  DAG.setRoot(Result.second);
2534}
2535
2536
2537void SelectionDAGLowering::visitCall(CallInst &I) {
2538  const char *RenameFn = 0;
2539  if (Function *F = I.getCalledFunction()) {
2540    if (F->isDeclaration())
2541      if (unsigned IID = F->getIntrinsicID()) {
2542        RenameFn = visitIntrinsicCall(I, IID);
2543        if (!RenameFn)
2544          return;
2545      } else {    // Not an LLVM intrinsic.
2546        const std::string &Name = F->getName();
2547        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2548          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2549              I.getOperand(1)->getType()->isFloatingPoint() &&
2550              I.getType() == I.getOperand(1)->getType() &&
2551              I.getType() == I.getOperand(2)->getType()) {
2552            SDOperand LHS = getValue(I.getOperand(1));
2553            SDOperand RHS = getValue(I.getOperand(2));
2554            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2555                                     LHS, RHS));
2556            return;
2557          }
2558        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2559          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2560              I.getOperand(1)->getType()->isFloatingPoint() &&
2561              I.getType() == I.getOperand(1)->getType()) {
2562            SDOperand Tmp = getValue(I.getOperand(1));
2563            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2564            return;
2565          }
2566        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2567          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2568              I.getOperand(1)->getType()->isFloatingPoint() &&
2569              I.getType() == I.getOperand(1)->getType()) {
2570            SDOperand Tmp = getValue(I.getOperand(1));
2571            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2572            return;
2573          }
2574        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2575          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2576              I.getOperand(1)->getType()->isFloatingPoint() &&
2577              I.getType() == I.getOperand(1)->getType()) {
2578            SDOperand Tmp = getValue(I.getOperand(1));
2579            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2580            return;
2581          }
2582        }
2583      }
2584  } else if (isa<InlineAsm>(I.getOperand(0))) {
2585    visitInlineAsm(I);
2586    return;
2587  }
2588
2589  SDOperand Callee;
2590  if (!RenameFn)
2591    Callee = getValue(I.getOperand(0));
2592  else
2593    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2594
2595  LowerCallTo(I, I.getCalledValue()->getType(),
2596                 I.getCallingConv(),
2597                 I.isTailCall(),
2598                 Callee,
2599                 1);
2600}
2601
2602
2603SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2604                                        SDOperand &Chain, SDOperand &Flag)const{
2605  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2606  Chain = Val.getValue(1);
2607  Flag  = Val.getValue(2);
2608
2609  // If the result was expanded, copy from the top part.
2610  if (Regs.size() > 1) {
2611    assert(Regs.size() == 2 &&
2612           "Cannot expand to more than 2 elts yet!");
2613    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2614    Chain = Hi.getValue(1);
2615    Flag  = Hi.getValue(2);
2616    if (DAG.getTargetLoweringInfo().isLittleEndian())
2617      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2618    else
2619      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2620  }
2621
2622  // Otherwise, if the return value was promoted or extended, truncate it to the
2623  // appropriate type.
2624  if (RegVT == ValueVT)
2625    return Val;
2626
2627  if (MVT::isVector(RegVT)) {
2628    assert(ValueVT == MVT::Vector && "Unknown vector conversion!");
2629    return DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
2630                       DAG.getConstant(MVT::getVectorNumElements(RegVT),
2631                                       MVT::i32),
2632                       DAG.getValueType(MVT::getVectorBaseType(RegVT)));
2633  }
2634
2635  if (MVT::isInteger(RegVT)) {
2636    if (ValueVT < RegVT)
2637      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2638    else
2639      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2640  }
2641
2642  assert(MVT::isFloatingPoint(RegVT) && MVT::isFloatingPoint(ValueVT));
2643  return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2644}
2645
2646/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2647/// specified value into the registers specified by this object.  This uses
2648/// Chain/Flag as the input and updates them for the output Chain/Flag.
2649void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2650                                 SDOperand &Chain, SDOperand &Flag,
2651                                 MVT::ValueType PtrVT) const {
2652  if (Regs.size() == 1) {
2653    // If there is a single register and the types differ, this must be
2654    // a promotion.
2655    if (RegVT != ValueVT) {
2656      if (MVT::isVector(RegVT)) {
2657        assert(Val.getValueType() == MVT::Vector &&"Not a vector-vector cast?");
2658        Val = DAG.getNode(ISD::VBIT_CONVERT, RegVT, Val);
2659      } else if (MVT::isInteger(RegVT)) {
2660        if (RegVT < ValueVT)
2661          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2662        else
2663          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2664      } else
2665        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2666    }
2667    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2668    Flag = Chain.getValue(1);
2669  } else {
2670    std::vector<unsigned> R(Regs);
2671    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2672      std::reverse(R.begin(), R.end());
2673
2674    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2675      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2676                                   DAG.getConstant(i, PtrVT));
2677      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2678      Flag = Chain.getValue(1);
2679    }
2680  }
2681}
2682
2683/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2684/// operand list.  This adds the code marker and includes the number of
2685/// values added into it.
2686void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2687                                        std::vector<SDOperand> &Ops) const {
2688  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
2689  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
2690  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2691    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2692}
2693
2694/// isAllocatableRegister - If the specified register is safe to allocate,
2695/// i.e. it isn't a stack pointer or some other special register, return the
2696/// register class for the register.  Otherwise, return null.
2697static const TargetRegisterClass *
2698isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2699                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2700  MVT::ValueType FoundVT = MVT::Other;
2701  const TargetRegisterClass *FoundRC = 0;
2702  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2703       E = MRI->regclass_end(); RCI != E; ++RCI) {
2704    MVT::ValueType ThisVT = MVT::Other;
2705
2706    const TargetRegisterClass *RC = *RCI;
2707    // If none of the the value types for this register class are valid, we
2708    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2709    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2710         I != E; ++I) {
2711      if (TLI.isTypeLegal(*I)) {
2712        // If we have already found this register in a different register class,
2713        // choose the one with the largest VT specified.  For example, on
2714        // PowerPC, we favor f64 register classes over f32.
2715        if (FoundVT == MVT::Other ||
2716            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2717          ThisVT = *I;
2718          break;
2719        }
2720      }
2721    }
2722
2723    if (ThisVT == MVT::Other) continue;
2724
2725    // NOTE: This isn't ideal.  In particular, this might allocate the
2726    // frame pointer in functions that need it (due to them not being taken
2727    // out of allocation, because a variable sized allocation hasn't been seen
2728    // yet).  This is a slight code pessimization, but should still work.
2729    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2730         E = RC->allocation_order_end(MF); I != E; ++I)
2731      if (*I == Reg) {
2732        // We found a matching register class.  Keep looking at others in case
2733        // we find one with larger registers that this physreg is also in.
2734        FoundRC = RC;
2735        FoundVT = ThisVT;
2736        break;
2737      }
2738  }
2739  return FoundRC;
2740}
2741
2742RegsForValue SelectionDAGLowering::
2743GetRegistersForValue(const std::string &ConstrCode,
2744                     MVT::ValueType VT, bool isOutReg, bool isInReg,
2745                     std::set<unsigned> &OutputRegs,
2746                     std::set<unsigned> &InputRegs) {
2747  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
2748    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
2749  std::vector<unsigned> Regs;
2750
2751  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
2752  MVT::ValueType RegVT;
2753  MVT::ValueType ValueVT = VT;
2754
2755  // If this is a constraint for a specific physical register, like {r17},
2756  // assign it now.
2757  if (PhysReg.first) {
2758    if (VT == MVT::Other)
2759      ValueVT = *PhysReg.second->vt_begin();
2760
2761    // Get the actual register value type.  This is important, because the user
2762    // may have asked for (e.g.) the AX register in i32 type.  We need to
2763    // remember that AX is actually i16 to get the right extension.
2764    RegVT = *PhysReg.second->vt_begin();
2765
2766    // This is a explicit reference to a physical register.
2767    Regs.push_back(PhysReg.first);
2768
2769    // If this is an expanded reference, add the rest of the regs to Regs.
2770    if (NumRegs != 1) {
2771      TargetRegisterClass::iterator I = PhysReg.second->begin();
2772      TargetRegisterClass::iterator E = PhysReg.second->end();
2773      for (; *I != PhysReg.first; ++I)
2774        assert(I != E && "Didn't find reg!");
2775
2776      // Already added the first reg.
2777      --NumRegs; ++I;
2778      for (; NumRegs; --NumRegs, ++I) {
2779        assert(I != E && "Ran out of registers to allocate!");
2780        Regs.push_back(*I);
2781      }
2782    }
2783    return RegsForValue(Regs, RegVT, ValueVT);
2784  }
2785
2786  // Otherwise, if this was a reference to an LLVM register class, create vregs
2787  // for this reference.
2788  std::vector<unsigned> RegClassRegs;
2789  if (PhysReg.second) {
2790    // If this is an early clobber or tied register, our regalloc doesn't know
2791    // how to maintain the constraint.  If it isn't, go ahead and create vreg
2792    // and let the regalloc do the right thing.
2793    if (!isOutReg || !isInReg) {
2794      if (VT == MVT::Other)
2795        ValueVT = *PhysReg.second->vt_begin();
2796      RegVT = *PhysReg.second->vt_begin();
2797
2798      // Create the appropriate number of virtual registers.
2799      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
2800      for (; NumRegs; --NumRegs)
2801        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
2802
2803      return RegsForValue(Regs, RegVT, ValueVT);
2804    }
2805
2806    // Otherwise, we can't allocate it.  Let the code below figure out how to
2807    // maintain these constraints.
2808    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
2809
2810  } else {
2811    // This is a reference to a register class that doesn't directly correspond
2812    // to an LLVM register class.  Allocate NumRegs consecutive, available,
2813    // registers from the class.
2814    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2815  }
2816
2817  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2818  MachineFunction &MF = *CurMBB->getParent();
2819  unsigned NumAllocated = 0;
2820  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2821    unsigned Reg = RegClassRegs[i];
2822    // See if this register is available.
2823    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2824        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2825      // Make sure we find consecutive registers.
2826      NumAllocated = 0;
2827      continue;
2828    }
2829
2830    // Check to see if this register is allocatable (i.e. don't give out the
2831    // stack pointer).
2832    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2833    if (!RC) {
2834      // Make sure we find consecutive registers.
2835      NumAllocated = 0;
2836      continue;
2837    }
2838
2839    // Okay, this register is good, we can use it.
2840    ++NumAllocated;
2841
2842    // If we allocated enough consecutive registers, succeed.
2843    if (NumAllocated == NumRegs) {
2844      unsigned RegStart = (i-NumAllocated)+1;
2845      unsigned RegEnd   = i+1;
2846      // Mark all of the allocated registers used.
2847      for (unsigned i = RegStart; i != RegEnd; ++i) {
2848        unsigned Reg = RegClassRegs[i];
2849        Regs.push_back(Reg);
2850        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2851        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2852      }
2853
2854      return RegsForValue(Regs, *RC->vt_begin(), VT);
2855    }
2856  }
2857
2858  // Otherwise, we couldn't allocate enough registers for this.
2859  return RegsForValue();
2860}
2861
2862/// getConstraintGenerality - Return an integer indicating how general CT is.
2863static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2864  switch (CT) {
2865  default: assert(0 && "Unknown constraint type!");
2866  case TargetLowering::C_Other:
2867  case TargetLowering::C_Unknown:
2868    return 0;
2869  case TargetLowering::C_Register:
2870    return 1;
2871  case TargetLowering::C_RegisterClass:
2872    return 2;
2873  case TargetLowering::C_Memory:
2874    return 3;
2875  }
2876}
2877
2878static std::string GetMostGeneralConstraint(std::vector<std::string> &C,
2879                                            const TargetLowering &TLI) {
2880  assert(!C.empty() && "Must have at least one constraint");
2881  if (C.size() == 1) return C[0];
2882
2883  std::string *Current = &C[0];
2884  // If we have multiple constraints, try to pick the most general one ahead
2885  // of time.  This isn't a wonderful solution, but handles common cases.
2886  TargetLowering::ConstraintType Flavor = TLI.getConstraintType(Current[0]);
2887  for (unsigned j = 1, e = C.size(); j != e; ++j) {
2888    TargetLowering::ConstraintType ThisFlavor = TLI.getConstraintType(C[j]);
2889    if (getConstraintGenerality(ThisFlavor) >
2890        getConstraintGenerality(Flavor)) {
2891      // This constraint letter is more general than the previous one,
2892      // use it.
2893      Flavor = ThisFlavor;
2894      Current = &C[j];
2895    }
2896  }
2897  return *Current;
2898}
2899
2900
2901/// visitInlineAsm - Handle a call to an InlineAsm object.
2902///
2903void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2904  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2905
2906  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2907                                                 MVT::Other);
2908
2909  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2910  std::vector<MVT::ValueType> ConstraintVTs;
2911
2912  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2913  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2914  /// if it is a def of that register.
2915  std::vector<SDOperand> AsmNodeOperands;
2916  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2917  AsmNodeOperands.push_back(AsmStr);
2918
2919  SDOperand Chain = getRoot();
2920  SDOperand Flag;
2921
2922  // We fully assign registers here at isel time.  This is not optimal, but
2923  // should work.  For register classes that correspond to LLVM classes, we
2924  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2925  // over the constraints, collecting fixed registers that we know we can't use.
2926  std::set<unsigned> OutputRegs, InputRegs;
2927  unsigned OpNum = 1;
2928  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2929    std::string ConstraintCode =
2930      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
2931
2932    MVT::ValueType OpVT;
2933
2934    // Compute the value type for each operand and add it to ConstraintVTs.
2935    switch (Constraints[i].Type) {
2936    case InlineAsm::isOutput:
2937      if (!Constraints[i].isIndirectOutput) {
2938        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2939        OpVT = TLI.getValueType(I.getType());
2940      } else {
2941        const Type *OpTy = I.getOperand(OpNum)->getType();
2942        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2943        OpNum++;  // Consumes a call operand.
2944      }
2945      break;
2946    case InlineAsm::isInput:
2947      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2948      OpNum++;  // Consumes a call operand.
2949      break;
2950    case InlineAsm::isClobber:
2951      OpVT = MVT::Other;
2952      break;
2953    }
2954
2955    ConstraintVTs.push_back(OpVT);
2956
2957    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2958      continue;  // Not assigned a fixed reg.
2959
2960    // Build a list of regs that this operand uses.  This always has a single
2961    // element for promoted/expanded operands.
2962    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2963                                             false, false,
2964                                             OutputRegs, InputRegs);
2965
2966    switch (Constraints[i].Type) {
2967    case InlineAsm::isOutput:
2968      // We can't assign any other output to this register.
2969      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2970      // If this is an early-clobber output, it cannot be assigned to the same
2971      // value as the input reg.
2972      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2973        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2974      break;
2975    case InlineAsm::isInput:
2976      // We can't assign any other input to this register.
2977      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2978      break;
2979    case InlineAsm::isClobber:
2980      // Clobbered regs cannot be used as inputs or outputs.
2981      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2982      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2983      break;
2984    }
2985  }
2986
2987  // Loop over all of the inputs, copying the operand values into the
2988  // appropriate registers and processing the output regs.
2989  RegsForValue RetValRegs;
2990  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2991  OpNum = 1;
2992
2993  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2994    std::string ConstraintCode =
2995      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
2996
2997    switch (Constraints[i].Type) {
2998    case InlineAsm::isOutput: {
2999      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
3000      if (ConstraintCode.size() == 1)   // not a physreg name.
3001        CTy = TLI.getConstraintType(ConstraintCode);
3002
3003      if (CTy == TargetLowering::C_Memory) {
3004        // Memory output.
3005        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
3006
3007        // Check that the operand (the address to store to) isn't a float.
3008        if (!MVT::isInteger(InOperandVal.getValueType()))
3009          assert(0 && "MATCH FAIL!");
3010
3011        if (!Constraints[i].isIndirectOutput)
3012          assert(0 && "MATCH FAIL!");
3013
3014        OpNum++;  // Consumes a call operand.
3015
3016        // Extend/truncate to the right pointer type if needed.
3017        MVT::ValueType PtrType = TLI.getPointerTy();
3018        if (InOperandVal.getValueType() < PtrType)
3019          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
3020        else if (InOperandVal.getValueType() > PtrType)
3021          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
3022
3023        // Add information to the INLINEASM node to know about this output.
3024        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3025        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
3026        AsmNodeOperands.push_back(InOperandVal);
3027        break;
3028      }
3029
3030      // Otherwise, this is a register output.
3031      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
3032
3033      // If this is an early-clobber output, or if there is an input
3034      // constraint that matches this, we need to reserve the input register
3035      // so no other inputs allocate to it.
3036      bool UsesInputRegister = false;
3037      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
3038        UsesInputRegister = true;
3039
3040      // Copy the output from the appropriate register.  Find a register that
3041      // we can use.
3042      RegsForValue Regs =
3043        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
3044                             true, UsesInputRegister,
3045                             OutputRegs, InputRegs);
3046      if (Regs.Regs.empty()) {
3047        cerr << "Couldn't allocate output reg for contraint '"
3048             << ConstraintCode << "'!\n";
3049        exit(1);
3050      }
3051
3052      if (!Constraints[i].isIndirectOutput) {
3053        assert(RetValRegs.Regs.empty() &&
3054               "Cannot have multiple output constraints yet!");
3055        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3056        RetValRegs = Regs;
3057      } else {
3058        IndirectStoresToEmit.push_back(std::make_pair(Regs,
3059                                                      I.getOperand(OpNum)));
3060        OpNum++;  // Consumes a call operand.
3061      }
3062
3063      // Add information to the INLINEASM node to know that this register is
3064      // set.
3065      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
3066      break;
3067    }
3068    case InlineAsm::isInput: {
3069      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
3070      OpNum++;  // Consumes a call operand.
3071
3072      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
3073        // If this is required to match an output register we have already set,
3074        // just use its register.
3075        unsigned OperandNo = atoi(ConstraintCode.c_str());
3076
3077        // Scan until we find the definition we already emitted of this operand.
3078        // When we find it, create a RegsForValue operand.
3079        unsigned CurOp = 2;  // The first operand.
3080        for (; OperandNo; --OperandNo) {
3081          // Advance to the next operand.
3082          unsigned NumOps =
3083            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3084          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3085                  (NumOps & 7) == 4 /*MEM*/) &&
3086                 "Skipped past definitions?");
3087          CurOp += (NumOps>>3)+1;
3088        }
3089
3090        unsigned NumOps =
3091          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3092        if ((NumOps & 7) == 2 /*REGDEF*/) {
3093          // Add NumOps>>3 registers to MatchedRegs.
3094          RegsForValue MatchedRegs;
3095          MatchedRegs.ValueVT = InOperandVal.getValueType();
3096          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3097          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3098            unsigned Reg =
3099              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3100            MatchedRegs.Regs.push_back(Reg);
3101          }
3102
3103          // Use the produced MatchedRegs object to
3104          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
3105                                    TLI.getPointerTy());
3106          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3107          break;
3108        } else {
3109          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3110          assert(0 && "matching constraints for memory operands unimp");
3111        }
3112      }
3113
3114      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
3115      if (ConstraintCode.size() == 1)   // not a physreg name.
3116        CTy = TLI.getConstraintType(ConstraintCode);
3117
3118      if (CTy == TargetLowering::C_Other) {
3119        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3120                                                       ConstraintCode[0], DAG);
3121        if (!InOperandVal.Val) {
3122          cerr << "Invalid operand for inline asm constraint '"
3123               << ConstraintCode << "'!\n";
3124          exit(1);
3125        }
3126
3127        // Add information to the INLINEASM node to know about this input.
3128        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3129        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
3130        AsmNodeOperands.push_back(InOperandVal);
3131        break;
3132      } else if (CTy == TargetLowering::C_Memory) {
3133        // Memory input.
3134
3135        // If the operand is a float, spill to a constant pool entry to get its
3136        // address.
3137        if (ConstantFP *Val = dyn_cast<ConstantFP>(I.getOperand(OpNum-1)))
3138          InOperandVal = DAG.getConstantPool(Val, TLI.getPointerTy());
3139
3140        if (!MVT::isInteger(InOperandVal.getValueType())) {
3141          cerr << "Match failed, cannot handle this yet!\n";
3142          InOperandVal.Val->dump();
3143          exit(1);
3144        }
3145
3146        // Extend/truncate to the right pointer type if needed.
3147        MVT::ValueType PtrType = TLI.getPointerTy();
3148        if (InOperandVal.getValueType() < PtrType)
3149          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
3150        else if (InOperandVal.getValueType() > PtrType)
3151          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
3152
3153        // Add information to the INLINEASM node to know about this input.
3154        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3155        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
3156        AsmNodeOperands.push_back(InOperandVal);
3157        break;
3158      }
3159
3160      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
3161
3162      // Copy the input into the appropriate registers.
3163      RegsForValue InRegs =
3164        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
3165                             false, true, OutputRegs, InputRegs);
3166      // FIXME: should be match fail.
3167      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
3168
3169      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
3170
3171      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
3172      break;
3173    }
3174    case InlineAsm::isClobber: {
3175      RegsForValue ClobberedRegs =
3176        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
3177                             OutputRegs, InputRegs);
3178      // Add the clobbered value to the operand list, so that the register
3179      // allocator is aware that the physreg got clobbered.
3180      if (!ClobberedRegs.Regs.empty())
3181        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
3182      break;
3183    }
3184    }
3185  }
3186
3187  // Finish up input operands.
3188  AsmNodeOperands[0] = Chain;
3189  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3190
3191  Chain = DAG.getNode(ISD::INLINEASM,
3192                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3193                      &AsmNodeOperands[0], AsmNodeOperands.size());
3194  Flag = Chain.getValue(1);
3195
3196  // If this asm returns a register value, copy the result from that register
3197  // and set it as the value of the call.
3198  if (!RetValRegs.Regs.empty())
3199    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
3200
3201  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3202
3203  // Process indirect outputs, first output all of the flagged copies out of
3204  // physregs.
3205  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3206    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3207    Value *Ptr = IndirectStoresToEmit[i].second;
3208    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
3209    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3210  }
3211
3212  // Emit the non-flagged stores from the physregs.
3213  SmallVector<SDOperand, 8> OutChains;
3214  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3215    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
3216                                    getValue(StoresToEmit[i].second),
3217                                    StoresToEmit[i].second, 0));
3218  if (!OutChains.empty())
3219    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3220                        &OutChains[0], OutChains.size());
3221  DAG.setRoot(Chain);
3222}
3223
3224
3225void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3226  SDOperand Src = getValue(I.getOperand(0));
3227
3228  MVT::ValueType IntPtr = TLI.getPointerTy();
3229
3230  if (IntPtr < Src.getValueType())
3231    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3232  else if (IntPtr > Src.getValueType())
3233    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3234
3235  // Scale the source by the type size.
3236  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3237  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3238                    Src, getIntPtrConstant(ElementSize));
3239
3240  TargetLowering::ArgListTy Args;
3241  TargetLowering::ArgListEntry Entry;
3242  Entry.Node = Src;
3243  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3244  Args.push_back(Entry);
3245
3246  std::pair<SDOperand,SDOperand> Result =
3247    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3248                    DAG.getExternalSymbol("malloc", IntPtr),
3249                    Args, DAG);
3250  setValue(&I, Result.first);  // Pointers always fit in registers
3251  DAG.setRoot(Result.second);
3252}
3253
3254void SelectionDAGLowering::visitFree(FreeInst &I) {
3255  TargetLowering::ArgListTy Args;
3256  TargetLowering::ArgListEntry Entry;
3257  Entry.Node = getValue(I.getOperand(0));
3258  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3259  Args.push_back(Entry);
3260  MVT::ValueType IntPtr = TLI.getPointerTy();
3261  std::pair<SDOperand,SDOperand> Result =
3262    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3263                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3264  DAG.setRoot(Result.second);
3265}
3266
3267// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3268// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3269// instructions are special in various ways, which require special support to
3270// insert.  The specified MachineInstr is created but not inserted into any
3271// basic blocks, and the scheduler passes ownership of it to this method.
3272MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3273                                                       MachineBasicBlock *MBB) {
3274  cerr << "If a target marks an instruction with "
3275       << "'usesCustomDAGSchedInserter', it must implement "
3276       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3277  abort();
3278  return 0;
3279}
3280
3281void SelectionDAGLowering::visitVAStart(CallInst &I) {
3282  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3283                          getValue(I.getOperand(1)),
3284                          DAG.getSrcValue(I.getOperand(1))));
3285}
3286
3287void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3288  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3289                             getValue(I.getOperand(0)),
3290                             DAG.getSrcValue(I.getOperand(0)));
3291  setValue(&I, V);
3292  DAG.setRoot(V.getValue(1));
3293}
3294
3295void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3296  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3297                          getValue(I.getOperand(1)),
3298                          DAG.getSrcValue(I.getOperand(1))));
3299}
3300
3301void SelectionDAGLowering::visitVACopy(CallInst &I) {
3302  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3303                          getValue(I.getOperand(1)),
3304                          getValue(I.getOperand(2)),
3305                          DAG.getSrcValue(I.getOperand(1)),
3306                          DAG.getSrcValue(I.getOperand(2))));
3307}
3308
3309/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
3310/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
3311static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
3312                                        unsigned &i, SelectionDAG &DAG,
3313                                        TargetLowering &TLI) {
3314  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
3315    return SDOperand(Arg, i++);
3316
3317  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3318  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3319  if (NumVals == 1) {
3320    return DAG.getNode(ISD::BIT_CONVERT, VT,
3321                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
3322  } else if (NumVals == 2) {
3323    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3324    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3325    if (!TLI.isLittleEndian())
3326      std::swap(Lo, Hi);
3327    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
3328  } else {
3329    // Value scalarized into many values.  Unimp for now.
3330    assert(0 && "Cannot expand i64 -> i16 yet!");
3331  }
3332  return SDOperand();
3333}
3334
3335/// TargetLowering::LowerArguments - This is the default LowerArguments
3336/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3337/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3338/// integrated into SDISel.
3339std::vector<SDOperand>
3340TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3341  const FunctionType *FTy = F.getFunctionType();
3342  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3343  std::vector<SDOperand> Ops;
3344  Ops.push_back(DAG.getRoot());
3345  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3346  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3347
3348  // Add one result value for each formal argument.
3349  std::vector<MVT::ValueType> RetVals;
3350  unsigned j = 1;
3351  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3352       I != E; ++I, ++j) {
3353    MVT::ValueType VT = getValueType(I->getType());
3354    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3355    unsigned OriginalAlignment =
3356      getTargetData()->getABITypeAlignment(I->getType());
3357
3358    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3359    // that is zero extended!
3360    if (FTy->paramHasAttr(j, FunctionType::ZExtAttribute))
3361      Flags &= ~(ISD::ParamFlags::SExt);
3362    if (FTy->paramHasAttr(j, FunctionType::SExtAttribute))
3363      Flags |= ISD::ParamFlags::SExt;
3364    if (FTy->paramHasAttr(j, FunctionType::InRegAttribute))
3365      Flags |= ISD::ParamFlags::InReg;
3366    if (FTy->paramHasAttr(j, FunctionType::StructRetAttribute))
3367      Flags |= ISD::ParamFlags::StructReturn;
3368    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3369
3370    switch (getTypeAction(VT)) {
3371    default: assert(0 && "Unknown type action!");
3372    case Legal:
3373      RetVals.push_back(VT);
3374      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3375      break;
3376    case Promote:
3377      RetVals.push_back(getTypeToTransformTo(VT));
3378      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3379      break;
3380    case Expand:
3381      if (VT != MVT::Vector) {
3382        // If this is a large integer, it needs to be broken up into small
3383        // integers.  Figure out what the destination type is and how many small
3384        // integers it turns into.
3385        MVT::ValueType NVT = getTypeToExpandTo(VT);
3386        unsigned NumVals = getNumElements(VT);
3387        for (unsigned i = 0; i != NumVals; ++i) {
3388          RetVals.push_back(NVT);
3389          // if it isn't first piece, alignment must be 1
3390          if (i > 0)
3391            Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3392              (1 << ISD::ParamFlags::OrigAlignmentOffs);
3393          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3394        }
3395      } else {
3396        // Otherwise, this is a vector type.  We only support legal vectors
3397        // right now.
3398        unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
3399        const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
3400
3401        // Figure out if there is a Packed type corresponding to this Vector
3402        // type.  If so, convert to the vector type.
3403        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3404        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3405          RetVals.push_back(TVT);
3406          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3407        } else {
3408          assert(0 && "Don't support illegal by-val vector arguments yet!");
3409        }
3410      }
3411      break;
3412    }
3413  }
3414
3415  RetVals.push_back(MVT::Other);
3416
3417  // Create the node.
3418  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3419                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3420                               &Ops[0], Ops.size()).Val;
3421
3422  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
3423
3424  // Set up the return result vector.
3425  Ops.clear();
3426  unsigned i = 0;
3427  unsigned Idx = 1;
3428  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3429      ++I, ++Idx) {
3430    MVT::ValueType VT = getValueType(I->getType());
3431
3432    switch (getTypeAction(VT)) {
3433    default: assert(0 && "Unknown type action!");
3434    case Legal:
3435      Ops.push_back(SDOperand(Result, i++));
3436      break;
3437    case Promote: {
3438      SDOperand Op(Result, i++);
3439      if (MVT::isInteger(VT)) {
3440        if (FTy->paramHasAttr(Idx, FunctionType::SExtAttribute))
3441          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3442                           DAG.getValueType(VT));
3443        else if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute))
3444          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3445                           DAG.getValueType(VT));
3446        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3447      } else {
3448        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3449        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3450      }
3451      Ops.push_back(Op);
3452      break;
3453    }
3454    case Expand:
3455      if (VT != MVT::Vector) {
3456        // If this is a large integer or a floating point node that needs to be
3457        // expanded, it needs to be reassembled from small integers.  Figure out
3458        // what the source elt type is and how many small integers it is.
3459        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
3460      } else {
3461        // Otherwise, this is a vector type.  We only support legal vectors
3462        // right now.
3463        const VectorType *PTy = cast<VectorType>(I->getType());
3464        unsigned NumElems = PTy->getNumElements();
3465        const Type *EltTy = PTy->getElementType();
3466
3467        // Figure out if there is a Packed type corresponding to this Vector
3468        // type.  If so, convert to the vector type.
3469        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3470        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3471          SDOperand N = SDOperand(Result, i++);
3472          // Handle copies from generic vectors to registers.
3473          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
3474                          DAG.getConstant(NumElems, MVT::i32),
3475                          DAG.getValueType(getValueType(EltTy)));
3476          Ops.push_back(N);
3477        } else {
3478          assert(0 && "Don't support illegal by-val vector arguments yet!");
3479          abort();
3480        }
3481      }
3482      break;
3483    }
3484  }
3485  return Ops;
3486}
3487
3488
3489/// ExpandScalarCallArgs - Recursively expand call argument node by
3490/// bit_converting it or extract a pair of elements from the larger  node.
3491static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3492                                 unsigned Flags,
3493                                 SmallVector<SDOperand, 32> &Ops,
3494                                 SelectionDAG &DAG,
3495                                 TargetLowering &TLI,
3496                                 bool isFirst = true) {
3497
3498  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3499    // if it isn't first piece, alignment must be 1
3500    if (!isFirst)
3501      Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3502        (1 << ISD::ParamFlags::OrigAlignmentOffs);
3503    Ops.push_back(Arg);
3504    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3505    return;
3506  }
3507
3508  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3509  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3510  if (NumVals == 1) {
3511    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3512    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
3513  } else if (NumVals == 2) {
3514    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3515                               DAG.getConstant(0, TLI.getPointerTy()));
3516    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3517                               DAG.getConstant(1, TLI.getPointerTy()));
3518    if (!TLI.isLittleEndian())
3519      std::swap(Lo, Hi);
3520    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
3521    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
3522  } else {
3523    // Value scalarized into many values.  Unimp for now.
3524    assert(0 && "Cannot expand i64 -> i16 yet!");
3525  }
3526}
3527
3528/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3529/// implementation, which just inserts an ISD::CALL node, which is later custom
3530/// lowered by the target to something concrete.  FIXME: When all targets are
3531/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3532std::pair<SDOperand, SDOperand>
3533TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3534                            bool RetTyIsSigned, bool isVarArg,
3535                            unsigned CallingConv, bool isTailCall,
3536                            SDOperand Callee,
3537                            ArgListTy &Args, SelectionDAG &DAG) {
3538  SmallVector<SDOperand, 32> Ops;
3539  Ops.push_back(Chain);   // Op#0 - Chain
3540  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3541  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3542  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3543  Ops.push_back(Callee);
3544
3545  // Handle all of the outgoing arguments.
3546  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3547    MVT::ValueType VT = getValueType(Args[i].Ty);
3548    SDOperand Op = Args[i].Node;
3549    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3550    unsigned OriginalAlignment =
3551      getTargetData()->getABITypeAlignment(Args[i].Ty);
3552
3553    if (Args[i].isSExt)
3554      Flags |= ISD::ParamFlags::SExt;
3555    if (Args[i].isZExt)
3556      Flags |= ISD::ParamFlags::ZExt;
3557    if (Args[i].isInReg)
3558      Flags |= ISD::ParamFlags::InReg;
3559    if (Args[i].isSRet)
3560      Flags |= ISD::ParamFlags::StructReturn;
3561    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3562
3563    switch (getTypeAction(VT)) {
3564    default: assert(0 && "Unknown type action!");
3565    case Legal:
3566      Ops.push_back(Op);
3567      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3568      break;
3569    case Promote:
3570      if (MVT::isInteger(VT)) {
3571        unsigned ExtOp;
3572        if (Args[i].isSExt)
3573          ExtOp = ISD::SIGN_EXTEND;
3574        else if (Args[i].isZExt)
3575          ExtOp = ISD::ZERO_EXTEND;
3576        else
3577          ExtOp = ISD::ANY_EXTEND;
3578        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3579      } else {
3580        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3581        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3582      }
3583      Ops.push_back(Op);
3584      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3585      break;
3586    case Expand:
3587      if (VT != MVT::Vector) {
3588        // If this is a large integer, it needs to be broken down into small
3589        // integers.  Figure out what the source elt type is and how many small
3590        // integers it is.
3591        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
3592      } else {
3593        // Otherwise, this is a vector type.  We only support legal vectors
3594        // right now.
3595        const VectorType *PTy = cast<VectorType>(Args[i].Ty);
3596        unsigned NumElems = PTy->getNumElements();
3597        const Type *EltTy = PTy->getElementType();
3598
3599        // Figure out if there is a Packed type corresponding to this Vector
3600        // type.  If so, convert to the vector type.
3601        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3602        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3603          // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
3604          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3605          Ops.push_back(Op);
3606          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3607        } else {
3608          assert(0 && "Don't support illegal by-val vector call args yet!");
3609          abort();
3610        }
3611      }
3612      break;
3613    }
3614  }
3615
3616  // Figure out the result value types.
3617  SmallVector<MVT::ValueType, 4> RetTys;
3618
3619  if (RetTy != Type::VoidTy) {
3620    MVT::ValueType VT = getValueType(RetTy);
3621    switch (getTypeAction(VT)) {
3622    default: assert(0 && "Unknown type action!");
3623    case Legal:
3624      RetTys.push_back(VT);
3625      break;
3626    case Promote:
3627      RetTys.push_back(getTypeToTransformTo(VT));
3628      break;
3629    case Expand:
3630      if (VT != MVT::Vector) {
3631        // If this is a large integer, it needs to be reassembled from small
3632        // integers.  Figure out what the source elt type is and how many small
3633        // integers it is.
3634        MVT::ValueType NVT = getTypeToExpandTo(VT);
3635        unsigned NumVals = getNumElements(VT);
3636        for (unsigned i = 0; i != NumVals; ++i)
3637          RetTys.push_back(NVT);
3638      } else {
3639        // Otherwise, this is a vector type.  We only support legal vectors
3640        // right now.
3641        const VectorType *PTy = cast<VectorType>(RetTy);
3642        unsigned NumElems = PTy->getNumElements();
3643        const Type *EltTy = PTy->getElementType();
3644
3645        // Figure out if there is a Packed type corresponding to this Vector
3646        // type.  If so, convert to the vector type.
3647        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3648        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3649          RetTys.push_back(TVT);
3650        } else {
3651          assert(0 && "Don't support illegal by-val vector call results yet!");
3652          abort();
3653        }
3654      }
3655    }
3656  }
3657
3658  RetTys.push_back(MVT::Other);  // Always has a chain.
3659
3660  // Finally, create the CALL node.
3661  SDOperand Res = DAG.getNode(ISD::CALL,
3662                              DAG.getVTList(&RetTys[0], RetTys.size()),
3663                              &Ops[0], Ops.size());
3664
3665  // This returns a pair of operands.  The first element is the
3666  // return value for the function (if RetTy is not VoidTy).  The second
3667  // element is the outgoing token chain.
3668  SDOperand ResVal;
3669  if (RetTys.size() != 1) {
3670    MVT::ValueType VT = getValueType(RetTy);
3671    if (RetTys.size() == 2) {
3672      ResVal = Res;
3673
3674      // If this value was promoted, truncate it down.
3675      if (ResVal.getValueType() != VT) {
3676        if (VT == MVT::Vector) {
3677          // Insert a VBIT_CONVERT to convert from the packed result type to the
3678          // MVT::Vector type.
3679          unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
3680          const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
3681
3682          // Figure out if there is a Packed type corresponding to this Vector
3683          // type.  If so, convert to the vector type.
3684          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
3685          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3686            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3687            // "N x PTyElementVT" MVT::Vector type.
3688            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3689                                 DAG.getConstant(NumElems, MVT::i32),
3690                                 DAG.getValueType(getValueType(EltTy)));
3691          } else {
3692            abort();
3693          }
3694        } else if (MVT::isInteger(VT)) {
3695          unsigned AssertOp = ISD::AssertSext;
3696          if (!RetTyIsSigned)
3697            AssertOp = ISD::AssertZext;
3698          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3699                               DAG.getValueType(VT));
3700          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3701        } else {
3702          assert(MVT::isFloatingPoint(VT));
3703          if (getTypeAction(VT) == Expand)
3704            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3705          else
3706            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3707        }
3708      }
3709    } else if (RetTys.size() == 3) {
3710      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3711                           Res.getValue(0), Res.getValue(1));
3712
3713    } else {
3714      assert(0 && "Case not handled yet!");
3715    }
3716  }
3717
3718  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
3719}
3720
3721SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3722  assert(0 && "LowerOperation not implemented for this target!");
3723  abort();
3724  return SDOperand();
3725}
3726
3727SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3728                                                 SelectionDAG &DAG) {
3729  assert(0 && "CustomPromoteOperation not implemented for this target!");
3730  abort();
3731  return SDOperand();
3732}
3733
3734/// getMemsetValue - Vectorized representation of the memset value
3735/// operand.
3736static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3737                                SelectionDAG &DAG) {
3738  MVT::ValueType CurVT = VT;
3739  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3740    uint64_t Val   = C->getValue() & 255;
3741    unsigned Shift = 8;
3742    while (CurVT != MVT::i8) {
3743      Val = (Val << Shift) | Val;
3744      Shift <<= 1;
3745      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3746    }
3747    return DAG.getConstant(Val, VT);
3748  } else {
3749    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
3750    unsigned Shift = 8;
3751    while (CurVT != MVT::i8) {
3752      Value =
3753        DAG.getNode(ISD::OR, VT,
3754                    DAG.getNode(ISD::SHL, VT, Value,
3755                                DAG.getConstant(Shift, MVT::i8)), Value);
3756      Shift <<= 1;
3757      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3758    }
3759
3760    return Value;
3761  }
3762}
3763
3764/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3765/// used when a memcpy is turned into a memset when the source is a constant
3766/// string ptr.
3767static SDOperand getMemsetStringVal(MVT::ValueType VT,
3768                                    SelectionDAG &DAG, TargetLowering &TLI,
3769                                    std::string &Str, unsigned Offset) {
3770  uint64_t Val = 0;
3771  unsigned MSB = getSizeInBits(VT) / 8;
3772  if (TLI.isLittleEndian())
3773    Offset = Offset + MSB - 1;
3774  for (unsigned i = 0; i != MSB; ++i) {
3775    Val = (Val << 8) | (unsigned char)Str[Offset];
3776    Offset += TLI.isLittleEndian() ? -1 : 1;
3777  }
3778  return DAG.getConstant(Val, VT);
3779}
3780
3781/// getMemBasePlusOffset - Returns base and offset node for the
3782static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
3783                                      SelectionDAG &DAG, TargetLowering &TLI) {
3784  MVT::ValueType VT = Base.getValueType();
3785  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
3786}
3787
3788/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3789/// to replace the memset / memcpy is below the threshold. It also returns the
3790/// types of the sequence of  memory ops to perform memset / memcpy.
3791static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
3792                                     unsigned Limit, uint64_t Size,
3793                                     unsigned Align, TargetLowering &TLI) {
3794  MVT::ValueType VT;
3795
3796  if (TLI.allowsUnalignedMemoryAccesses()) {
3797    VT = MVT::i64;
3798  } else {
3799    switch (Align & 7) {
3800    case 0:
3801      VT = MVT::i64;
3802      break;
3803    case 4:
3804      VT = MVT::i32;
3805      break;
3806    case 2:
3807      VT = MVT::i16;
3808      break;
3809    default:
3810      VT = MVT::i8;
3811      break;
3812    }
3813  }
3814
3815  MVT::ValueType LVT = MVT::i64;
3816  while (!TLI.isTypeLegal(LVT))
3817    LVT = (MVT::ValueType)((unsigned)LVT - 1);
3818  assert(MVT::isInteger(LVT));
3819
3820  if (VT > LVT)
3821    VT = LVT;
3822
3823  unsigned NumMemOps = 0;
3824  while (Size != 0) {
3825    unsigned VTSize = getSizeInBits(VT) / 8;
3826    while (VTSize > Size) {
3827      VT = (MVT::ValueType)((unsigned)VT - 1);
3828      VTSize >>= 1;
3829    }
3830    assert(MVT::isInteger(VT));
3831
3832    if (++NumMemOps > Limit)
3833      return false;
3834    MemOps.push_back(VT);
3835    Size -= VTSize;
3836  }
3837
3838  return true;
3839}
3840
3841void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
3842  SDOperand Op1 = getValue(I.getOperand(1));
3843  SDOperand Op2 = getValue(I.getOperand(2));
3844  SDOperand Op3 = getValue(I.getOperand(3));
3845  SDOperand Op4 = getValue(I.getOperand(4));
3846  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
3847  if (Align == 0) Align = 1;
3848
3849  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
3850    std::vector<MVT::ValueType> MemOps;
3851
3852    // Expand memset / memcpy to a series of load / store ops
3853    // if the size operand falls below a certain threshold.
3854    SmallVector<SDOperand, 8> OutChains;
3855    switch (Op) {
3856    default: break;  // Do nothing for now.
3857    case ISD::MEMSET: {
3858      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
3859                                   Size->getValue(), Align, TLI)) {
3860        unsigned NumMemOps = MemOps.size();
3861        unsigned Offset = 0;
3862        for (unsigned i = 0; i < NumMemOps; i++) {
3863          MVT::ValueType VT = MemOps[i];
3864          unsigned VTSize = getSizeInBits(VT) / 8;
3865          SDOperand Value = getMemsetValue(Op2, VT, DAG);
3866          SDOperand Store = DAG.getStore(getRoot(), Value,
3867                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
3868                                         I.getOperand(1), Offset);
3869          OutChains.push_back(Store);
3870          Offset += VTSize;
3871        }
3872      }
3873      break;
3874    }
3875    case ISD::MEMCPY: {
3876      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
3877                                   Size->getValue(), Align, TLI)) {
3878        unsigned NumMemOps = MemOps.size();
3879        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
3880        GlobalAddressSDNode *G = NULL;
3881        std::string Str;
3882        bool CopyFromStr = false;
3883
3884        if (Op2.getOpcode() == ISD::GlobalAddress)
3885          G = cast<GlobalAddressSDNode>(Op2);
3886        else if (Op2.getOpcode() == ISD::ADD &&
3887                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3888                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
3889          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
3890          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
3891        }
3892        if (G) {
3893          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3894          if (GV && GV->isConstant()) {
3895            Str = GV->getStringValue(false);
3896            if (!Str.empty()) {
3897              CopyFromStr = true;
3898              SrcOff += SrcDelta;
3899            }
3900          }
3901        }
3902
3903        for (unsigned i = 0; i < NumMemOps; i++) {
3904          MVT::ValueType VT = MemOps[i];
3905          unsigned VTSize = getSizeInBits(VT) / 8;
3906          SDOperand Value, Chain, Store;
3907
3908          if (CopyFromStr) {
3909            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3910            Chain = getRoot();
3911            Store =
3912              DAG.getStore(Chain, Value,
3913                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3914                           I.getOperand(1), DstOff);
3915          } else {
3916            Value = DAG.getLoad(VT, getRoot(),
3917                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
3918                        I.getOperand(2), SrcOff);
3919            Chain = Value.getValue(1);
3920            Store =
3921              DAG.getStore(Chain, Value,
3922                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3923                           I.getOperand(1), DstOff);
3924          }
3925          OutChains.push_back(Store);
3926          SrcOff += VTSize;
3927          DstOff += VTSize;
3928        }
3929      }
3930      break;
3931    }
3932    }
3933
3934    if (!OutChains.empty()) {
3935      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3936                  &OutChains[0], OutChains.size()));
3937      return;
3938    }
3939  }
3940
3941  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3942}
3943
3944//===----------------------------------------------------------------------===//
3945// SelectionDAGISel code
3946//===----------------------------------------------------------------------===//
3947
3948unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3949  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3950}
3951
3952void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3953  AU.addRequired<AliasAnalysis>();
3954  AU.setPreservesAll();
3955}
3956
3957
3958
3959bool SelectionDAGISel::runOnFunction(Function &Fn) {
3960  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3961  RegMap = MF.getSSARegMap();
3962  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
3963
3964  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3965
3966  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3967    SelectBasicBlock(I, MF, FuncInfo);
3968
3969  // Add function live-ins to entry block live-in set.
3970  BasicBlock *EntryBB = &Fn.getEntryBlock();
3971  BB = FuncInfo.MBBMap[EntryBB];
3972  if (!MF.livein_empty())
3973    for (MachineFunction::livein_iterator I = MF.livein_begin(),
3974           E = MF.livein_end(); I != E; ++I)
3975      BB->addLiveIn(I->first);
3976
3977  return true;
3978}
3979
3980SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
3981                                                           unsigned Reg) {
3982  SDOperand Op = getValue(V);
3983  assert((Op.getOpcode() != ISD::CopyFromReg ||
3984          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3985         "Copy from a reg to the same reg!");
3986
3987  // If this type is not legal, we must make sure to not create an invalid
3988  // register use.
3989  MVT::ValueType SrcVT = Op.getValueType();
3990  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3991  if (SrcVT == DestVT) {
3992    return DAG.getCopyToReg(getRoot(), Reg, Op);
3993  } else if (SrcVT == MVT::Vector) {
3994    // Handle copies from generic vectors to registers.
3995    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3996    unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
3997                                             PTyElementVT, PTyLegalElementVT);
3998
3999    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
4000    // MVT::Vector type.
4001    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
4002                     DAG.getConstant(NE, MVT::i32),
4003                     DAG.getValueType(PTyElementVT));
4004
4005    // Loop over all of the elements of the resultant vector,
4006    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
4007    // copying them into output registers.
4008    SmallVector<SDOperand, 8> OutChains;
4009    SDOperand Root = getRoot();
4010    for (unsigned i = 0; i != NE; ++i) {
4011      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
4012                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
4013      if (PTyElementVT == PTyLegalElementVT) {
4014        // Elements are legal.
4015        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4016      } else if (PTyLegalElementVT > PTyElementVT) {
4017        // Elements are promoted.
4018        if (MVT::isFloatingPoint(PTyLegalElementVT))
4019          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
4020        else
4021          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
4022        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4023      } else {
4024        // Elements are expanded.
4025        // The src value is expanded into multiple registers.
4026        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4027                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
4028        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4029                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
4030        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
4031        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
4032      }
4033    }
4034    return DAG.getNode(ISD::TokenFactor, MVT::Other,
4035                       &OutChains[0], OutChains.size());
4036  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
4037    // The src value is promoted to the register.
4038    if (MVT::isFloatingPoint(SrcVT))
4039      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
4040    else
4041      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
4042    return DAG.getCopyToReg(getRoot(), Reg, Op);
4043  } else  {
4044    DestVT = TLI.getTypeToExpandTo(SrcVT);
4045    unsigned NumVals = TLI.getNumElements(SrcVT);
4046    if (NumVals == 1)
4047      return DAG.getCopyToReg(getRoot(), Reg,
4048                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
4049    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
4050    // The src value is expanded into multiple registers.
4051    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4052                               Op, DAG.getConstant(0, TLI.getPointerTy()));
4053    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4054                               Op, DAG.getConstant(1, TLI.getPointerTy()));
4055    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
4056    return DAG.getCopyToReg(Op, Reg+1, Hi);
4057  }
4058}
4059
4060void SelectionDAGISel::
4061LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4062               std::vector<SDOperand> &UnorderedChains) {
4063  // If this is the entry block, emit arguments.
4064  Function &F = *LLVMBB->getParent();
4065  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4066  SDOperand OldRoot = SDL.DAG.getRoot();
4067  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4068
4069  unsigned a = 0;
4070  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4071       AI != E; ++AI, ++a)
4072    if (!AI->use_empty()) {
4073      SDL.setValue(AI, Args[a]);
4074
4075      // If this argument is live outside of the entry block, insert a copy from
4076      // whereever we got it to the vreg that other BB's will reference it as.
4077      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4078      if (VMI != FuncInfo.ValueMap.end()) {
4079        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4080        UnorderedChains.push_back(Copy);
4081      }
4082    }
4083
4084  // Finally, if the target has anything special to do, allow it to do so.
4085  // FIXME: this should insert code into the DAG!
4086  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4087}
4088
4089void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4090       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4091                                         FunctionLoweringInfo &FuncInfo) {
4092  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4093
4094  std::vector<SDOperand> UnorderedChains;
4095
4096  // Lower any arguments needed in this block if this is the entry block.
4097  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4098    LowerArguments(LLVMBB, SDL, UnorderedChains);
4099
4100  BB = FuncInfo.MBBMap[LLVMBB];
4101  SDL.setCurrentBasicBlock(BB);
4102
4103  // Lower all of the non-terminator instructions.
4104  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4105       I != E; ++I)
4106    SDL.visit(*I);
4107
4108  // Lower call part of invoke.
4109  InvokeInst *Invoke = dyn_cast<InvokeInst>(LLVMBB->getTerminator());
4110  if (Invoke) SDL.visitInvoke(*Invoke, false);
4111
4112  // Ensure that all instructions which are used outside of their defining
4113  // blocks are available as virtual registers.
4114  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4115    if (!I->use_empty() && !isa<PHINode>(I)) {
4116      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4117      if (VMI != FuncInfo.ValueMap.end())
4118        UnorderedChains.push_back(
4119                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4120    }
4121
4122  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4123  // ensure constants are generated when needed.  Remember the virtual registers
4124  // that need to be added to the Machine PHI nodes as input.  We cannot just
4125  // directly add them, because expansion might result in multiple MBB's for one
4126  // BB.  As such, the start of the BB might correspond to a different MBB than
4127  // the end.
4128  //
4129  TerminatorInst *TI = LLVMBB->getTerminator();
4130
4131  // Emit constants only once even if used by multiple PHI nodes.
4132  std::map<Constant*, unsigned> ConstantsOut;
4133
4134  // Vector bool would be better, but vector<bool> is really slow.
4135  std::vector<unsigned char> SuccsHandled;
4136  if (TI->getNumSuccessors())
4137    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4138
4139  // Check successor nodes PHI nodes that expect a constant to be available from
4140  // this block.
4141  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4142    BasicBlock *SuccBB = TI->getSuccessor(succ);
4143    if (!isa<PHINode>(SuccBB->begin())) continue;
4144    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4145
4146    // If this terminator has multiple identical successors (common for
4147    // switches), only handle each succ once.
4148    unsigned SuccMBBNo = SuccMBB->getNumber();
4149    if (SuccsHandled[SuccMBBNo]) continue;
4150    SuccsHandled[SuccMBBNo] = true;
4151
4152    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4153    PHINode *PN;
4154
4155    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4156    // nodes and Machine PHI nodes, but the incoming operands have not been
4157    // emitted yet.
4158    for (BasicBlock::iterator I = SuccBB->begin();
4159         (PN = dyn_cast<PHINode>(I)); ++I) {
4160      // Ignore dead phi's.
4161      if (PN->use_empty()) continue;
4162
4163      unsigned Reg;
4164      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4165
4166      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4167        unsigned &RegOut = ConstantsOut[C];
4168        if (RegOut == 0) {
4169          RegOut = FuncInfo.CreateRegForValue(C);
4170          UnorderedChains.push_back(
4171                           SDL.CopyValueToVirtualRegister(C, RegOut));
4172        }
4173        Reg = RegOut;
4174      } else {
4175        Reg = FuncInfo.ValueMap[PHIOp];
4176        if (Reg == 0) {
4177          assert(isa<AllocaInst>(PHIOp) &&
4178                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4179                 "Didn't codegen value into a register!??");
4180          Reg = FuncInfo.CreateRegForValue(PHIOp);
4181          UnorderedChains.push_back(
4182                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4183        }
4184      }
4185
4186      // Remember that this register needs to added to the machine PHI node as
4187      // the input for this MBB.
4188      MVT::ValueType VT = TLI.getValueType(PN->getType());
4189      unsigned NumElements;
4190      if (VT != MVT::Vector)
4191        NumElements = TLI.getNumElements(VT);
4192      else {
4193        MVT::ValueType VT1,VT2;
4194        NumElements =
4195          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
4196                                     VT1, VT2);
4197      }
4198      for (unsigned i = 0, e = NumElements; i != e; ++i)
4199        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4200    }
4201  }
4202  ConstantsOut.clear();
4203
4204  // Turn all of the unordered chains into one factored node.
4205  if (!UnorderedChains.empty()) {
4206    SDOperand Root = SDL.getRoot();
4207    if (Root.getOpcode() != ISD::EntryToken) {
4208      unsigned i = 0, e = UnorderedChains.size();
4209      for (; i != e; ++i) {
4210        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4211        if (UnorderedChains[i].Val->getOperand(0) == Root)
4212          break;  // Don't add the root if we already indirectly depend on it.
4213      }
4214
4215      if (i == e)
4216        UnorderedChains.push_back(Root);
4217    }
4218    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4219                            &UnorderedChains[0], UnorderedChains.size()));
4220  }
4221
4222  // Lower the terminator after the copies are emitted.
4223  if (Invoke) {
4224    // Just the branch part of invoke.
4225    SDL.visitInvoke(*Invoke, true);
4226  } else {
4227    SDL.visit(*LLVMBB->getTerminator());
4228  }
4229
4230  // Copy over any CaseBlock records that may now exist due to SwitchInst
4231  // lowering, as well as any jump table information.
4232  SwitchCases.clear();
4233  SwitchCases = SDL.SwitchCases;
4234  JTCases.clear();
4235  JTCases = SDL.JTCases;
4236
4237  // Make sure the root of the DAG is up-to-date.
4238  DAG.setRoot(SDL.getRoot());
4239}
4240
4241void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4242  // Get alias analysis for load/store combining.
4243  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4244
4245  // Run the DAG combiner in pre-legalize mode.
4246  DAG.Combine(false, AA);
4247
4248  DOUT << "Lowered selection DAG:\n";
4249  DEBUG(DAG.dump());
4250
4251  // Second step, hack on the DAG until it only uses operations and types that
4252  // the target supports.
4253  DAG.Legalize();
4254
4255  DOUT << "Legalized selection DAG:\n";
4256  DEBUG(DAG.dump());
4257
4258  // Run the DAG combiner in post-legalize mode.
4259  DAG.Combine(true, AA);
4260
4261  if (ViewISelDAGs) DAG.viewGraph();
4262
4263  // Third, instruction select all of the operations to machine code, adding the
4264  // code to the MachineBasicBlock.
4265  InstructionSelectBasicBlock(DAG);
4266
4267  DOUT << "Selected machine code:\n";
4268  DEBUG(BB->dump());
4269}
4270
4271void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4272                                        FunctionLoweringInfo &FuncInfo) {
4273  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4274  {
4275    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4276    CurDAG = &DAG;
4277
4278    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4279    // types that are not supported by the target.
4280    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4281
4282    // Second step, emit the lowered DAG as machine code.
4283    CodeGenAndEmitDAG(DAG);
4284  }
4285
4286  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4287  // PHI nodes in successors.
4288  if (SwitchCases.empty() && JTCases.empty()) {
4289    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4290      MachineInstr *PHI = PHINodesToUpdate[i].first;
4291      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4292             "This is not a machine PHI node that we are updating!");
4293      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4294      PHI->addMachineBasicBlockOperand(BB);
4295    }
4296    return;
4297  }
4298
4299  // If the JumpTable record is filled in, then we need to emit a jump table.
4300  // Updating the PHI nodes is tricky in this case, since we need to determine
4301  // whether the PHI is a successor of the range check MBB or the jump table MBB
4302  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4303    // Lower header first, if it wasn't already lowered
4304    if (!JTCases[i].first.Emitted) {
4305      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4306      CurDAG = &HSDAG;
4307      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4308      // Set the current basic block to the mbb we wish to insert the code into
4309      BB = JTCases[i].first.HeaderBB;
4310      HSDL.setCurrentBasicBlock(BB);
4311      // Emit the code
4312      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4313      HSDAG.setRoot(HSDL.getRoot());
4314      CodeGenAndEmitDAG(HSDAG);
4315    }
4316
4317    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4318    CurDAG = &JSDAG;
4319    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4320    // Set the current basic block to the mbb we wish to insert the code into
4321    BB = JTCases[i].second.MBB;
4322    JSDL.setCurrentBasicBlock(BB);
4323    // Emit the code
4324    JSDL.visitJumpTable(JTCases[i].second);
4325    JSDAG.setRoot(JSDL.getRoot());
4326    CodeGenAndEmitDAG(JSDAG);
4327
4328    // Update PHI Nodes
4329    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4330      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4331      MachineBasicBlock *PHIBB = PHI->getParent();
4332      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4333             "This is not a machine PHI node that we are updating!");
4334      if (PHIBB == JTCases[i].second.Default) {
4335        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4336        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4337      }
4338      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4339        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4340        PHI->addMachineBasicBlockOperand(BB);
4341      }
4342    }
4343  }
4344
4345  // If the switch block involved a branch to one of the actual successors, we
4346  // need to update PHI nodes in that block.
4347  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4348    MachineInstr *PHI = PHINodesToUpdate[i].first;
4349    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4350           "This is not a machine PHI node that we are updating!");
4351    if (BB->isSuccessor(PHI->getParent())) {
4352      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4353      PHI->addMachineBasicBlockOperand(BB);
4354    }
4355  }
4356
4357  // If we generated any switch lowering information, build and codegen any
4358  // additional DAGs necessary.
4359  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4360    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4361    CurDAG = &SDAG;
4362    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4363
4364    // Set the current basic block to the mbb we wish to insert the code into
4365    BB = SwitchCases[i].ThisBB;
4366    SDL.setCurrentBasicBlock(BB);
4367
4368    // Emit the code
4369    SDL.visitSwitchCase(SwitchCases[i]);
4370    SDAG.setRoot(SDL.getRoot());
4371    CodeGenAndEmitDAG(SDAG);
4372
4373    // Handle any PHI nodes in successors of this chunk, as if we were coming
4374    // from the original BB before switch expansion.  Note that PHI nodes can
4375    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4376    // handle them the right number of times.
4377    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4378      for (MachineBasicBlock::iterator Phi = BB->begin();
4379           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4380        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4381        for (unsigned pn = 0; ; ++pn) {
4382          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4383          if (PHINodesToUpdate[pn].first == Phi) {
4384            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4385            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4386            break;
4387          }
4388        }
4389      }
4390
4391      // Don't process RHS if same block as LHS.
4392      if (BB == SwitchCases[i].FalseBB)
4393        SwitchCases[i].FalseBB = 0;
4394
4395      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4396      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4397      SwitchCases[i].FalseBB = 0;
4398    }
4399    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4400  }
4401}
4402
4403
4404//===----------------------------------------------------------------------===//
4405/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4406/// target node in the graph.
4407void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4408  if (ViewSchedDAGs) DAG.viewGraph();
4409
4410  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4411
4412  if (!Ctor) {
4413    Ctor = ISHeuristic;
4414    RegisterScheduler::setDefault(Ctor);
4415  }
4416
4417  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4418  BB = SL->Run();
4419  delete SL;
4420}
4421
4422
4423HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4424  return new HazardRecognizer();
4425}
4426
4427//===----------------------------------------------------------------------===//
4428// Helper functions used by the generated instruction selector.
4429//===----------------------------------------------------------------------===//
4430// Calls to these methods are generated by tblgen.
4431
4432/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4433/// the dag combiner simplified the 255, we still want to match.  RHS is the
4434/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4435/// specified in the .td file (e.g. 255).
4436bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4437                                    int64_t DesiredMaskS) {
4438  uint64_t ActualMask = RHS->getValue();
4439  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4440
4441  // If the actual mask exactly matches, success!
4442  if (ActualMask == DesiredMask)
4443    return true;
4444
4445  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4446  if (ActualMask & ~DesiredMask)
4447    return false;
4448
4449  // Otherwise, the DAG Combiner may have proven that the value coming in is
4450  // either already zero or is not demanded.  Check for known zero input bits.
4451  uint64_t NeededMask = DesiredMask & ~ActualMask;
4452  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4453    return true;
4454
4455  // TODO: check to see if missing bits are just not demanded.
4456
4457  // Otherwise, this pattern doesn't match.
4458  return false;
4459}
4460
4461/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4462/// the dag combiner simplified the 255, we still want to match.  RHS is the
4463/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4464/// specified in the .td file (e.g. 255).
4465bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4466                                    int64_t DesiredMaskS) {
4467  uint64_t ActualMask = RHS->getValue();
4468  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4469
4470  // If the actual mask exactly matches, success!
4471  if (ActualMask == DesiredMask)
4472    return true;
4473
4474  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4475  if (ActualMask & ~DesiredMask)
4476    return false;
4477
4478  // Otherwise, the DAG Combiner may have proven that the value coming in is
4479  // either already zero or is not demanded.  Check for known zero input bits.
4480  uint64_t NeededMask = DesiredMask & ~ActualMask;
4481
4482  uint64_t KnownZero, KnownOne;
4483  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4484
4485  // If all the missing bits in the or are already known to be set, match!
4486  if ((NeededMask & KnownOne) == NeededMask)
4487    return true;
4488
4489  // TODO: check to see if missing bits are just not demanded.
4490
4491  // Otherwise, this pattern doesn't match.
4492  return false;
4493}
4494
4495
4496/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4497/// by tblgen.  Others should not call it.
4498void SelectionDAGISel::
4499SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4500  std::vector<SDOperand> InOps;
4501  std::swap(InOps, Ops);
4502
4503  Ops.push_back(InOps[0]);  // input chain.
4504  Ops.push_back(InOps[1]);  // input asm string.
4505
4506  unsigned i = 2, e = InOps.size();
4507  if (InOps[e-1].getValueType() == MVT::Flag)
4508    --e;  // Don't process a flag operand if it is here.
4509
4510  while (i != e) {
4511    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4512    if ((Flags & 7) != 4 /*MEM*/) {
4513      // Just skip over this operand, copying the operands verbatim.
4514      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4515      i += (Flags >> 3) + 1;
4516    } else {
4517      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4518      // Otherwise, this is a memory operand.  Ask the target to select it.
4519      std::vector<SDOperand> SelOps;
4520      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4521        cerr << "Could not match memory address.  Inline asm failure!\n";
4522        exit(1);
4523      }
4524
4525      // Add this to the output node.
4526      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4527      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4528                                          IntPtrTy));
4529      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4530      i += 2;
4531    }
4532  }
4533
4534  // Add the flag input back if present.
4535  if (e != InOps.size())
4536    Ops.push_back(InOps.back());
4537}
4538