SelectionDAGISel.cpp revision 211ffa13519cadfb7f9baf4c8447fa055bf38fe8
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
37#include "llvm/CodeGen/SchedulerRegistry.h"
38#include "llvm/CodeGen/SelectionDAG.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetIntrinsicInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/ADT/Statistic.h"
51#include <algorithm>
52using namespace llvm;
53
54STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
55STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
56
57static cl::opt<bool>
58EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
59          cl::desc("Enable verbose messages in the \"fast\" "
60                   "instruction selector"));
61static cl::opt<bool>
62EnableFastISelAbort("fast-isel-abort", cl::Hidden,
63          cl::desc("Enable abort calls when \"fast\" instruction fails"));
64
65#ifndef NDEBUG
66static cl::opt<bool>
67ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
68          cl::desc("Pop up a window to show dags before the first "
69                   "dag combine pass"));
70static cl::opt<bool>
71ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
72          cl::desc("Pop up a window to show dags before legalize types"));
73static cl::opt<bool>
74ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
75          cl::desc("Pop up a window to show dags before legalize"));
76static cl::opt<bool>
77ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
78          cl::desc("Pop up a window to show dags before the second "
79                   "dag combine pass"));
80static cl::opt<bool>
81ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
82          cl::desc("Pop up a window to show dags before the post legalize types"
83                   " dag combine pass"));
84static cl::opt<bool>
85ViewISelDAGs("view-isel-dags", cl::Hidden,
86          cl::desc("Pop up a window to show isel dags as they are selected"));
87static cl::opt<bool>
88ViewSchedDAGs("view-sched-dags", cl::Hidden,
89          cl::desc("Pop up a window to show sched dags as they are processed"));
90static cl::opt<bool>
91ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
92      cl::desc("Pop up a window to show SUnit dags after they are processed"));
93#else
94static const bool ViewDAGCombine1 = false,
95                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
96                  ViewDAGCombine2 = false,
97                  ViewDAGCombineLT = false,
98                  ViewISelDAGs = false, ViewSchedDAGs = false,
99                  ViewSUnitDAGs = false;
100#endif
101
102//===---------------------------------------------------------------------===//
103///
104/// RegisterScheduler class - Track the registration of instruction schedulers.
105///
106//===---------------------------------------------------------------------===//
107MachinePassRegistry RegisterScheduler::Registry;
108
109//===---------------------------------------------------------------------===//
110///
111/// ISHeuristic command line option for instruction schedulers.
112///
113//===---------------------------------------------------------------------===//
114static cl::opt<RegisterScheduler::FunctionPassCtor, false,
115               RegisterPassParser<RegisterScheduler> >
116ISHeuristic("pre-RA-sched",
117            cl::init(&createDefaultScheduler),
118            cl::desc("Instruction schedulers available (before register"
119                     " allocation):"));
120
121static RegisterScheduler
122defaultListDAGScheduler("default", "Best scheduler for the target",
123                        createDefaultScheduler);
124
125namespace llvm {
126  //===--------------------------------------------------------------------===//
127  /// createDefaultScheduler - This creates an instruction scheduler appropriate
128  /// for the target.
129  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
130                                             CodeGenOpt::Level OptLevel) {
131    const TargetLowering &TLI = IS->getTargetLowering();
132
133    if (OptLevel == CodeGenOpt::None)
134      return createFastDAGScheduler(IS, OptLevel);
135    if (TLI.getSchedulingPreference() == Sched::Latency)
136      return createTDListDAGScheduler(IS, OptLevel);
137    assert(TLI.getSchedulingPreference() == Sched::RegPressure &&
138           "Unknown sched type!");
139    return createBURRListDAGScheduler(IS, OptLevel);
140  }
141}
142
143// EmitInstrWithCustomInserter - This method should be implemented by targets
144// that mark instructions with the 'usesCustomInserter' flag.  These
145// instructions are special in various ways, which require special support to
146// insert.  The specified MachineInstr is created but not inserted into any
147// basic blocks, and this method is called to expand it into a sequence of
148// instructions, potentially also creating new basic blocks and control flow.
149// When new basic blocks are inserted and the edges from MBB to its successors
150// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
151// DenseMap.
152MachineBasicBlock *
153TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
154                                            MachineBasicBlock *MBB) const {
155#ifndef NDEBUG
156  dbgs() << "If a target marks an instruction with "
157          "'usesCustomInserter', it must implement "
158          "TargetLowering::EmitInstrWithCustomInserter!";
159#endif
160  llvm_unreachable(0);
161  return 0;
162}
163
164//===----------------------------------------------------------------------===//
165// SelectionDAGISel code
166//===----------------------------------------------------------------------===//
167
168SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
169  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
170  FuncInfo(new FunctionLoweringInfo(TLI)),
171  CurDAG(new SelectionDAG(tm, *FuncInfo)),
172  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
173  GFI(),
174  OptLevel(OL),
175  DAGSize(0)
176{}
177
178SelectionDAGISel::~SelectionDAGISel() {
179  delete SDB;
180  delete CurDAG;
181  delete FuncInfo;
182}
183
184void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
185  AU.addRequired<AliasAnalysis>();
186  AU.addPreserved<AliasAnalysis>();
187  AU.addRequired<GCModuleInfo>();
188  AU.addPreserved<GCModuleInfo>();
189  MachineFunctionPass::getAnalysisUsage(AU);
190}
191
192bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
193  // Do some sanity-checking on the command-line options.
194  assert((!EnableFastISelVerbose || EnableFastISel) &&
195         "-fast-isel-verbose requires -fast-isel");
196  assert((!EnableFastISelAbort || EnableFastISel) &&
197         "-fast-isel-abort requires -fast-isel");
198
199  const Function &Fn = *mf.getFunction();
200  const TargetInstrInfo &TII = *TM.getInstrInfo();
201  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
202
203  MF = &mf;
204  RegInfo = &MF->getRegInfo();
205  AA = &getAnalysis<AliasAnalysis>();
206  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
207
208  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
209
210  CurDAG->init(*MF);
211  FuncInfo->set(Fn, *MF, EnableFastISel);
212  SDB->init(GFI, *AA);
213
214  SelectAllBasicBlocks(Fn);
215
216  // If the first basic block in the function has live ins that need to be
217  // copied into vregs, emit the copies into the top of the block before
218  // emitting the code for the block.
219  MachineBasicBlock *EntryMBB = MF->begin();
220  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
221
222  // Insert DBG_VALUE instructions for function arguments to the entry block.
223  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
224    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
225    unsigned Reg = MI->getOperand(0).getReg();
226    if (TargetRegisterInfo::isPhysicalRegister(Reg))
227      EntryMBB->insert(EntryMBB->begin(), MI);
228    else {
229      MachineInstr *Def = RegInfo->getVRegDef(Reg);
230      MachineBasicBlock::iterator InsertPos = Def;
231      // FIXME: VR def may not be in entry block.
232      Def->getParent()->insert(llvm::next(InsertPos), MI);
233    }
234  }
235
236  // Determine if there are any calls in this machine function.
237  MachineFrameInfo *MFI = MF->getFrameInfo();
238  if (!MFI->hasCalls()) {
239    for (MachineFunction::const_iterator
240           I = MF->begin(), E = MF->end(); I != E; ++I) {
241      const MachineBasicBlock *MBB = I;
242      for (MachineBasicBlock::const_iterator
243             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
244        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
245        if (II->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
246          MFI->setHasCalls(true);
247          goto done;
248        }
249      }
250    }
251  done:;
252  }
253
254  // Release function-specific state. SDB and CurDAG are already cleared
255  // at this point.
256  FuncInfo->clear();
257
258  return true;
259}
260
261MachineBasicBlock *
262SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
263                                   const BasicBlock *LLVMBB,
264                                   BasicBlock::const_iterator Begin,
265                                   BasicBlock::const_iterator End,
266                                   bool &HadTailCall) {
267  // Lower all of the non-terminator instructions. If a call is emitted
268  // as a tail call, cease emitting nodes for this block. Terminators
269  // are handled below.
270  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
271    SDB->visit(*I);
272
273  // Make sure the root of the DAG is up-to-date.
274  CurDAG->setRoot(SDB->getControlRoot());
275  HadTailCall = SDB->HasTailCall;
276  SDB->clear();
277
278  // Final step, emit the lowered DAG as machine code.
279  return CodeGenAndEmitDAG(BB);
280}
281
282namespace {
283/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
284/// nodes from the worklist.
285class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
286  SmallVector<SDNode*, 128> &Worklist;
287  SmallPtrSet<SDNode*, 128> &InWorklist;
288public:
289  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
290                       SmallPtrSet<SDNode*, 128> &inwl)
291    : Worklist(wl), InWorklist(inwl) {}
292
293  void RemoveFromWorklist(SDNode *N) {
294    if (!InWorklist.erase(N)) return;
295
296    SmallVector<SDNode*, 128>::iterator I =
297    std::find(Worklist.begin(), Worklist.end(), N);
298    assert(I != Worklist.end() && "Not in worklist");
299
300    *I = Worklist.back();
301    Worklist.pop_back();
302  }
303
304  virtual void NodeDeleted(SDNode *N, SDNode *E) {
305    RemoveFromWorklist(N);
306  }
307
308  virtual void NodeUpdated(SDNode *N) {
309    // Ignore updates.
310  }
311};
312}
313
314/// TrivialTruncElim - Eliminate some trivial nops that can result from
315/// ShrinkDemandedOps: (trunc (ext n)) -> n.
316static bool TrivialTruncElim(SDValue Op,
317                             TargetLowering::TargetLoweringOpt &TLO) {
318  SDValue N0 = Op.getOperand(0);
319  EVT VT = Op.getValueType();
320  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
321       N0.getOpcode() == ISD::SIGN_EXTEND ||
322       N0.getOpcode() == ISD::ANY_EXTEND) &&
323      N0.getOperand(0).getValueType() == VT) {
324    return TLO.CombineTo(Op, N0.getOperand(0));
325  }
326  return false;
327}
328
329/// ShrinkDemandedOps - A late transformation pass that shrink expressions
330/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
331/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
332void SelectionDAGISel::ShrinkDemandedOps() {
333  SmallVector<SDNode*, 128> Worklist;
334  SmallPtrSet<SDNode*, 128> InWorklist;
335
336  // Add all the dag nodes to the worklist.
337  Worklist.reserve(CurDAG->allnodes_size());
338  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
339       E = CurDAG->allnodes_end(); I != E; ++I) {
340    Worklist.push_back(I);
341    InWorklist.insert(I);
342  }
343
344  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
345  while (!Worklist.empty()) {
346    SDNode *N = Worklist.pop_back_val();
347    InWorklist.erase(N);
348
349    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
350      // Deleting this node may make its operands dead, add them to the worklist
351      // if they aren't already there.
352      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
353        if (InWorklist.insert(N->getOperand(i).getNode()))
354          Worklist.push_back(N->getOperand(i).getNode());
355
356      CurDAG->DeleteNode(N);
357      continue;
358    }
359
360    // Run ShrinkDemandedOp on scalar binary operations.
361    if (N->getNumValues() != 1 ||
362        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
363      continue;
364
365    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
366    APInt Demanded = APInt::getAllOnesValue(BitWidth);
367    APInt KnownZero, KnownOne;
368    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
369                                  KnownZero, KnownOne, TLO) &&
370        (N->getOpcode() != ISD::TRUNCATE ||
371         !TrivialTruncElim(SDValue(N, 0), TLO)))
372      continue;
373
374    // Revisit the node.
375    assert(!InWorklist.count(N) && "Already in worklist");
376    Worklist.push_back(N);
377    InWorklist.insert(N);
378
379    // Replace the old value with the new one.
380    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
381          TLO.Old.getNode()->dump(CurDAG);
382          errs() << "\nWith: ";
383          TLO.New.getNode()->dump(CurDAG);
384          errs() << '\n');
385
386    if (InWorklist.insert(TLO.New.getNode()))
387      Worklist.push_back(TLO.New.getNode());
388
389    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
390    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
391
392    if (!TLO.Old.getNode()->use_empty()) continue;
393
394    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
395         i != e; ++i) {
396      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
397      if (OpNode->hasOneUse()) {
398        // Add OpNode to the end of the list to revisit.
399        DeadNodes.RemoveFromWorklist(OpNode);
400        Worklist.push_back(OpNode);
401        InWorklist.insert(OpNode);
402      }
403    }
404
405    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
406    CurDAG->DeleteNode(TLO.Old.getNode());
407  }
408}
409
410void SelectionDAGISel::ComputeLiveOutVRegInfo() {
411  SmallPtrSet<SDNode*, 128> VisitedNodes;
412  SmallVector<SDNode*, 128> Worklist;
413
414  Worklist.push_back(CurDAG->getRoot().getNode());
415
416  APInt Mask;
417  APInt KnownZero;
418  APInt KnownOne;
419
420  do {
421    SDNode *N = Worklist.pop_back_val();
422
423    // If we've already seen this node, ignore it.
424    if (!VisitedNodes.insert(N))
425      continue;
426
427    // Otherwise, add all chain operands to the worklist.
428    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
429      if (N->getOperand(i).getValueType() == MVT::Other)
430        Worklist.push_back(N->getOperand(i).getNode());
431
432    // If this is a CopyToReg with a vreg dest, process it.
433    if (N->getOpcode() != ISD::CopyToReg)
434      continue;
435
436    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
437    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
438      continue;
439
440    // Ignore non-scalar or non-integer values.
441    SDValue Src = N->getOperand(2);
442    EVT SrcVT = Src.getValueType();
443    if (!SrcVT.isInteger() || SrcVT.isVector())
444      continue;
445
446    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
447    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
448    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
449
450    // Only install this information if it tells us something.
451    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
452      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
453      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
454        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
455      FunctionLoweringInfo::LiveOutInfo &LOI =
456        FuncInfo->LiveOutRegInfo[DestReg];
457      LOI.NumSignBits = NumSignBits;
458      LOI.KnownOne = KnownOne;
459      LOI.KnownZero = KnownZero;
460    }
461  } while (!Worklist.empty());
462}
463
464MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
465  std::string GroupName;
466  if (TimePassesIsEnabled)
467    GroupName = "Instruction Selection and Scheduling";
468  std::string BlockName;
469  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
470      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
471      ViewSUnitDAGs)
472    BlockName = MF->getFunction()->getNameStr() + ":" +
473                BB->getBasicBlock()->getNameStr();
474
475  DEBUG(dbgs() << "Initial selection DAG:\n");
476  DEBUG(CurDAG->dump());
477
478  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
479
480  // Run the DAG combiner in pre-legalize mode.
481  if (TimePassesIsEnabled) {
482    NamedRegionTimer T("DAG Combining 1", GroupName);
483    CurDAG->Combine(Unrestricted, *AA, OptLevel);
484  } else {
485    CurDAG->Combine(Unrestricted, *AA, OptLevel);
486  }
487
488  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
489  DEBUG(CurDAG->dump());
490
491  // Second step, hack on the DAG until it only uses operations and types that
492  // the target supports.
493  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
494                                               BlockName);
495
496  bool Changed;
497  if (TimePassesIsEnabled) {
498    NamedRegionTimer T("Type Legalization", GroupName);
499    Changed = CurDAG->LegalizeTypes();
500  } else {
501    Changed = CurDAG->LegalizeTypes();
502  }
503
504  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
505  DEBUG(CurDAG->dump());
506
507  if (Changed) {
508    if (ViewDAGCombineLT)
509      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
510
511    // Run the DAG combiner in post-type-legalize mode.
512    if (TimePassesIsEnabled) {
513      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
514      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
515    } else {
516      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
517    }
518
519    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
520    DEBUG(CurDAG->dump());
521  }
522
523  if (TimePassesIsEnabled) {
524    NamedRegionTimer T("Vector Legalization", GroupName);
525    Changed = CurDAG->LegalizeVectors();
526  } else {
527    Changed = CurDAG->LegalizeVectors();
528  }
529
530  if (Changed) {
531    if (TimePassesIsEnabled) {
532      NamedRegionTimer T("Type Legalization 2", GroupName);
533      CurDAG->LegalizeTypes();
534    } else {
535      CurDAG->LegalizeTypes();
536    }
537
538    if (ViewDAGCombineLT)
539      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
540
541    // Run the DAG combiner in post-type-legalize mode.
542    if (TimePassesIsEnabled) {
543      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
544      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
545    } else {
546      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
547    }
548
549    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
550    DEBUG(CurDAG->dump());
551  }
552
553  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
554
555  if (TimePassesIsEnabled) {
556    NamedRegionTimer T("DAG Legalization", GroupName);
557    CurDAG->Legalize(OptLevel);
558  } else {
559    CurDAG->Legalize(OptLevel);
560  }
561
562  DEBUG(dbgs() << "Legalized selection DAG:\n");
563  DEBUG(CurDAG->dump());
564
565  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
566
567  // Run the DAG combiner in post-legalize mode.
568  if (TimePassesIsEnabled) {
569    NamedRegionTimer T("DAG Combining 2", GroupName);
570    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
571  } else {
572    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
573  }
574
575  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
576  DEBUG(CurDAG->dump());
577
578  if (OptLevel != CodeGenOpt::None) {
579    ShrinkDemandedOps();
580    ComputeLiveOutVRegInfo();
581  }
582
583  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
584
585  // Third, instruction select all of the operations to machine code, adding the
586  // code to the MachineBasicBlock.
587  if (TimePassesIsEnabled) {
588    NamedRegionTimer T("Instruction Selection", GroupName);
589    DoInstructionSelection();
590  } else {
591    DoInstructionSelection();
592  }
593
594  DEBUG(dbgs() << "Selected selection DAG:\n");
595  DEBUG(CurDAG->dump());
596
597  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
598
599  // Schedule machine code.
600  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
601  if (TimePassesIsEnabled) {
602    NamedRegionTimer T("Instruction Scheduling", GroupName);
603    Scheduler->Run(CurDAG, BB, BB->end());
604  } else {
605    Scheduler->Run(CurDAG, BB, BB->end());
606  }
607
608  if (ViewSUnitDAGs) Scheduler->viewGraph();
609
610  // Emit machine code to BB.  This can change 'BB' to the last block being
611  // inserted into.
612  if (TimePassesIsEnabled) {
613    NamedRegionTimer T("Instruction Creation", GroupName);
614    BB = Scheduler->EmitSchedule();
615  } else {
616    BB = Scheduler->EmitSchedule();
617  }
618
619  // Free the scheduler state.
620  if (TimePassesIsEnabled) {
621    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
622    delete Scheduler;
623  } else {
624    delete Scheduler;
625  }
626
627  // Free the SelectionDAG state, now that we're finished with it.
628  CurDAG->clear();
629
630  return BB;
631}
632
633void SelectionDAGISel::DoInstructionSelection() {
634  DEBUG(errs() << "===== Instruction selection begins:\n");
635
636  PreprocessISelDAG();
637
638  // Select target instructions for the DAG.
639  {
640    // Number all nodes with a topological order and set DAGSize.
641    DAGSize = CurDAG->AssignTopologicalOrder();
642
643    // Create a dummy node (which is not added to allnodes), that adds
644    // a reference to the root node, preventing it from being deleted,
645    // and tracking any changes of the root.
646    HandleSDNode Dummy(CurDAG->getRoot());
647    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
648    ++ISelPosition;
649
650    // The AllNodes list is now topological-sorted. Visit the
651    // nodes by starting at the end of the list (the root of the
652    // graph) and preceding back toward the beginning (the entry
653    // node).
654    while (ISelPosition != CurDAG->allnodes_begin()) {
655      SDNode *Node = --ISelPosition;
656      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
657      // but there are currently some corner cases that it misses. Also, this
658      // makes it theoretically possible to disable the DAGCombiner.
659      if (Node->use_empty())
660        continue;
661
662      SDNode *ResNode = Select(Node);
663
664      // FIXME: This is pretty gross.  'Select' should be changed to not return
665      // anything at all and this code should be nuked with a tactical strike.
666
667      // If node should not be replaced, continue with the next one.
668      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
669        continue;
670      // Replace node.
671      if (ResNode)
672        ReplaceUses(Node, ResNode);
673
674      // If after the replacement this node is not used any more,
675      // remove this dead node.
676      if (Node->use_empty()) { // Don't delete EntryToken, etc.
677        ISelUpdater ISU(ISelPosition);
678        CurDAG->RemoveDeadNode(Node, &ISU);
679      }
680    }
681
682    CurDAG->setRoot(Dummy.getValue());
683  }
684
685  DEBUG(errs() << "===== Instruction selection ends:\n");
686
687  PostprocessISelDAG();
688}
689
690/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
691/// do other setup for EH landing-pad blocks.
692void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
693  // Add a label to mark the beginning of the landing pad.  Deletion of the
694  // landing pad can thus be detected via the MachineModuleInfo.
695  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
696
697  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
698  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
699
700  // Mark exception register as live in.
701  unsigned Reg = TLI.getExceptionAddressRegister();
702  if (Reg) BB->addLiveIn(Reg);
703
704  // Mark exception selector register as live in.
705  Reg = TLI.getExceptionSelectorRegister();
706  if (Reg) BB->addLiveIn(Reg);
707
708  // FIXME: Hack around an exception handling flaw (PR1508): the personality
709  // function and list of typeids logically belong to the invoke (or, if you
710  // like, the basic block containing the invoke), and need to be associated
711  // with it in the dwarf exception handling tables.  Currently however the
712  // information is provided by an intrinsic (eh.selector) that can be moved
713  // to unexpected places by the optimizers: if the unwind edge is critical,
714  // then breaking it can result in the intrinsics being in the successor of
715  // the landing pad, not the landing pad itself.  This results
716  // in exceptions not being caught because no typeids are associated with
717  // the invoke.  This may not be the only way things can go wrong, but it
718  // is the only way we try to work around for the moment.
719  const BasicBlock *LLVMBB = BB->getBasicBlock();
720  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
721
722  if (Br && Br->isUnconditional()) { // Critical edge?
723    BasicBlock::const_iterator I, E;
724    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
725      if (isa<EHSelectorInst>(I))
726        break;
727
728    if (I == E)
729      // No catch info found - try to extract some from the successor.
730      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
731  }
732}
733
734void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
735  // Initialize the Fast-ISel state, if needed.
736  FastISel *FastIS = 0;
737  if (EnableFastISel)
738    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
739                                FuncInfo->StaticAllocaMap,
740                                FuncInfo->PHINodesToUpdate
741#ifndef NDEBUG
742                                , FuncInfo->CatchInfoLost
743#endif
744                                );
745
746  // Iterate over all basic blocks in the function.
747  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
748    const BasicBlock *LLVMBB = &*I;
749    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
750
751    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
752    BasicBlock::const_iterator const End = LLVMBB->end();
753    BasicBlock::const_iterator BI = Begin;
754
755    // Lower any arguments needed in this block if this is the entry block.
756    if (LLVMBB == &Fn.getEntryBlock())
757      LowerArguments(LLVMBB);
758
759    // Setup an EH landing-pad block.
760    if (BB->isLandingPad())
761      PrepareEHLandingPad(BB);
762
763    // Before doing SelectionDAG ISel, see if FastISel has been requested.
764    if (FastIS) {
765      // Emit code for any incoming arguments. This must happen before
766      // beginning FastISel on the entry block.
767      if (LLVMBB == &Fn.getEntryBlock()) {
768        CurDAG->setRoot(SDB->getControlRoot());
769        SDB->clear();
770        BB = CodeGenAndEmitDAG(BB);
771      }
772      FastIS->startNewBlock(BB);
773      // Do FastISel on as many instructions as possible.
774      for (; BI != End; ++BI) {
775        // Try to select the instruction with FastISel.
776        if (FastIS->SelectInstruction(BI))
777          continue;
778
779        // Then handle certain instructions as single-LLVM-Instruction blocks.
780        if (isa<CallInst>(BI)) {
781          ++NumFastIselFailures;
782          if (EnableFastISelVerbose || EnableFastISelAbort) {
783            dbgs() << "FastISel missed call: ";
784            BI->dump();
785          }
786
787          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
788            unsigned &R = FuncInfo->ValueMap[BI];
789            if (!R)
790              R = FuncInfo->CreateRegForValue(BI);
791          }
792
793          bool HadTailCall = false;
794          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
795
796          // If the call was emitted as a tail call, we're done with the block.
797          if (HadTailCall) {
798            BI = End;
799            break;
800          }
801
802          // If the instruction was codegen'd with multiple blocks,
803          // inform the FastISel object where to resume inserting.
804          FastIS->setCurrentBlock(BB);
805          continue;
806        }
807
808        // Otherwise, give up on FastISel for the rest of the block.
809        // For now, be a little lenient about non-branch terminators.
810        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
811          ++NumFastIselFailures;
812          if (EnableFastISelVerbose || EnableFastISelAbort) {
813            dbgs() << "FastISel miss: ";
814            BI->dump();
815          }
816          if (EnableFastISelAbort)
817            // The "fast" selector couldn't handle something and bailed.
818            // For the purpose of debugging, just abort.
819            llvm_unreachable("FastISel didn't select the entire block");
820        }
821        break;
822      }
823    }
824
825    // Run SelectionDAG instruction selection on the remainder of the block
826    // not handled by FastISel. If FastISel is not run, this is the entire
827    // block.
828    if (BI != End) {
829      bool HadTailCall;
830      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
831    }
832
833    FinishBasicBlock(BB);
834    FuncInfo->PHINodesToUpdate.clear();
835  }
836
837  delete FastIS;
838}
839
840void
841SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
842
843  DEBUG(dbgs() << "Total amount of phi nodes to update: "
844               << FuncInfo->PHINodesToUpdate.size() << "\n");
845  DEBUG(for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
846          dbgs() << "Node " << i << " : ("
847                 << FuncInfo->PHINodesToUpdate[i].first
848                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
849
850  // Next, now that we know what the last MBB the LLVM BB expanded is, update
851  // PHI nodes in successors.
852  if (SDB->SwitchCases.empty() &&
853      SDB->JTCases.empty() &&
854      SDB->BitTestCases.empty()) {
855    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
856      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
857      assert(PHI->isPHI() &&
858             "This is not a machine PHI node that we are updating!");
859      if (!BB->isSuccessor(PHI->getParent()))
860        continue;
861      PHI->addOperand(
862        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
863      PHI->addOperand(MachineOperand::CreateMBB(BB));
864    }
865    return;
866  }
867
868  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
869    // Lower header first, if it wasn't already lowered
870    if (!SDB->BitTestCases[i].Emitted) {
871      // Set the current basic block to the mbb we wish to insert the code into
872      BB = SDB->BitTestCases[i].Parent;
873      // Emit the code
874      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
875      CurDAG->setRoot(SDB->getRoot());
876      SDB->clear();
877      BB = CodeGenAndEmitDAG(BB);
878    }
879
880    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
881      // Set the current basic block to the mbb we wish to insert the code into
882      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
883      // Emit the code
884      if (j+1 != ej)
885        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
886                              SDB->BitTestCases[i].Reg,
887                              SDB->BitTestCases[i].Cases[j],
888                              BB);
889      else
890        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
891                              SDB->BitTestCases[i].Reg,
892                              SDB->BitTestCases[i].Cases[j],
893                              BB);
894
895
896      CurDAG->setRoot(SDB->getRoot());
897      SDB->clear();
898      BB = CodeGenAndEmitDAG(BB);
899    }
900
901    // Update PHI Nodes
902    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
903         pi != pe; ++pi) {
904      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
905      MachineBasicBlock *PHIBB = PHI->getParent();
906      assert(PHI->isPHI() &&
907             "This is not a machine PHI node that we are updating!");
908      // This is "default" BB. We have two jumps to it. From "header" BB and
909      // from last "case" BB.
910      if (PHIBB == SDB->BitTestCases[i].Default) {
911        PHI->addOperand(MachineOperand::
912                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
913                                  false));
914        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
915        PHI->addOperand(MachineOperand::
916                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
917                                  false));
918        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
919                                                  back().ThisBB));
920      }
921      // One of "cases" BB.
922      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
923           j != ej; ++j) {
924        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
925        if (cBB->isSuccessor(PHIBB)) {
926          PHI->addOperand(MachineOperand::
927                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
928                                    false));
929          PHI->addOperand(MachineOperand::CreateMBB(cBB));
930        }
931      }
932    }
933  }
934  SDB->BitTestCases.clear();
935
936  // If the JumpTable record is filled in, then we need to emit a jump table.
937  // Updating the PHI nodes is tricky in this case, since we need to determine
938  // whether the PHI is a successor of the range check MBB or the jump table MBB
939  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
940    // Lower header first, if it wasn't already lowered
941    if (!SDB->JTCases[i].first.Emitted) {
942      // Set the current basic block to the mbb we wish to insert the code into
943      BB = SDB->JTCases[i].first.HeaderBB;
944      // Emit the code
945      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
946                                BB);
947      CurDAG->setRoot(SDB->getRoot());
948      SDB->clear();
949      BB = CodeGenAndEmitDAG(BB);
950    }
951
952    // Set the current basic block to the mbb we wish to insert the code into
953    BB = SDB->JTCases[i].second.MBB;
954    // Emit the code
955    SDB->visitJumpTable(SDB->JTCases[i].second);
956    CurDAG->setRoot(SDB->getRoot());
957    SDB->clear();
958    BB = CodeGenAndEmitDAG(BB);
959
960    // Update PHI Nodes
961    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
962         pi != pe; ++pi) {
963      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
964      MachineBasicBlock *PHIBB = PHI->getParent();
965      assert(PHI->isPHI() &&
966             "This is not a machine PHI node that we are updating!");
967      // "default" BB. We can go there only from header BB.
968      if (PHIBB == SDB->JTCases[i].second.Default) {
969        PHI->addOperand
970          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
971                                     false));
972        PHI->addOperand
973          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
974      }
975      // JT BB. Just iterate over successors here
976      if (BB->isSuccessor(PHIBB)) {
977        PHI->addOperand
978          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
979                                     false));
980        PHI->addOperand(MachineOperand::CreateMBB(BB));
981      }
982    }
983  }
984  SDB->JTCases.clear();
985
986  // If the switch block involved a branch to one of the actual successors, we
987  // need to update PHI nodes in that block.
988  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
989    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
990    assert(PHI->isPHI() &&
991           "This is not a machine PHI node that we are updating!");
992    if (BB->isSuccessor(PHI->getParent())) {
993      PHI->addOperand(
994        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
995      PHI->addOperand(MachineOperand::CreateMBB(BB));
996    }
997  }
998
999  // If we generated any switch lowering information, build and codegen any
1000  // additional DAGs necessary.
1001  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1002    // Set the current basic block to the mbb we wish to insert the code into
1003    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1004
1005    // Determine the unique successors.
1006    SmallVector<MachineBasicBlock *, 2> Succs;
1007    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1008    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1009      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1010
1011    // Emit the code. Note that this could result in ThisBB being split, so
1012    // we need to check for updates.
1013    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
1014    CurDAG->setRoot(SDB->getRoot());
1015    SDB->clear();
1016    ThisBB = CodeGenAndEmitDAG(BB);
1017
1018    // Handle any PHI nodes in successors of this chunk, as if we were coming
1019    // from the original BB before switch expansion.  Note that PHI nodes can
1020    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1021    // handle them the right number of times.
1022    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1023      BB = Succs[i];
1024      // BB may have been removed from the CFG if a branch was constant folded.
1025      if (ThisBB->isSuccessor(BB)) {
1026        for (MachineBasicBlock::iterator Phi = BB->begin();
1027             Phi != BB->end() && Phi->isPHI();
1028             ++Phi) {
1029          // This value for this PHI node is recorded in PHINodesToUpdate.
1030          for (unsigned pn = 0; ; ++pn) {
1031            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1032                   "Didn't find PHI entry!");
1033            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1034              Phi->addOperand(MachineOperand::
1035                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1036                                        false));
1037              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1038              break;
1039            }
1040          }
1041        }
1042      }
1043    }
1044  }
1045  SDB->SwitchCases.clear();
1046}
1047
1048
1049/// Create the scheduler. If a specific scheduler was specified
1050/// via the SchedulerRegistry, use it, otherwise select the
1051/// one preferred by the target.
1052///
1053ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1054  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1055
1056  if (!Ctor) {
1057    Ctor = ISHeuristic;
1058    RegisterScheduler::setDefault(Ctor);
1059  }
1060
1061  return Ctor(this, OptLevel);
1062}
1063
1064ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1065  return new ScheduleHazardRecognizer();
1066}
1067
1068//===----------------------------------------------------------------------===//
1069// Helper functions used by the generated instruction selector.
1070//===----------------------------------------------------------------------===//
1071// Calls to these methods are generated by tblgen.
1072
1073/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1074/// the dag combiner simplified the 255, we still want to match.  RHS is the
1075/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1076/// specified in the .td file (e.g. 255).
1077bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1078                                    int64_t DesiredMaskS) const {
1079  const APInt &ActualMask = RHS->getAPIntValue();
1080  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1081
1082  // If the actual mask exactly matches, success!
1083  if (ActualMask == DesiredMask)
1084    return true;
1085
1086  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1087  if (ActualMask.intersects(~DesiredMask))
1088    return false;
1089
1090  // Otherwise, the DAG Combiner may have proven that the value coming in is
1091  // either already zero or is not demanded.  Check for known zero input bits.
1092  APInt NeededMask = DesiredMask & ~ActualMask;
1093  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1094    return true;
1095
1096  // TODO: check to see if missing bits are just not demanded.
1097
1098  // Otherwise, this pattern doesn't match.
1099  return false;
1100}
1101
1102/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1103/// the dag combiner simplified the 255, we still want to match.  RHS is the
1104/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1105/// specified in the .td file (e.g. 255).
1106bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1107                                   int64_t DesiredMaskS) const {
1108  const APInt &ActualMask = RHS->getAPIntValue();
1109  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1110
1111  // If the actual mask exactly matches, success!
1112  if (ActualMask == DesiredMask)
1113    return true;
1114
1115  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1116  if (ActualMask.intersects(~DesiredMask))
1117    return false;
1118
1119  // Otherwise, the DAG Combiner may have proven that the value coming in is
1120  // either already zero or is not demanded.  Check for known zero input bits.
1121  APInt NeededMask = DesiredMask & ~ActualMask;
1122
1123  APInt KnownZero, KnownOne;
1124  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1125
1126  // If all the missing bits in the or are already known to be set, match!
1127  if ((NeededMask & KnownOne) == NeededMask)
1128    return true;
1129
1130  // TODO: check to see if missing bits are just not demanded.
1131
1132  // Otherwise, this pattern doesn't match.
1133  return false;
1134}
1135
1136
1137/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1138/// by tblgen.  Others should not call it.
1139void SelectionDAGISel::
1140SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1141  std::vector<SDValue> InOps;
1142  std::swap(InOps, Ops);
1143
1144  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1145  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1146  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1147
1148  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1149  if (InOps[e-1].getValueType() == MVT::Flag)
1150    --e;  // Don't process a flag operand if it is here.
1151
1152  while (i != e) {
1153    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1154    if (!InlineAsm::isMemKind(Flags)) {
1155      // Just skip over this operand, copying the operands verbatim.
1156      Ops.insert(Ops.end(), InOps.begin()+i,
1157                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1158      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1159    } else {
1160      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1161             "Memory operand with multiple values?");
1162      // Otherwise, this is a memory operand.  Ask the target to select it.
1163      std::vector<SDValue> SelOps;
1164      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1165        report_fatal_error("Could not match memory address.  Inline asm"
1166                           " failure!");
1167
1168      // Add this to the output node.
1169      unsigned NewFlags =
1170        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1171      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1172      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1173      i += 2;
1174    }
1175  }
1176
1177  // Add the flag input back if present.
1178  if (e != InOps.size())
1179    Ops.push_back(InOps.back());
1180}
1181
1182/// findFlagUse - Return use of EVT::Flag value produced by the specified
1183/// SDNode.
1184///
1185static SDNode *findFlagUse(SDNode *N) {
1186  unsigned FlagResNo = N->getNumValues()-1;
1187  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1188    SDUse &Use = I.getUse();
1189    if (Use.getResNo() == FlagResNo)
1190      return Use.getUser();
1191  }
1192  return NULL;
1193}
1194
1195/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1196/// This function recursively traverses up the operand chain, ignoring
1197/// certain nodes.
1198static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1199                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1200                          bool IgnoreChains) {
1201  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1202  // greater than all of its (recursive) operands.  If we scan to a point where
1203  // 'use' is smaller than the node we're scanning for, then we know we will
1204  // never find it.
1205  //
1206  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1207  // happen because we scan down to newly selected nodes in the case of flag
1208  // uses.
1209  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1210    return false;
1211
1212  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1213  // won't fail if we scan it again.
1214  if (!Visited.insert(Use))
1215    return false;
1216
1217  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1218    // Ignore chain uses, they are validated by HandleMergeInputChains.
1219    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1220      continue;
1221
1222    SDNode *N = Use->getOperand(i).getNode();
1223    if (N == Def) {
1224      if (Use == ImmedUse || Use == Root)
1225        continue;  // We are not looking for immediate use.
1226      assert(N != Root);
1227      return true;
1228    }
1229
1230    // Traverse up the operand chain.
1231    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1232      return true;
1233  }
1234  return false;
1235}
1236
1237/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1238/// operand node N of U during instruction selection that starts at Root.
1239bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1240                                          SDNode *Root) const {
1241  if (OptLevel == CodeGenOpt::None) return false;
1242  return N.hasOneUse();
1243}
1244
1245/// IsLegalToFold - Returns true if the specific operand node N of
1246/// U can be folded during instruction selection that starts at Root.
1247bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1248                                     CodeGenOpt::Level OptLevel,
1249                                     bool IgnoreChains) {
1250  if (OptLevel == CodeGenOpt::None) return false;
1251
1252  // If Root use can somehow reach N through a path that that doesn't contain
1253  // U then folding N would create a cycle. e.g. In the following
1254  // diagram, Root can reach N through X. If N is folded into into Root, then
1255  // X is both a predecessor and a successor of U.
1256  //
1257  //          [N*]           //
1258  //         ^   ^           //
1259  //        /     \          //
1260  //      [U*]    [X]?       //
1261  //        ^     ^          //
1262  //         \   /           //
1263  //          \ /            //
1264  //         [Root*]         //
1265  //
1266  // * indicates nodes to be folded together.
1267  //
1268  // If Root produces a flag, then it gets (even more) interesting. Since it
1269  // will be "glued" together with its flag use in the scheduler, we need to
1270  // check if it might reach N.
1271  //
1272  //          [N*]           //
1273  //         ^   ^           //
1274  //        /     \          //
1275  //      [U*]    [X]?       //
1276  //        ^       ^        //
1277  //         \       \       //
1278  //          \      |       //
1279  //         [Root*] |       //
1280  //          ^      |       //
1281  //          f      |       //
1282  //          |      /       //
1283  //         [Y]    /        //
1284  //           ^   /         //
1285  //           f  /          //
1286  //           | /           //
1287  //          [FU]           //
1288  //
1289  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1290  // (call it Fold), then X is a predecessor of FU and a successor of
1291  // Fold. But since Fold and FU are flagged together, this will create
1292  // a cycle in the scheduling graph.
1293
1294  // If the node has flags, walk down the graph to the "lowest" node in the
1295  // flagged set.
1296  EVT VT = Root->getValueType(Root->getNumValues()-1);
1297  while (VT == MVT::Flag) {
1298    SDNode *FU = findFlagUse(Root);
1299    if (FU == NULL)
1300      break;
1301    Root = FU;
1302    VT = Root->getValueType(Root->getNumValues()-1);
1303
1304    // If our query node has a flag result with a use, we've walked up it.  If
1305    // the user (which has already been selected) has a chain or indirectly uses
1306    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1307    // this, we cannot ignore chains in this predicate.
1308    IgnoreChains = false;
1309  }
1310
1311
1312  SmallPtrSet<SDNode*, 16> Visited;
1313  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1314}
1315
1316SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1317  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1318  SelectInlineAsmMemoryOperands(Ops);
1319
1320  std::vector<EVT> VTs;
1321  VTs.push_back(MVT::Other);
1322  VTs.push_back(MVT::Flag);
1323  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1324                                VTs, &Ops[0], Ops.size());
1325  New->setNodeId(-1);
1326  return New.getNode();
1327}
1328
1329SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1330  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1331}
1332
1333/// GetVBR - decode a vbr encoding whose top bit is set.
1334ALWAYS_INLINE static uint64_t
1335GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1336  assert(Val >= 128 && "Not a VBR");
1337  Val &= 127;  // Remove first vbr bit.
1338
1339  unsigned Shift = 7;
1340  uint64_t NextBits;
1341  do {
1342    NextBits = MatcherTable[Idx++];
1343    Val |= (NextBits&127) << Shift;
1344    Shift += 7;
1345  } while (NextBits & 128);
1346
1347  return Val;
1348}
1349
1350
1351/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1352/// interior flag and chain results to use the new flag and chain results.
1353void SelectionDAGISel::
1354UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1355                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1356                     SDValue InputFlag,
1357                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1358                     bool isMorphNodeTo) {
1359  SmallVector<SDNode*, 4> NowDeadNodes;
1360
1361  ISelUpdater ISU(ISelPosition);
1362
1363  // Now that all the normal results are replaced, we replace the chain and
1364  // flag results if present.
1365  if (!ChainNodesMatched.empty()) {
1366    assert(InputChain.getNode() != 0 &&
1367           "Matched input chains but didn't produce a chain");
1368    // Loop over all of the nodes we matched that produced a chain result.
1369    // Replace all the chain results with the final chain we ended up with.
1370    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1371      SDNode *ChainNode = ChainNodesMatched[i];
1372
1373      // If this node was already deleted, don't look at it.
1374      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1375        continue;
1376
1377      // Don't replace the results of the root node if we're doing a
1378      // MorphNodeTo.
1379      if (ChainNode == NodeToMatch && isMorphNodeTo)
1380        continue;
1381
1382      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1383      if (ChainVal.getValueType() == MVT::Flag)
1384        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1385      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1386      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1387
1388      // If the node became dead and we haven't already seen it, delete it.
1389      if (ChainNode->use_empty() &&
1390          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1391        NowDeadNodes.push_back(ChainNode);
1392    }
1393  }
1394
1395  // If the result produces a flag, update any flag results in the matched
1396  // pattern with the flag result.
1397  if (InputFlag.getNode() != 0) {
1398    // Handle any interior nodes explicitly marked.
1399    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1400      SDNode *FRN = FlagResultNodesMatched[i];
1401
1402      // If this node was already deleted, don't look at it.
1403      if (FRN->getOpcode() == ISD::DELETED_NODE)
1404        continue;
1405
1406      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1407             "Doesn't have a flag result");
1408      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1409                                        InputFlag, &ISU);
1410
1411      // If the node became dead and we haven't already seen it, delete it.
1412      if (FRN->use_empty() &&
1413          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1414        NowDeadNodes.push_back(FRN);
1415    }
1416  }
1417
1418  if (!NowDeadNodes.empty())
1419    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1420
1421  DEBUG(errs() << "ISEL: Match complete!\n");
1422}
1423
1424enum ChainResult {
1425  CR_Simple,
1426  CR_InducesCycle,
1427  CR_LeadsToInteriorNode
1428};
1429
1430/// WalkChainUsers - Walk down the users of the specified chained node that is
1431/// part of the pattern we're matching, looking at all of the users we find.
1432/// This determines whether something is an interior node, whether we have a
1433/// non-pattern node in between two pattern nodes (which prevent folding because
1434/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1435/// between pattern nodes (in which case the TF becomes part of the pattern).
1436///
1437/// The walk we do here is guaranteed to be small because we quickly get down to
1438/// already selected nodes "below" us.
1439static ChainResult
1440WalkChainUsers(SDNode *ChainedNode,
1441               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1442               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1443  ChainResult Result = CR_Simple;
1444
1445  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1446         E = ChainedNode->use_end(); UI != E; ++UI) {
1447    // Make sure the use is of the chain, not some other value we produce.
1448    if (UI.getUse().getValueType() != MVT::Other) continue;
1449
1450    SDNode *User = *UI;
1451
1452    // If we see an already-selected machine node, then we've gone beyond the
1453    // pattern that we're selecting down into the already selected chunk of the
1454    // DAG.
1455    if (User->isMachineOpcode() ||
1456        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1457      continue;
1458
1459    if (User->getOpcode() == ISD::CopyToReg ||
1460        User->getOpcode() == ISD::CopyFromReg ||
1461        User->getOpcode() == ISD::INLINEASM ||
1462        User->getOpcode() == ISD::EH_LABEL) {
1463      // If their node ID got reset to -1 then they've already been selected.
1464      // Treat them like a MachineOpcode.
1465      if (User->getNodeId() == -1)
1466        continue;
1467    }
1468
1469    // If we have a TokenFactor, we handle it specially.
1470    if (User->getOpcode() != ISD::TokenFactor) {
1471      // If the node isn't a token factor and isn't part of our pattern, then it
1472      // must be a random chained node in between two nodes we're selecting.
1473      // This happens when we have something like:
1474      //   x = load ptr
1475      //   call
1476      //   y = x+4
1477      //   store y -> ptr
1478      // Because we structurally match the load/store as a read/modify/write,
1479      // but the call is chained between them.  We cannot fold in this case
1480      // because it would induce a cycle in the graph.
1481      if (!std::count(ChainedNodesInPattern.begin(),
1482                      ChainedNodesInPattern.end(), User))
1483        return CR_InducesCycle;
1484
1485      // Otherwise we found a node that is part of our pattern.  For example in:
1486      //   x = load ptr
1487      //   y = x+4
1488      //   store y -> ptr
1489      // This would happen when we're scanning down from the load and see the
1490      // store as a user.  Record that there is a use of ChainedNode that is
1491      // part of the pattern and keep scanning uses.
1492      Result = CR_LeadsToInteriorNode;
1493      InteriorChainedNodes.push_back(User);
1494      continue;
1495    }
1496
1497    // If we found a TokenFactor, there are two cases to consider: first if the
1498    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1499    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1500    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1501    //     [Load chain]
1502    //         ^
1503    //         |
1504    //       [Load]
1505    //       ^    ^
1506    //       |    \                    DAG's like cheese
1507    //      /       \                       do you?
1508    //     /         |
1509    // [TokenFactor] [Op]
1510    //     ^          ^
1511    //     |          |
1512    //      \        /
1513    //       \      /
1514    //       [Store]
1515    //
1516    // In this case, the TokenFactor becomes part of our match and we rewrite it
1517    // as a new TokenFactor.
1518    //
1519    // To distinguish these two cases, do a recursive walk down the uses.
1520    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1521    case CR_Simple:
1522      // If the uses of the TokenFactor are just already-selected nodes, ignore
1523      // it, it is "below" our pattern.
1524      continue;
1525    case CR_InducesCycle:
1526      // If the uses of the TokenFactor lead to nodes that are not part of our
1527      // pattern that are not selected, folding would turn this into a cycle,
1528      // bail out now.
1529      return CR_InducesCycle;
1530    case CR_LeadsToInteriorNode:
1531      break;  // Otherwise, keep processing.
1532    }
1533
1534    // Okay, we know we're in the interesting interior case.  The TokenFactor
1535    // is now going to be considered part of the pattern so that we rewrite its
1536    // uses (it may have uses that are not part of the pattern) with the
1537    // ultimate chain result of the generated code.  We will also add its chain
1538    // inputs as inputs to the ultimate TokenFactor we create.
1539    Result = CR_LeadsToInteriorNode;
1540    ChainedNodesInPattern.push_back(User);
1541    InteriorChainedNodes.push_back(User);
1542    continue;
1543  }
1544
1545  return Result;
1546}
1547
1548/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1549/// operation for when the pattern matched at least one node with a chains.  The
1550/// input vector contains a list of all of the chained nodes that we match.  We
1551/// must determine if this is a valid thing to cover (i.e. matching it won't
1552/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1553/// be used as the input node chain for the generated nodes.
1554static SDValue
1555HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1556                       SelectionDAG *CurDAG) {
1557  // Walk all of the chained nodes we've matched, recursively scanning down the
1558  // users of the chain result. This adds any TokenFactor nodes that are caught
1559  // in between chained nodes to the chained and interior nodes list.
1560  SmallVector<SDNode*, 3> InteriorChainedNodes;
1561  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1562    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1563                       InteriorChainedNodes) == CR_InducesCycle)
1564      return SDValue(); // Would induce a cycle.
1565  }
1566
1567  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1568  // that we are interested in.  Form our input TokenFactor node.
1569  SmallVector<SDValue, 3> InputChains;
1570  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1571    // Add the input chain of this node to the InputChains list (which will be
1572    // the operands of the generated TokenFactor) if it's not an interior node.
1573    SDNode *N = ChainNodesMatched[i];
1574    if (N->getOpcode() != ISD::TokenFactor) {
1575      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1576        continue;
1577
1578      // Otherwise, add the input chain.
1579      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1580      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1581      InputChains.push_back(InChain);
1582      continue;
1583    }
1584
1585    // If we have a token factor, we want to add all inputs of the token factor
1586    // that are not part of the pattern we're matching.
1587    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1588      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1589                      N->getOperand(op).getNode()))
1590        InputChains.push_back(N->getOperand(op));
1591    }
1592  }
1593
1594  SDValue Res;
1595  if (InputChains.size() == 1)
1596    return InputChains[0];
1597  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1598                         MVT::Other, &InputChains[0], InputChains.size());
1599}
1600
1601/// MorphNode - Handle morphing a node in place for the selector.
1602SDNode *SelectionDAGISel::
1603MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1604          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1605  // It is possible we're using MorphNodeTo to replace a node with no
1606  // normal results with one that has a normal result (or we could be
1607  // adding a chain) and the input could have flags and chains as well.
1608  // In this case we need to shift the operands down.
1609  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1610  // than the old isel though.
1611  int OldFlagResultNo = -1, OldChainResultNo = -1;
1612
1613  unsigned NTMNumResults = Node->getNumValues();
1614  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1615    OldFlagResultNo = NTMNumResults-1;
1616    if (NTMNumResults != 1 &&
1617        Node->getValueType(NTMNumResults-2) == MVT::Other)
1618      OldChainResultNo = NTMNumResults-2;
1619  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1620    OldChainResultNo = NTMNumResults-1;
1621
1622  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1623  // that this deletes operands of the old node that become dead.
1624  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1625
1626  // MorphNodeTo can operate in two ways: if an existing node with the
1627  // specified operands exists, it can just return it.  Otherwise, it
1628  // updates the node in place to have the requested operands.
1629  if (Res == Node) {
1630    // If we updated the node in place, reset the node ID.  To the isel,
1631    // this should be just like a newly allocated machine node.
1632    Res->setNodeId(-1);
1633  }
1634
1635  unsigned ResNumResults = Res->getNumValues();
1636  // Move the flag if needed.
1637  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1638      (unsigned)OldFlagResultNo != ResNumResults-1)
1639    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1640                                      SDValue(Res, ResNumResults-1));
1641
1642  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1643  --ResNumResults;
1644
1645  // Move the chain reference if needed.
1646  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1647      (unsigned)OldChainResultNo != ResNumResults-1)
1648    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1649                                      SDValue(Res, ResNumResults-1));
1650
1651  // Otherwise, no replacement happened because the node already exists. Replace
1652  // Uses of the old node with the new one.
1653  if (Res != Node)
1654    CurDAG->ReplaceAllUsesWith(Node, Res);
1655
1656  return Res;
1657}
1658
1659/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1660ALWAYS_INLINE static bool
1661CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1662          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1663  // Accept if it is exactly the same as a previously recorded node.
1664  unsigned RecNo = MatcherTable[MatcherIndex++];
1665  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1666  return N == RecordedNodes[RecNo];
1667}
1668
1669/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1670ALWAYS_INLINE static bool
1671CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1672                      SelectionDAGISel &SDISel) {
1673  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1674}
1675
1676/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1677ALWAYS_INLINE static bool
1678CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1679                   SelectionDAGISel &SDISel, SDNode *N) {
1680  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1681}
1682
1683ALWAYS_INLINE static bool
1684CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1685            SDNode *N) {
1686  uint16_t Opc = MatcherTable[MatcherIndex++];
1687  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1688  return N->getOpcode() == Opc;
1689}
1690
1691ALWAYS_INLINE static bool
1692CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1693          SDValue N, const TargetLowering &TLI) {
1694  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1695  if (N.getValueType() == VT) return true;
1696
1697  // Handle the case when VT is iPTR.
1698  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1699}
1700
1701ALWAYS_INLINE static bool
1702CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1703               SDValue N, const TargetLowering &TLI,
1704               unsigned ChildNo) {
1705  if (ChildNo >= N.getNumOperands())
1706    return false;  // Match fails if out of range child #.
1707  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1708}
1709
1710
1711ALWAYS_INLINE static bool
1712CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1713              SDValue N) {
1714  return cast<CondCodeSDNode>(N)->get() ==
1715      (ISD::CondCode)MatcherTable[MatcherIndex++];
1716}
1717
1718ALWAYS_INLINE static bool
1719CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1720               SDValue N, const TargetLowering &TLI) {
1721  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1722  if (cast<VTSDNode>(N)->getVT() == VT)
1723    return true;
1724
1725  // Handle the case when VT is iPTR.
1726  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1727}
1728
1729ALWAYS_INLINE static bool
1730CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1731             SDValue N) {
1732  int64_t Val = MatcherTable[MatcherIndex++];
1733  if (Val & 128)
1734    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1735
1736  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1737  return C != 0 && C->getSExtValue() == Val;
1738}
1739
1740ALWAYS_INLINE static bool
1741CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1742            SDValue N, SelectionDAGISel &SDISel) {
1743  int64_t Val = MatcherTable[MatcherIndex++];
1744  if (Val & 128)
1745    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1746
1747  if (N->getOpcode() != ISD::AND) return false;
1748
1749  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1750  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1751}
1752
1753ALWAYS_INLINE static bool
1754CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1755           SDValue N, SelectionDAGISel &SDISel) {
1756  int64_t Val = MatcherTable[MatcherIndex++];
1757  if (Val & 128)
1758    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1759
1760  if (N->getOpcode() != ISD::OR) return false;
1761
1762  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1763  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1764}
1765
1766/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1767/// scope, evaluate the current node.  If the current predicate is known to
1768/// fail, set Result=true and return anything.  If the current predicate is
1769/// known to pass, set Result=false and return the MatcherIndex to continue
1770/// with.  If the current predicate is unknown, set Result=false and return the
1771/// MatcherIndex to continue with.
1772static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1773                                       unsigned Index, SDValue N,
1774                                       bool &Result, SelectionDAGISel &SDISel,
1775                                       SmallVectorImpl<SDValue> &RecordedNodes){
1776  switch (Table[Index++]) {
1777  default:
1778    Result = false;
1779    return Index-1;  // Could not evaluate this predicate.
1780  case SelectionDAGISel::OPC_CheckSame:
1781    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1782    return Index;
1783  case SelectionDAGISel::OPC_CheckPatternPredicate:
1784    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1785    return Index;
1786  case SelectionDAGISel::OPC_CheckPredicate:
1787    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1788    return Index;
1789  case SelectionDAGISel::OPC_CheckOpcode:
1790    Result = !::CheckOpcode(Table, Index, N.getNode());
1791    return Index;
1792  case SelectionDAGISel::OPC_CheckType:
1793    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1794    return Index;
1795  case SelectionDAGISel::OPC_CheckChild0Type:
1796  case SelectionDAGISel::OPC_CheckChild1Type:
1797  case SelectionDAGISel::OPC_CheckChild2Type:
1798  case SelectionDAGISel::OPC_CheckChild3Type:
1799  case SelectionDAGISel::OPC_CheckChild4Type:
1800  case SelectionDAGISel::OPC_CheckChild5Type:
1801  case SelectionDAGISel::OPC_CheckChild6Type:
1802  case SelectionDAGISel::OPC_CheckChild7Type:
1803    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1804                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1805    return Index;
1806  case SelectionDAGISel::OPC_CheckCondCode:
1807    Result = !::CheckCondCode(Table, Index, N);
1808    return Index;
1809  case SelectionDAGISel::OPC_CheckValueType:
1810    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1811    return Index;
1812  case SelectionDAGISel::OPC_CheckInteger:
1813    Result = !::CheckInteger(Table, Index, N);
1814    return Index;
1815  case SelectionDAGISel::OPC_CheckAndImm:
1816    Result = !::CheckAndImm(Table, Index, N, SDISel);
1817    return Index;
1818  case SelectionDAGISel::OPC_CheckOrImm:
1819    Result = !::CheckOrImm(Table, Index, N, SDISel);
1820    return Index;
1821  }
1822}
1823
1824namespace {
1825
1826struct MatchScope {
1827  /// FailIndex - If this match fails, this is the index to continue with.
1828  unsigned FailIndex;
1829
1830  /// NodeStack - The node stack when the scope was formed.
1831  SmallVector<SDValue, 4> NodeStack;
1832
1833  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1834  unsigned NumRecordedNodes;
1835
1836  /// NumMatchedMemRefs - The number of matched memref entries.
1837  unsigned NumMatchedMemRefs;
1838
1839  /// InputChain/InputFlag - The current chain/flag
1840  SDValue InputChain, InputFlag;
1841
1842  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1843  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1844};
1845
1846}
1847
1848SDNode *SelectionDAGISel::
1849SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1850                 unsigned TableSize) {
1851  // FIXME: Should these even be selected?  Handle these cases in the caller?
1852  switch (NodeToMatch->getOpcode()) {
1853  default:
1854    break;
1855  case ISD::EntryToken:       // These nodes remain the same.
1856  case ISD::BasicBlock:
1857  case ISD::Register:
1858  //case ISD::VALUETYPE:
1859  //case ISD::CONDCODE:
1860  case ISD::HANDLENODE:
1861  case ISD::MDNODE_SDNODE:
1862  case ISD::TargetConstant:
1863  case ISD::TargetConstantFP:
1864  case ISD::TargetConstantPool:
1865  case ISD::TargetFrameIndex:
1866  case ISD::TargetExternalSymbol:
1867  case ISD::TargetBlockAddress:
1868  case ISD::TargetJumpTable:
1869  case ISD::TargetGlobalTLSAddress:
1870  case ISD::TargetGlobalAddress:
1871  case ISD::TokenFactor:
1872  case ISD::CopyFromReg:
1873  case ISD::CopyToReg:
1874  case ISD::EH_LABEL:
1875    NodeToMatch->setNodeId(-1); // Mark selected.
1876    return 0;
1877  case ISD::AssertSext:
1878  case ISD::AssertZext:
1879    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1880                                      NodeToMatch->getOperand(0));
1881    return 0;
1882  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1883  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1884  }
1885
1886  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1887
1888  // Set up the node stack with NodeToMatch as the only node on the stack.
1889  SmallVector<SDValue, 8> NodeStack;
1890  SDValue N = SDValue(NodeToMatch, 0);
1891  NodeStack.push_back(N);
1892
1893  // MatchScopes - Scopes used when matching, if a match failure happens, this
1894  // indicates where to continue checking.
1895  SmallVector<MatchScope, 8> MatchScopes;
1896
1897  // RecordedNodes - This is the set of nodes that have been recorded by the
1898  // state machine.
1899  SmallVector<SDValue, 8> RecordedNodes;
1900
1901  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1902  // pattern.
1903  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1904
1905  // These are the current input chain and flag for use when generating nodes.
1906  // Various Emit operations change these.  For example, emitting a copytoreg
1907  // uses and updates these.
1908  SDValue InputChain, InputFlag;
1909
1910  // ChainNodesMatched - If a pattern matches nodes that have input/output
1911  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1912  // which ones they are.  The result is captured into this list so that we can
1913  // update the chain results when the pattern is complete.
1914  SmallVector<SDNode*, 3> ChainNodesMatched;
1915  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1916
1917  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1918        NodeToMatch->dump(CurDAG);
1919        errs() << '\n');
1920
1921  // Determine where to start the interpreter.  Normally we start at opcode #0,
1922  // but if the state machine starts with an OPC_SwitchOpcode, then we
1923  // accelerate the first lookup (which is guaranteed to be hot) with the
1924  // OpcodeOffset table.
1925  unsigned MatcherIndex = 0;
1926
1927  if (!OpcodeOffset.empty()) {
1928    // Already computed the OpcodeOffset table, just index into it.
1929    if (N.getOpcode() < OpcodeOffset.size())
1930      MatcherIndex = OpcodeOffset[N.getOpcode()];
1931    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1932
1933  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1934    // Otherwise, the table isn't computed, but the state machine does start
1935    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1936    // is the first time we're selecting an instruction.
1937    unsigned Idx = 1;
1938    while (1) {
1939      // Get the size of this case.
1940      unsigned CaseSize = MatcherTable[Idx++];
1941      if (CaseSize & 128)
1942        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1943      if (CaseSize == 0) break;
1944
1945      // Get the opcode, add the index to the table.
1946      uint16_t Opc = MatcherTable[Idx++];
1947      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1948      if (Opc >= OpcodeOffset.size())
1949        OpcodeOffset.resize((Opc+1)*2);
1950      OpcodeOffset[Opc] = Idx;
1951      Idx += CaseSize;
1952    }
1953
1954    // Okay, do the lookup for the first opcode.
1955    if (N.getOpcode() < OpcodeOffset.size())
1956      MatcherIndex = OpcodeOffset[N.getOpcode()];
1957  }
1958
1959  while (1) {
1960    assert(MatcherIndex < TableSize && "Invalid index");
1961#ifndef NDEBUG
1962    unsigned CurrentOpcodeIndex = MatcherIndex;
1963#endif
1964    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1965    switch (Opcode) {
1966    case OPC_Scope: {
1967      // Okay, the semantics of this operation are that we should push a scope
1968      // then evaluate the first child.  However, pushing a scope only to have
1969      // the first check fail (which then pops it) is inefficient.  If we can
1970      // determine immediately that the first check (or first several) will
1971      // immediately fail, don't even bother pushing a scope for them.
1972      unsigned FailIndex;
1973
1974      while (1) {
1975        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1976        if (NumToSkip & 128)
1977          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1978        // Found the end of the scope with no match.
1979        if (NumToSkip == 0) {
1980          FailIndex = 0;
1981          break;
1982        }
1983
1984        FailIndex = MatcherIndex+NumToSkip;
1985
1986        unsigned MatcherIndexOfPredicate = MatcherIndex;
1987        (void)MatcherIndexOfPredicate; // silence warning.
1988
1989        // If we can't evaluate this predicate without pushing a scope (e.g. if
1990        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1991        // push the scope and evaluate the full predicate chain.
1992        bool Result;
1993        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1994                                              Result, *this, RecordedNodes);
1995        if (!Result)
1996          break;
1997
1998        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
1999                     << "index " << MatcherIndexOfPredicate
2000                     << ", continuing at " << FailIndex << "\n");
2001        ++NumDAGIselRetries;
2002
2003        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2004        // move to the next case.
2005        MatcherIndex = FailIndex;
2006      }
2007
2008      // If the whole scope failed to match, bail.
2009      if (FailIndex == 0) break;
2010
2011      // Push a MatchScope which indicates where to go if the first child fails
2012      // to match.
2013      MatchScope NewEntry;
2014      NewEntry.FailIndex = FailIndex;
2015      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2016      NewEntry.NumRecordedNodes = RecordedNodes.size();
2017      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2018      NewEntry.InputChain = InputChain;
2019      NewEntry.InputFlag = InputFlag;
2020      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2021      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2022      MatchScopes.push_back(NewEntry);
2023      continue;
2024    }
2025    case OPC_RecordNode:
2026      // Remember this node, it may end up being an operand in the pattern.
2027      RecordedNodes.push_back(N);
2028      continue;
2029
2030    case OPC_RecordChild0: case OPC_RecordChild1:
2031    case OPC_RecordChild2: case OPC_RecordChild3:
2032    case OPC_RecordChild4: case OPC_RecordChild5:
2033    case OPC_RecordChild6: case OPC_RecordChild7: {
2034      unsigned ChildNo = Opcode-OPC_RecordChild0;
2035      if (ChildNo >= N.getNumOperands())
2036        break;  // Match fails if out of range child #.
2037
2038      RecordedNodes.push_back(N->getOperand(ChildNo));
2039      continue;
2040    }
2041    case OPC_RecordMemRef:
2042      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2043      continue;
2044
2045    case OPC_CaptureFlagInput:
2046      // If the current node has an input flag, capture it in InputFlag.
2047      if (N->getNumOperands() != 0 &&
2048          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2049        InputFlag = N->getOperand(N->getNumOperands()-1);
2050      continue;
2051
2052    case OPC_MoveChild: {
2053      unsigned ChildNo = MatcherTable[MatcherIndex++];
2054      if (ChildNo >= N.getNumOperands())
2055        break;  // Match fails if out of range child #.
2056      N = N.getOperand(ChildNo);
2057      NodeStack.push_back(N);
2058      continue;
2059    }
2060
2061    case OPC_MoveParent:
2062      // Pop the current node off the NodeStack.
2063      NodeStack.pop_back();
2064      assert(!NodeStack.empty() && "Node stack imbalance!");
2065      N = NodeStack.back();
2066      continue;
2067
2068    case OPC_CheckSame:
2069      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2070      continue;
2071    case OPC_CheckPatternPredicate:
2072      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2073      continue;
2074    case OPC_CheckPredicate:
2075      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2076                                N.getNode()))
2077        break;
2078      continue;
2079    case OPC_CheckComplexPat: {
2080      unsigned CPNum = MatcherTable[MatcherIndex++];
2081      unsigned RecNo = MatcherTable[MatcherIndex++];
2082      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2083      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2084                               RecordedNodes))
2085        break;
2086      continue;
2087    }
2088    case OPC_CheckOpcode:
2089      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2090      continue;
2091
2092    case OPC_CheckType:
2093      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2094      continue;
2095
2096    case OPC_SwitchOpcode: {
2097      unsigned CurNodeOpcode = N.getOpcode();
2098      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2099      unsigned CaseSize;
2100      while (1) {
2101        // Get the size of this case.
2102        CaseSize = MatcherTable[MatcherIndex++];
2103        if (CaseSize & 128)
2104          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2105        if (CaseSize == 0) break;
2106
2107        uint16_t Opc = MatcherTable[MatcherIndex++];
2108        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2109
2110        // If the opcode matches, then we will execute this case.
2111        if (CurNodeOpcode == Opc)
2112          break;
2113
2114        // Otherwise, skip over this case.
2115        MatcherIndex += CaseSize;
2116      }
2117
2118      // If no cases matched, bail out.
2119      if (CaseSize == 0) break;
2120
2121      // Otherwise, execute the case we found.
2122      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2123                   << " to " << MatcherIndex << "\n");
2124      continue;
2125    }
2126
2127    case OPC_SwitchType: {
2128      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2129      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2130      unsigned CaseSize;
2131      while (1) {
2132        // Get the size of this case.
2133        CaseSize = MatcherTable[MatcherIndex++];
2134        if (CaseSize & 128)
2135          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2136        if (CaseSize == 0) break;
2137
2138        MVT::SimpleValueType CaseVT =
2139          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2140        if (CaseVT == MVT::iPTR)
2141          CaseVT = TLI.getPointerTy().SimpleTy;
2142
2143        // If the VT matches, then we will execute this case.
2144        if (CurNodeVT == CaseVT)
2145          break;
2146
2147        // Otherwise, skip over this case.
2148        MatcherIndex += CaseSize;
2149      }
2150
2151      // If no cases matched, bail out.
2152      if (CaseSize == 0) break;
2153
2154      // Otherwise, execute the case we found.
2155      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2156                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2157      continue;
2158    }
2159    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2160    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2161    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2162    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2163      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2164                            Opcode-OPC_CheckChild0Type))
2165        break;
2166      continue;
2167    case OPC_CheckCondCode:
2168      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2169      continue;
2170    case OPC_CheckValueType:
2171      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2172      continue;
2173    case OPC_CheckInteger:
2174      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2175      continue;
2176    case OPC_CheckAndImm:
2177      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2178      continue;
2179    case OPC_CheckOrImm:
2180      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2181      continue;
2182
2183    case OPC_CheckFoldableChainNode: {
2184      assert(NodeStack.size() != 1 && "No parent node");
2185      // Verify that all intermediate nodes between the root and this one have
2186      // a single use.
2187      bool HasMultipleUses = false;
2188      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2189        if (!NodeStack[i].hasOneUse()) {
2190          HasMultipleUses = true;
2191          break;
2192        }
2193      if (HasMultipleUses) break;
2194
2195      // Check to see that the target thinks this is profitable to fold and that
2196      // we can fold it without inducing cycles in the graph.
2197      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2198                              NodeToMatch) ||
2199          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2200                         NodeToMatch, OptLevel,
2201                         true/*We validate our own chains*/))
2202        break;
2203
2204      continue;
2205    }
2206    case OPC_EmitInteger: {
2207      MVT::SimpleValueType VT =
2208        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2209      int64_t Val = MatcherTable[MatcherIndex++];
2210      if (Val & 128)
2211        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2212      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2213      continue;
2214    }
2215    case OPC_EmitRegister: {
2216      MVT::SimpleValueType VT =
2217        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2218      unsigned RegNo = MatcherTable[MatcherIndex++];
2219      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2220      continue;
2221    }
2222
2223    case OPC_EmitConvertToTarget:  {
2224      // Convert from IMM/FPIMM to target version.
2225      unsigned RecNo = MatcherTable[MatcherIndex++];
2226      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2227      SDValue Imm = RecordedNodes[RecNo];
2228
2229      if (Imm->getOpcode() == ISD::Constant) {
2230        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2231        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2232      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2233        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2234        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2235      }
2236
2237      RecordedNodes.push_back(Imm);
2238      continue;
2239    }
2240
2241    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2242    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2243      // These are space-optimized forms of OPC_EmitMergeInputChains.
2244      assert(InputChain.getNode() == 0 &&
2245             "EmitMergeInputChains should be the first chain producing node");
2246      assert(ChainNodesMatched.empty() &&
2247             "Should only have one EmitMergeInputChains per match");
2248
2249      // Read all of the chained nodes.
2250      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2251      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2252      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2253
2254      // FIXME: What if other value results of the node have uses not matched
2255      // by this pattern?
2256      if (ChainNodesMatched.back() != NodeToMatch &&
2257          !RecordedNodes[RecNo].hasOneUse()) {
2258        ChainNodesMatched.clear();
2259        break;
2260      }
2261
2262      // Merge the input chains if they are not intra-pattern references.
2263      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2264
2265      if (InputChain.getNode() == 0)
2266        break;  // Failed to merge.
2267      continue;
2268    }
2269
2270    case OPC_EmitMergeInputChains: {
2271      assert(InputChain.getNode() == 0 &&
2272             "EmitMergeInputChains should be the first chain producing node");
2273      // This node gets a list of nodes we matched in the input that have
2274      // chains.  We want to token factor all of the input chains to these nodes
2275      // together.  However, if any of the input chains is actually one of the
2276      // nodes matched in this pattern, then we have an intra-match reference.
2277      // Ignore these because the newly token factored chain should not refer to
2278      // the old nodes.
2279      unsigned NumChains = MatcherTable[MatcherIndex++];
2280      assert(NumChains != 0 && "Can't TF zero chains");
2281
2282      assert(ChainNodesMatched.empty() &&
2283             "Should only have one EmitMergeInputChains per match");
2284
2285      // Read all of the chained nodes.
2286      for (unsigned i = 0; i != NumChains; ++i) {
2287        unsigned RecNo = MatcherTable[MatcherIndex++];
2288        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2289        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2290
2291        // FIXME: What if other value results of the node have uses not matched
2292        // by this pattern?
2293        if (ChainNodesMatched.back() != NodeToMatch &&
2294            !RecordedNodes[RecNo].hasOneUse()) {
2295          ChainNodesMatched.clear();
2296          break;
2297        }
2298      }
2299
2300      // If the inner loop broke out, the match fails.
2301      if (ChainNodesMatched.empty())
2302        break;
2303
2304      // Merge the input chains if they are not intra-pattern references.
2305      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2306
2307      if (InputChain.getNode() == 0)
2308        break;  // Failed to merge.
2309
2310      continue;
2311    }
2312
2313    case OPC_EmitCopyToReg: {
2314      unsigned RecNo = MatcherTable[MatcherIndex++];
2315      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2316      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2317
2318      if (InputChain.getNode() == 0)
2319        InputChain = CurDAG->getEntryNode();
2320
2321      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2322                                        DestPhysReg, RecordedNodes[RecNo],
2323                                        InputFlag);
2324
2325      InputFlag = InputChain.getValue(1);
2326      continue;
2327    }
2328
2329    case OPC_EmitNodeXForm: {
2330      unsigned XFormNo = MatcherTable[MatcherIndex++];
2331      unsigned RecNo = MatcherTable[MatcherIndex++];
2332      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2333      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2334      continue;
2335    }
2336
2337    case OPC_EmitNode:
2338    case OPC_MorphNodeTo: {
2339      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2340      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2341      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2342      // Get the result VT list.
2343      unsigned NumVTs = MatcherTable[MatcherIndex++];
2344      SmallVector<EVT, 4> VTs;
2345      for (unsigned i = 0; i != NumVTs; ++i) {
2346        MVT::SimpleValueType VT =
2347          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2348        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2349        VTs.push_back(VT);
2350      }
2351
2352      if (EmitNodeInfo & OPFL_Chain)
2353        VTs.push_back(MVT::Other);
2354      if (EmitNodeInfo & OPFL_FlagOutput)
2355        VTs.push_back(MVT::Flag);
2356
2357      // This is hot code, so optimize the two most common cases of 1 and 2
2358      // results.
2359      SDVTList VTList;
2360      if (VTs.size() == 1)
2361        VTList = CurDAG->getVTList(VTs[0]);
2362      else if (VTs.size() == 2)
2363        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2364      else
2365        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2366
2367      // Get the operand list.
2368      unsigned NumOps = MatcherTable[MatcherIndex++];
2369      SmallVector<SDValue, 8> Ops;
2370      for (unsigned i = 0; i != NumOps; ++i) {
2371        unsigned RecNo = MatcherTable[MatcherIndex++];
2372        if (RecNo & 128)
2373          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2374
2375        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2376        Ops.push_back(RecordedNodes[RecNo]);
2377      }
2378
2379      // If there are variadic operands to add, handle them now.
2380      if (EmitNodeInfo & OPFL_VariadicInfo) {
2381        // Determine the start index to copy from.
2382        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2383        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2384        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2385               "Invalid variadic node");
2386        // Copy all of the variadic operands, not including a potential flag
2387        // input.
2388        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2389             i != e; ++i) {
2390          SDValue V = NodeToMatch->getOperand(i);
2391          if (V.getValueType() == MVT::Flag) break;
2392          Ops.push_back(V);
2393        }
2394      }
2395
2396      // If this has chain/flag inputs, add them.
2397      if (EmitNodeInfo & OPFL_Chain)
2398        Ops.push_back(InputChain);
2399      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2400        Ops.push_back(InputFlag);
2401
2402      // Create the node.
2403      SDNode *Res = 0;
2404      if (Opcode != OPC_MorphNodeTo) {
2405        // If this is a normal EmitNode command, just create the new node and
2406        // add the results to the RecordedNodes list.
2407        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2408                                     VTList, Ops.data(), Ops.size());
2409
2410        // Add all the non-flag/non-chain results to the RecordedNodes list.
2411        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2412          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2413          RecordedNodes.push_back(SDValue(Res, i));
2414        }
2415
2416      } else {
2417        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2418                        EmitNodeInfo);
2419      }
2420
2421      // If the node had chain/flag results, update our notion of the current
2422      // chain and flag.
2423      if (EmitNodeInfo & OPFL_FlagOutput) {
2424        InputFlag = SDValue(Res, VTs.size()-1);
2425        if (EmitNodeInfo & OPFL_Chain)
2426          InputChain = SDValue(Res, VTs.size()-2);
2427      } else if (EmitNodeInfo & OPFL_Chain)
2428        InputChain = SDValue(Res, VTs.size()-1);
2429
2430      // If the OPFL_MemRefs flag is set on this node, slap all of the
2431      // accumulated memrefs onto it.
2432      //
2433      // FIXME: This is vastly incorrect for patterns with multiple outputs
2434      // instructions that access memory and for ComplexPatterns that match
2435      // loads.
2436      if (EmitNodeInfo & OPFL_MemRefs) {
2437        MachineSDNode::mmo_iterator MemRefs =
2438          MF->allocateMemRefsArray(MatchedMemRefs.size());
2439        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2440        cast<MachineSDNode>(Res)
2441          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2442      }
2443
2444      DEBUG(errs() << "  "
2445                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2446                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2447
2448      // If this was a MorphNodeTo then we're completely done!
2449      if (Opcode == OPC_MorphNodeTo) {
2450        // Update chain and flag uses.
2451        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2452                             InputFlag, FlagResultNodesMatched, true);
2453        return Res;
2454      }
2455
2456      continue;
2457    }
2458
2459    case OPC_MarkFlagResults: {
2460      unsigned NumNodes = MatcherTable[MatcherIndex++];
2461
2462      // Read and remember all the flag-result nodes.
2463      for (unsigned i = 0; i != NumNodes; ++i) {
2464        unsigned RecNo = MatcherTable[MatcherIndex++];
2465        if (RecNo & 128)
2466          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2467
2468        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2469        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2470      }
2471      continue;
2472    }
2473
2474    case OPC_CompleteMatch: {
2475      // The match has been completed, and any new nodes (if any) have been
2476      // created.  Patch up references to the matched dag to use the newly
2477      // created nodes.
2478      unsigned NumResults = MatcherTable[MatcherIndex++];
2479
2480      for (unsigned i = 0; i != NumResults; ++i) {
2481        unsigned ResSlot = MatcherTable[MatcherIndex++];
2482        if (ResSlot & 128)
2483          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2484
2485        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2486        SDValue Res = RecordedNodes[ResSlot];
2487
2488        assert(i < NodeToMatch->getNumValues() &&
2489               NodeToMatch->getValueType(i) != MVT::Other &&
2490               NodeToMatch->getValueType(i) != MVT::Flag &&
2491               "Invalid number of results to complete!");
2492        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2493                NodeToMatch->getValueType(i) == MVT::iPTR ||
2494                Res.getValueType() == MVT::iPTR ||
2495                NodeToMatch->getValueType(i).getSizeInBits() ==
2496                    Res.getValueType().getSizeInBits()) &&
2497               "invalid replacement");
2498        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2499      }
2500
2501      // If the root node defines a flag, add it to the flag nodes to update
2502      // list.
2503      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2504        FlagResultNodesMatched.push_back(NodeToMatch);
2505
2506      // Update chain and flag uses.
2507      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2508                           InputFlag, FlagResultNodesMatched, false);
2509
2510      assert(NodeToMatch->use_empty() &&
2511             "Didn't replace all uses of the node?");
2512
2513      // FIXME: We just return here, which interacts correctly with SelectRoot
2514      // above.  We should fix this to not return an SDNode* anymore.
2515      return 0;
2516    }
2517    }
2518
2519    // If the code reached this point, then the match failed.  See if there is
2520    // another child to try in the current 'Scope', otherwise pop it until we
2521    // find a case to check.
2522    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2523    ++NumDAGIselRetries;
2524    while (1) {
2525      if (MatchScopes.empty()) {
2526        CannotYetSelect(NodeToMatch);
2527        return 0;
2528      }
2529
2530      // Restore the interpreter state back to the point where the scope was
2531      // formed.
2532      MatchScope &LastScope = MatchScopes.back();
2533      RecordedNodes.resize(LastScope.NumRecordedNodes);
2534      NodeStack.clear();
2535      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2536      N = NodeStack.back();
2537
2538      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2539        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2540      MatcherIndex = LastScope.FailIndex;
2541
2542      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2543
2544      InputChain = LastScope.InputChain;
2545      InputFlag = LastScope.InputFlag;
2546      if (!LastScope.HasChainNodesMatched)
2547        ChainNodesMatched.clear();
2548      if (!LastScope.HasFlagResultNodesMatched)
2549        FlagResultNodesMatched.clear();
2550
2551      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2552      // we have reached the end of this scope, otherwise we have another child
2553      // in the current scope to try.
2554      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2555      if (NumToSkip & 128)
2556        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2557
2558      // If we have another child in this scope to match, update FailIndex and
2559      // try it.
2560      if (NumToSkip != 0) {
2561        LastScope.FailIndex = MatcherIndex+NumToSkip;
2562        break;
2563      }
2564
2565      // End of this scope, pop it and try the next child in the containing
2566      // scope.
2567      MatchScopes.pop_back();
2568    }
2569  }
2570}
2571
2572
2573
2574void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2575  std::string msg;
2576  raw_string_ostream Msg(msg);
2577  Msg << "Cannot yet select: ";
2578
2579  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2580      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2581      N->getOpcode() != ISD::INTRINSIC_VOID) {
2582    N->printrFull(Msg, CurDAG);
2583  } else {
2584    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2585    unsigned iid =
2586      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2587    if (iid < Intrinsic::num_intrinsics)
2588      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2589    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2590      Msg << "target intrinsic %" << TII->getName(iid);
2591    else
2592      Msg << "unknown intrinsic #" << iid;
2593  }
2594  report_fatal_error(Msg.str());
2595}
2596
2597char SelectionDAGISel::ID = 0;
2598