TargetLowering.cpp revision 041cde26eaf4ef6171ff1a44aeedd08d7a1cba6c
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SRL_I32] = "__lshrsi3";
35  Names[RTLIB::SRL_I64] = "__lshrdi3";
36  Names[RTLIB::SRA_I32] = "__ashrsi3";
37  Names[RTLIB::SRA_I64] = "__ashrdi3";
38  Names[RTLIB::MUL_I32] = "__mulsi3";
39  Names[RTLIB::MUL_I64] = "__muldi3";
40  Names[RTLIB::SDIV_I32] = "__divsi3";
41  Names[RTLIB::SDIV_I64] = "__divdi3";
42  Names[RTLIB::UDIV_I32] = "__udivsi3";
43  Names[RTLIB::UDIV_I64] = "__udivdi3";
44  Names[RTLIB::SREM_I32] = "__modsi3";
45  Names[RTLIB::SREM_I64] = "__moddi3";
46  Names[RTLIB::UREM_I32] = "__umodsi3";
47  Names[RTLIB::UREM_I64] = "__umoddi3";
48  Names[RTLIB::NEG_I32] = "__negsi2";
49  Names[RTLIB::NEG_I64] = "__negdi2";
50  Names[RTLIB::ADD_F32] = "__addsf3";
51  Names[RTLIB::ADD_F64] = "__adddf3";
52  Names[RTLIB::ADD_F80] = "__addxf3";
53  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
54  Names[RTLIB::SUB_F32] = "__subsf3";
55  Names[RTLIB::SUB_F64] = "__subdf3";
56  Names[RTLIB::SUB_F80] = "__subxf3";
57  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
58  Names[RTLIB::MUL_F32] = "__mulsf3";
59  Names[RTLIB::MUL_F64] = "__muldf3";
60  Names[RTLIB::MUL_F80] = "__mulxf3";
61  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
62  Names[RTLIB::DIV_F32] = "__divsf3";
63  Names[RTLIB::DIV_F64] = "__divdf3";
64  Names[RTLIB::DIV_F80] = "__divxf3";
65  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
66  Names[RTLIB::REM_F32] = "fmodf";
67  Names[RTLIB::REM_F64] = "fmod";
68  Names[RTLIB::REM_F80] = "fmodl";
69  Names[RTLIB::REM_PPCF128] = "fmodl";
70  Names[RTLIB::POWI_F32] = "__powisf2";
71  Names[RTLIB::POWI_F64] = "__powidf2";
72  Names[RTLIB::POWI_F80] = "__powixf2";
73  Names[RTLIB::POWI_PPCF128] = "__powitf2";
74  Names[RTLIB::SQRT_F32] = "sqrtf";
75  Names[RTLIB::SQRT_F64] = "sqrt";
76  Names[RTLIB::SQRT_F80] = "sqrtl";
77  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
78  Names[RTLIB::SIN_F32] = "sinf";
79  Names[RTLIB::SIN_F64] = "sin";
80  Names[RTLIB::SIN_F80] = "sinl";
81  Names[RTLIB::SIN_PPCF128] = "sinl";
82  Names[RTLIB::COS_F32] = "cosf";
83  Names[RTLIB::COS_F64] = "cos";
84  Names[RTLIB::COS_F80] = "cosl";
85  Names[RTLIB::COS_PPCF128] = "cosl";
86  Names[RTLIB::POW_F32] = "powf";
87  Names[RTLIB::POW_F64] = "pow";
88  Names[RTLIB::POW_F80] = "powl";
89  Names[RTLIB::POW_PPCF128] = "powl";
90  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
91  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
92  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
93  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
94  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
95  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
96  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
97  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
98  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
99  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
100  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
101  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
102  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
103  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
104  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
105  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
106  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
107  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
108  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
109  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
110  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
111  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
112  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
113  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
114  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
115  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
116  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
117  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
118  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
119  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
120  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
121  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
122  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
123  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
124  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
125  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
126  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
127  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
128  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
129  Names[RTLIB::OEQ_F32] = "__eqsf2";
130  Names[RTLIB::OEQ_F64] = "__eqdf2";
131  Names[RTLIB::UNE_F32] = "__nesf2";
132  Names[RTLIB::UNE_F64] = "__nedf2";
133  Names[RTLIB::OGE_F32] = "__gesf2";
134  Names[RTLIB::OGE_F64] = "__gedf2";
135  Names[RTLIB::OLT_F32] = "__ltsf2";
136  Names[RTLIB::OLT_F64] = "__ltdf2";
137  Names[RTLIB::OLE_F32] = "__lesf2";
138  Names[RTLIB::OLE_F64] = "__ledf2";
139  Names[RTLIB::OGT_F32] = "__gtsf2";
140  Names[RTLIB::OGT_F64] = "__gtdf2";
141  Names[RTLIB::UO_F32] = "__unordsf2";
142  Names[RTLIB::UO_F64] = "__unorddf2";
143  Names[RTLIB::O_F32] = "__unordsf2";
144  Names[RTLIB::O_F64] = "__unorddf2";
145}
146
147/// InitCmpLibcallCCs - Set default comparison libcall CC.
148///
149static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
150  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
151  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
152  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
153  CCs[RTLIB::UNE_F32] = ISD::SETNE;
154  CCs[RTLIB::UNE_F64] = ISD::SETNE;
155  CCs[RTLIB::OGE_F32] = ISD::SETGE;
156  CCs[RTLIB::OGE_F64] = ISD::SETGE;
157  CCs[RTLIB::OLT_F32] = ISD::SETLT;
158  CCs[RTLIB::OLT_F64] = ISD::SETLT;
159  CCs[RTLIB::OLE_F32] = ISD::SETLE;
160  CCs[RTLIB::OLE_F64] = ISD::SETLE;
161  CCs[RTLIB::OGT_F32] = ISD::SETGT;
162  CCs[RTLIB::OGT_F64] = ISD::SETGT;
163  CCs[RTLIB::UO_F32] = ISD::SETNE;
164  CCs[RTLIB::UO_F64] = ISD::SETNE;
165  CCs[RTLIB::O_F32] = ISD::SETEQ;
166  CCs[RTLIB::O_F64] = ISD::SETEQ;
167}
168
169TargetLowering::TargetLowering(TargetMachine &tm)
170  : TM(tm), TD(TM.getTargetData()) {
171  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
172         "Fixed size array in TargetLowering is not large enough!");
173  // All operations default to being supported.
174  memset(OpActions, 0, sizeof(OpActions));
175  memset(LoadXActions, 0, sizeof(LoadXActions));
176  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
177  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
178  memset(ConvertActions, 0, sizeof(ConvertActions));
179
180  // Set default actions for various operations.
181  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
182    // Default all indexed load / store to expand.
183    for (unsigned IM = (unsigned)ISD::PRE_INC;
184         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
185      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
186      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
187    }
188
189    // These operations default to expand.
190    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
191  }
192
193  // Most targets ignore the @llvm.prefetch intrinsic.
194  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
195
196  // ConstantFP nodes default to expand.  Targets can either change this to
197  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
198  // to optimize expansions for certain constants.
199  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
200  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
201  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
202
203  // Default ISD::TRAP to expand (which turns it into abort).
204  setOperationAction(ISD::TRAP, MVT::Other, Expand);
205
206  IsLittleEndian = TD->isLittleEndian();
207  UsesGlobalOffsetTable = false;
208  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
209  ShiftAmtHandling = Undefined;
210  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
211  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
212  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
213  allowUnalignedMemoryAccesses = false;
214  UseUnderscoreSetJmp = false;
215  UseUnderscoreLongJmp = false;
216  SelectIsExpensive = false;
217  IntDivIsCheap = false;
218  Pow2DivIsCheap = false;
219  StackPointerRegisterToSaveRestore = 0;
220  ExceptionPointerRegister = 0;
221  ExceptionSelectorRegister = 0;
222  SetCCResultContents = UndefinedSetCCResult;
223  SchedPreferenceInfo = SchedulingForLatency;
224  JumpBufSize = 0;
225  JumpBufAlignment = 0;
226  IfCvtBlockSizeLimit = 2;
227  IfCvtDupBlockSizeLimit = 0;
228  PrefLoopAlignment = 0;
229
230  InitLibcallNames(LibcallRoutineNames);
231  InitCmpLibcallCCs(CmpLibcallCCs);
232
233  // Tell Legalize whether the assembler supports DEBUG_LOC.
234  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
235    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
236}
237
238TargetLowering::~TargetLowering() {}
239
240/// computeRegisterProperties - Once all of the register classes are added,
241/// this allows us to compute derived properties we expose.
242void TargetLowering::computeRegisterProperties() {
243  assert(MVT::LAST_VALUETYPE <= 32 &&
244         "Too many value types for ValueTypeActions to hold!");
245
246  // Everything defaults to needing one register.
247  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
248    NumRegistersForVT[i] = 1;
249    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
250  }
251  // ...except isVoid, which doesn't need any registers.
252  NumRegistersForVT[MVT::isVoid] = 0;
253
254  // Find the largest integer register class.
255  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
256  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
257    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
258
259  // Every integer value type larger than this largest register takes twice as
260  // many registers to represent as the previous ValueType.
261  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
262    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
263    if (!EVT.isInteger())
264      break;
265    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
266    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
267    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
268    ValueTypeActions.setTypeAction(EVT, Expand);
269  }
270
271  // Inspect all of the ValueType's smaller than the largest integer
272  // register to see which ones need promotion.
273  unsigned LegalIntReg = LargestIntReg;
274  for (unsigned IntReg = LargestIntReg - 1;
275       IntReg >= (unsigned)MVT::i1; --IntReg) {
276    MVT IVT = (MVT::SimpleValueType)IntReg;
277    if (isTypeLegal(IVT)) {
278      LegalIntReg = IntReg;
279    } else {
280      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
281        (MVT::SimpleValueType)LegalIntReg;
282      ValueTypeActions.setTypeAction(IVT, Promote);
283    }
284  }
285
286  // ppcf128 type is really two f64's.
287  if (!isTypeLegal(MVT::ppcf128)) {
288    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
289    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
290    TransformToType[MVT::ppcf128] = MVT::f64;
291    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
292  }
293
294  // Decide how to handle f64. If the target does not have native f64 support,
295  // expand it to i64 and we will be generating soft float library calls.
296  if (!isTypeLegal(MVT::f64)) {
297    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
298    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
299    TransformToType[MVT::f64] = MVT::i64;
300    ValueTypeActions.setTypeAction(MVT::f64, Expand);
301  }
302
303  // Decide how to handle f32. If the target does not have native support for
304  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
305  if (!isTypeLegal(MVT::f32)) {
306    if (isTypeLegal(MVT::f64)) {
307      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
308      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
309      TransformToType[MVT::f32] = MVT::f64;
310      ValueTypeActions.setTypeAction(MVT::f32, Promote);
311    } else {
312      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
313      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
314      TransformToType[MVT::f32] = MVT::i32;
315      ValueTypeActions.setTypeAction(MVT::f32, Expand);
316    }
317  }
318
319  // Loop over all of the vector value types to see which need transformations.
320  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
321       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
322    MVT VT = (MVT::SimpleValueType)i;
323    if (!isTypeLegal(VT)) {
324      MVT IntermediateVT, RegisterVT;
325      unsigned NumIntermediates;
326      NumRegistersForVT[i] =
327        getVectorTypeBreakdown(VT,
328                               IntermediateVT, NumIntermediates,
329                               RegisterVT);
330      RegisterTypeForVT[i] = RegisterVT;
331      TransformToType[i] = MVT::Other; // this isn't actually used
332      ValueTypeActions.setTypeAction(VT, Expand);
333    }
334  }
335}
336
337const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
338  return NULL;
339}
340
341
342MVT TargetLowering::getSetCCResultType(const SDOperand &) const {
343  return getValueType(TD->getIntPtrType());
344}
345
346
347/// getVectorTypeBreakdown - Vector types are broken down into some number of
348/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
349/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
350/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
351///
352/// This method returns the number of registers needed, and the VT for each
353/// register.  It also returns the VT and quantity of the intermediate values
354/// before they are promoted/expanded.
355///
356unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
357                                                MVT &IntermediateVT,
358                                                unsigned &NumIntermediates,
359                                      MVT &RegisterVT) const {
360  // Figure out the right, legal destination reg to copy into.
361  unsigned NumElts = VT.getVectorNumElements();
362  MVT EltTy = VT.getVectorElementType();
363
364  unsigned NumVectorRegs = 1;
365
366  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
367  // could break down into LHS/RHS like LegalizeDAG does.
368  if (!isPowerOf2_32(NumElts)) {
369    NumVectorRegs = NumElts;
370    NumElts = 1;
371  }
372
373  // Divide the input until we get to a supported size.  This will always
374  // end with a scalar if the target doesn't support vectors.
375  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
376    NumElts >>= 1;
377    NumVectorRegs <<= 1;
378  }
379
380  NumIntermediates = NumVectorRegs;
381
382  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
383  if (!isTypeLegal(NewVT))
384    NewVT = EltTy;
385  IntermediateVT = NewVT;
386
387  MVT DestVT = getTypeToTransformTo(NewVT);
388  RegisterVT = DestVT;
389  if (DestVT.bitsLT(NewVT)) {
390    // Value is expanded, e.g. i64 -> i16.
391    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
392  } else {
393    // Otherwise, promotion or legal types use the same number of registers as
394    // the vector decimated to the appropriate level.
395    return NumVectorRegs;
396  }
397
398  return 1;
399}
400
401/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
402/// function arguments in the caller parameter area.  This is the actual
403/// alignment, not its logarithm.
404unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
405  return TD->getCallFrameTypeAlignment(Ty);
406}
407
408SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
409                                                   SelectionDAG &DAG) const {
410  if (usesGlobalOffsetTable())
411    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
412  return Table;
413}
414
415//===----------------------------------------------------------------------===//
416//  Optimization Methods
417//===----------------------------------------------------------------------===//
418
419/// ShrinkDemandedConstant - Check to see if the specified operand of the
420/// specified instruction is a constant integer.  If so, check to see if there
421/// are any bits set in the constant that are not demanded.  If so, shrink the
422/// constant and return true.
423bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
424                                                        const APInt &Demanded) {
425  // FIXME: ISD::SELECT, ISD::SELECT_CC
426  switch(Op.getOpcode()) {
427  default: break;
428  case ISD::AND:
429  case ISD::OR:
430  case ISD::XOR:
431    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
432      if (C->getAPIntValue().intersects(~Demanded)) {
433        MVT VT = Op.getValueType();
434        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
435                                    DAG.getConstant(Demanded &
436                                                      C->getAPIntValue(),
437                                                    VT));
438        return CombineTo(Op, New);
439      }
440    break;
441  }
442  return false;
443}
444
445/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
446/// DemandedMask bits of the result of Op are ever used downstream.  If we can
447/// use this information to simplify Op, create a new simplified DAG node and
448/// return true, returning the original and new nodes in Old and New. Otherwise,
449/// analyze the expression and return a mask of KnownOne and KnownZero bits for
450/// the expression (used to simplify the caller).  The KnownZero/One bits may
451/// only be accurate for those bits in the DemandedMask.
452bool TargetLowering::SimplifyDemandedBits(SDOperand Op,
453                                          const APInt &DemandedMask,
454                                          APInt &KnownZero,
455                                          APInt &KnownOne,
456                                          TargetLoweringOpt &TLO,
457                                          unsigned Depth) const {
458  unsigned BitWidth = DemandedMask.getBitWidth();
459  assert(Op.getValueSizeInBits() == BitWidth &&
460         "Mask size mismatches value type size!");
461  APInt NewMask = DemandedMask;
462
463  // Don't know anything.
464  KnownZero = KnownOne = APInt(BitWidth, 0);
465
466  // Other users may use these bits.
467  if (!Op.Val->hasOneUse()) {
468    if (Depth != 0) {
469      // If not at the root, Just compute the KnownZero/KnownOne bits to
470      // simplify things downstream.
471      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
472      return false;
473    }
474    // If this is the root being simplified, allow it to have multiple uses,
475    // just set the NewMask to all bits.
476    NewMask = APInt::getAllOnesValue(BitWidth);
477  } else if (DemandedMask == 0) {
478    // Not demanding any bits from Op.
479    if (Op.getOpcode() != ISD::UNDEF)
480      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
481    return false;
482  } else if (Depth == 6) {        // Limit search depth.
483    return false;
484  }
485
486  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
487  switch (Op.getOpcode()) {
488  case ISD::Constant:
489    // We know all of the bits for a constant!
490    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
491    KnownZero = ~KnownOne & NewMask;
492    return false;   // Don't fall through, will infinitely loop.
493  case ISD::AND:
494    // If the RHS is a constant, check to see if the LHS would be zero without
495    // using the bits from the RHS.  Below, we use knowledge about the RHS to
496    // simplify the LHS, here we're using information from the LHS to simplify
497    // the RHS.
498    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
499      APInt LHSZero, LHSOne;
500      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
501                                LHSZero, LHSOne, Depth+1);
502      // If the LHS already has zeros where RHSC does, this and is dead.
503      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
504        return TLO.CombineTo(Op, Op.getOperand(0));
505      // If any of the set bits in the RHS are known zero on the LHS, shrink
506      // the constant.
507      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
508        return true;
509    }
510
511    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
512                             KnownOne, TLO, Depth+1))
513      return true;
514    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
515    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
516                             KnownZero2, KnownOne2, TLO, Depth+1))
517      return true;
518    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
519
520    // If all of the demanded bits are known one on one side, return the other.
521    // These bits cannot contribute to the result of the 'and'.
522    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
523      return TLO.CombineTo(Op, Op.getOperand(0));
524    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
525      return TLO.CombineTo(Op, Op.getOperand(1));
526    // If all of the demanded bits in the inputs are known zeros, return zero.
527    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
528      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
529    // If the RHS is a constant, see if we can simplify it.
530    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
531      return true;
532
533    // Output known-1 bits are only known if set in both the LHS & RHS.
534    KnownOne &= KnownOne2;
535    // Output known-0 are known to be clear if zero in either the LHS | RHS.
536    KnownZero |= KnownZero2;
537    break;
538  case ISD::OR:
539    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
540                             KnownOne, TLO, Depth+1))
541      return true;
542    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
543    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
544                             KnownZero2, KnownOne2, TLO, Depth+1))
545      return true;
546    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
547
548    // If all of the demanded bits are known zero on one side, return the other.
549    // These bits cannot contribute to the result of the 'or'.
550    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
551      return TLO.CombineTo(Op, Op.getOperand(0));
552    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
553      return TLO.CombineTo(Op, Op.getOperand(1));
554    // If all of the potentially set bits on one side are known to be set on
555    // the other side, just use the 'other' side.
556    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
557      return TLO.CombineTo(Op, Op.getOperand(0));
558    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
559      return TLO.CombineTo(Op, Op.getOperand(1));
560    // If the RHS is a constant, see if we can simplify it.
561    if (TLO.ShrinkDemandedConstant(Op, NewMask))
562      return true;
563
564    // Output known-0 bits are only known if clear in both the LHS & RHS.
565    KnownZero &= KnownZero2;
566    // Output known-1 are known to be set if set in either the LHS | RHS.
567    KnownOne |= KnownOne2;
568    break;
569  case ISD::XOR:
570    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
571                             KnownOne, TLO, Depth+1))
572      return true;
573    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
574    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
575                             KnownOne2, TLO, Depth+1))
576      return true;
577    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
578
579    // If all of the demanded bits are known zero on one side, return the other.
580    // These bits cannot contribute to the result of the 'xor'.
581    if ((KnownZero & NewMask) == NewMask)
582      return TLO.CombineTo(Op, Op.getOperand(0));
583    if ((KnownZero2 & NewMask) == NewMask)
584      return TLO.CombineTo(Op, Op.getOperand(1));
585
586    // If all of the unknown bits are known to be zero on one side or the other
587    // (but not both) turn this into an *inclusive* or.
588    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
589    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
590      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
591                                               Op.getOperand(0),
592                                               Op.getOperand(1)));
593
594    // Output known-0 bits are known if clear or set in both the LHS & RHS.
595    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
596    // Output known-1 are known to be set if set in only one of the LHS, RHS.
597    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
598
599    // If all of the demanded bits on one side are known, and all of the set
600    // bits on that side are also known to be set on the other side, turn this
601    // into an AND, as we know the bits will be cleared.
602    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
603    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
604      if ((KnownOne & KnownOne2) == KnownOne) {
605        MVT VT = Op.getValueType();
606        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
607        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
608                                                 ANDC));
609      }
610    }
611
612    // If the RHS is a constant, see if we can simplify it.
613    // for XOR, we prefer to force bits to 1 if they will make a -1.
614    // if we can't force bits, try to shrink constant
615    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
616      APInt Expanded = C->getAPIntValue() | (~NewMask);
617      // if we can expand it to have all bits set, do it
618      if (Expanded.isAllOnesValue()) {
619        if (Expanded != C->getAPIntValue()) {
620          MVT VT = Op.getValueType();
621          SDOperand New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
622                                          TLO.DAG.getConstant(Expanded, VT));
623          return TLO.CombineTo(Op, New);
624        }
625        // if it already has all the bits set, nothing to change
626        // but don't shrink either!
627      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
628        return true;
629      }
630    }
631
632    KnownZero = KnownZeroOut;
633    KnownOne  = KnownOneOut;
634    break;
635  case ISD::SELECT:
636    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
637                             KnownOne, TLO, Depth+1))
638      return true;
639    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
640                             KnownOne2, TLO, Depth+1))
641      return true;
642    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
643    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
644
645    // If the operands are constants, see if we can simplify them.
646    if (TLO.ShrinkDemandedConstant(Op, NewMask))
647      return true;
648
649    // Only known if known in both the LHS and RHS.
650    KnownOne &= KnownOne2;
651    KnownZero &= KnownZero2;
652    break;
653  case ISD::SELECT_CC:
654    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
655                             KnownOne, TLO, Depth+1))
656      return true;
657    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
658                             KnownOne2, TLO, Depth+1))
659      return true;
660    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
661    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
662
663    // If the operands are constants, see if we can simplify them.
664    if (TLO.ShrinkDemandedConstant(Op, NewMask))
665      return true;
666
667    // Only known if known in both the LHS and RHS.
668    KnownOne &= KnownOne2;
669    KnownZero &= KnownZero2;
670    break;
671  case ISD::SHL:
672    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
673      unsigned ShAmt = SA->getValue();
674      SDOperand InOp = Op.getOperand(0);
675
676      // If the shift count is an invalid immediate, don't do anything.
677      if (ShAmt >= BitWidth)
678        break;
679
680      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
681      // single shift.  We can do this if the bottom bits (which are shifted
682      // out) are never demanded.
683      if (InOp.getOpcode() == ISD::SRL &&
684          isa<ConstantSDNode>(InOp.getOperand(1))) {
685        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
686          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
687          unsigned Opc = ISD::SHL;
688          int Diff = ShAmt-C1;
689          if (Diff < 0) {
690            Diff = -Diff;
691            Opc = ISD::SRL;
692          }
693
694          SDOperand NewSA =
695            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
696          MVT VT = Op.getValueType();
697          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
698                                                   InOp.getOperand(0), NewSA));
699        }
700      }
701
702      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
703                               KnownZero, KnownOne, TLO, Depth+1))
704        return true;
705      KnownZero <<= SA->getValue();
706      KnownOne  <<= SA->getValue();
707      // low bits known zero.
708      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
709    }
710    break;
711  case ISD::SRL:
712    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
713      MVT VT = Op.getValueType();
714      unsigned ShAmt = SA->getValue();
715      unsigned VTSize = VT.getSizeInBits();
716      SDOperand InOp = Op.getOperand(0);
717
718      // If the shift count is an invalid immediate, don't do anything.
719      if (ShAmt >= BitWidth)
720        break;
721
722      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
723      // single shift.  We can do this if the top bits (which are shifted out)
724      // are never demanded.
725      if (InOp.getOpcode() == ISD::SHL &&
726          isa<ConstantSDNode>(InOp.getOperand(1))) {
727        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
728          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
729          unsigned Opc = ISD::SRL;
730          int Diff = ShAmt-C1;
731          if (Diff < 0) {
732            Diff = -Diff;
733            Opc = ISD::SHL;
734          }
735
736          SDOperand NewSA =
737            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
738          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
739                                                   InOp.getOperand(0), NewSA));
740        }
741      }
742
743      // Compute the new bits that are at the top now.
744      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
745                               KnownZero, KnownOne, TLO, Depth+1))
746        return true;
747      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
748      KnownZero = KnownZero.lshr(ShAmt);
749      KnownOne  = KnownOne.lshr(ShAmt);
750
751      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
752      KnownZero |= HighBits;  // High bits known zero.
753    }
754    break;
755  case ISD::SRA:
756    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
757      MVT VT = Op.getValueType();
758      unsigned ShAmt = SA->getValue();
759
760      // If the shift count is an invalid immediate, don't do anything.
761      if (ShAmt >= BitWidth)
762        break;
763
764      APInt InDemandedMask = (NewMask << ShAmt);
765
766      // If any of the demanded bits are produced by the sign extension, we also
767      // demand the input sign bit.
768      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
769      if (HighBits.intersects(NewMask))
770        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
771
772      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
773                               KnownZero, KnownOne, TLO, Depth+1))
774        return true;
775      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
776      KnownZero = KnownZero.lshr(ShAmt);
777      KnownOne  = KnownOne.lshr(ShAmt);
778
779      // Handle the sign bit, adjusted to where it is now in the mask.
780      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
781
782      // If the input sign bit is known to be zero, or if none of the top bits
783      // are demanded, turn this into an unsigned shift right.
784      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
785        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
786                                                 Op.getOperand(1)));
787      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
788        KnownOne |= HighBits;
789      }
790    }
791    break;
792  case ISD::SIGN_EXTEND_INREG: {
793    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
794
795    // Sign extension.  Compute the demanded bits in the result that are not
796    // present in the input.
797    APInt NewBits = APInt::getHighBitsSet(BitWidth,
798                                          BitWidth - EVT.getSizeInBits()) &
799                    NewMask;
800
801    // If none of the extended bits are demanded, eliminate the sextinreg.
802    if (NewBits == 0)
803      return TLO.CombineTo(Op, Op.getOperand(0));
804
805    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
806    InSignBit.zext(BitWidth);
807    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
808                                                   EVT.getSizeInBits()) &
809                              NewMask;
810
811    // Since the sign extended bits are demanded, we know that the sign
812    // bit is demanded.
813    InputDemandedBits |= InSignBit;
814
815    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
816                             KnownZero, KnownOne, TLO, Depth+1))
817      return true;
818    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
819
820    // If the sign bit of the input is known set or clear, then we know the
821    // top bits of the result.
822
823    // If the input sign bit is known zero, convert this into a zero extension.
824    if (KnownZero.intersects(InSignBit))
825      return TLO.CombineTo(Op,
826                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
827
828    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
829      KnownOne |= NewBits;
830      KnownZero &= ~NewBits;
831    } else {                       // Input sign bit unknown
832      KnownZero &= ~NewBits;
833      KnownOne &= ~NewBits;
834    }
835    break;
836  }
837  case ISD::ZERO_EXTEND: {
838    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
839    APInt InMask = NewMask;
840    InMask.trunc(OperandBitWidth);
841
842    // If none of the top bits are demanded, convert this into an any_extend.
843    APInt NewBits =
844      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
845    if (!NewBits.intersects(NewMask))
846      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
847                                               Op.getValueType(),
848                                               Op.getOperand(0)));
849
850    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
851                             KnownZero, KnownOne, TLO, Depth+1))
852      return true;
853    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
854    KnownZero.zext(BitWidth);
855    KnownOne.zext(BitWidth);
856    KnownZero |= NewBits;
857    break;
858  }
859  case ISD::SIGN_EXTEND: {
860    MVT InVT = Op.getOperand(0).getValueType();
861    unsigned InBits = InVT.getSizeInBits();
862    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
863    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
864    APInt NewBits   = ~InMask & NewMask;
865
866    // If none of the top bits are demanded, convert this into an any_extend.
867    if (NewBits == 0)
868      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
869                                           Op.getOperand(0)));
870
871    // Since some of the sign extended bits are demanded, we know that the sign
872    // bit is demanded.
873    APInt InDemandedBits = InMask & NewMask;
874    InDemandedBits |= InSignBit;
875    InDemandedBits.trunc(InBits);
876
877    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
878                             KnownOne, TLO, Depth+1))
879      return true;
880    KnownZero.zext(BitWidth);
881    KnownOne.zext(BitWidth);
882
883    // If the sign bit is known zero, convert this to a zero extend.
884    if (KnownZero.intersects(InSignBit))
885      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
886                                               Op.getValueType(),
887                                               Op.getOperand(0)));
888
889    // If the sign bit is known one, the top bits match.
890    if (KnownOne.intersects(InSignBit)) {
891      KnownOne  |= NewBits;
892      KnownZero &= ~NewBits;
893    } else {   // Otherwise, top bits aren't known.
894      KnownOne  &= ~NewBits;
895      KnownZero &= ~NewBits;
896    }
897    break;
898  }
899  case ISD::ANY_EXTEND: {
900    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
901    APInt InMask = NewMask;
902    InMask.trunc(OperandBitWidth);
903    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
904                             KnownZero, KnownOne, TLO, Depth+1))
905      return true;
906    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
907    KnownZero.zext(BitWidth);
908    KnownOne.zext(BitWidth);
909    break;
910  }
911  case ISD::TRUNCATE: {
912    // Simplify the input, using demanded bit information, and compute the known
913    // zero/one bits live out.
914    APInt TruncMask = NewMask;
915    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
916    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
917                             KnownZero, KnownOne, TLO, Depth+1))
918      return true;
919    KnownZero.trunc(BitWidth);
920    KnownOne.trunc(BitWidth);
921
922    // If the input is only used by this truncate, see if we can shrink it based
923    // on the known demanded bits.
924    if (Op.getOperand(0).Val->hasOneUse()) {
925      SDOperand In = Op.getOperand(0);
926      unsigned InBitWidth = In.getValueSizeInBits();
927      switch (In.getOpcode()) {
928      default: break;
929      case ISD::SRL:
930        // Shrink SRL by a constant if none of the high bits shifted in are
931        // demanded.
932        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
933          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
934                                                 InBitWidth - BitWidth);
935          HighBits = HighBits.lshr(ShAmt->getValue());
936          HighBits.trunc(BitWidth);
937
938          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
939            // None of the shifted in bits are needed.  Add a truncate of the
940            // shift input, then shift it.
941            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
942                                                 Op.getValueType(),
943                                                 In.getOperand(0));
944            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
945                                                   NewTrunc, In.getOperand(1)));
946          }
947        }
948        break;
949      }
950    }
951
952    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
953    break;
954  }
955  case ISD::AssertZext: {
956    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
957    APInt InMask = APInt::getLowBitsSet(BitWidth,
958                                        VT.getSizeInBits());
959    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
960                             KnownZero, KnownOne, TLO, Depth+1))
961      return true;
962    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
963    KnownZero |= ~InMask & NewMask;
964    break;
965  }
966  case ISD::BIT_CONVERT:
967#if 0
968    // If this is an FP->Int bitcast and if the sign bit is the only thing that
969    // is demanded, turn this into a FGETSIGN.
970    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
971        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
972        !MVT::isVector(Op.getOperand(0).getValueType())) {
973      // Only do this xform if FGETSIGN is valid or if before legalize.
974      if (!TLO.AfterLegalize ||
975          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
976        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
977        // place.  We expect the SHL to be eliminated by other optimizations.
978        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
979                                         Op.getOperand(0));
980        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
981        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
982        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
983                                                 Sign, ShAmt));
984      }
985    }
986#endif
987    break;
988  default:
989    // Just use ComputeMaskedBits to compute output bits.
990    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
991    break;
992  }
993
994  // If we know the value of all of the demanded bits, return this as a
995  // constant.
996  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
997    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
998
999  return false;
1000}
1001
1002/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1003/// in Mask are known to be either zero or one and return them in the
1004/// KnownZero/KnownOne bitsets.
1005void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1006                                                    const APInt &Mask,
1007                                                    APInt &KnownZero,
1008                                                    APInt &KnownOne,
1009                                                    const SelectionDAG &DAG,
1010                                                    unsigned Depth) const {
1011  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1012          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1013          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1014          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1015         "Should use MaskedValueIsZero if you don't know whether Op"
1016         " is a target node!");
1017  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1018}
1019
1020/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1021/// targets that want to expose additional information about sign bits to the
1022/// DAG Combiner.
1023unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1024                                                         unsigned Depth) const {
1025  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1026          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1027          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1028          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1029         "Should use ComputeNumSignBits if you don't know whether Op"
1030         " is a target node!");
1031  return 1;
1032}
1033
1034
1035/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1036/// and cc. If it is unable to simplify it, return a null SDOperand.
1037SDOperand
1038TargetLowering::SimplifySetCC(MVT VT, SDOperand N0, SDOperand N1,
1039                              ISD::CondCode Cond, bool foldBooleans,
1040                              DAGCombinerInfo &DCI) const {
1041  SelectionDAG &DAG = DCI.DAG;
1042
1043  // These setcc operations always fold.
1044  switch (Cond) {
1045  default: break;
1046  case ISD::SETFALSE:
1047  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1048  case ISD::SETTRUE:
1049  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1050  }
1051
1052  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1053    const APInt &C1 = N1C->getAPIntValue();
1054    if (isa<ConstantSDNode>(N0.Val)) {
1055      return DAG.FoldSetCC(VT, N0, N1, Cond);
1056    } else {
1057      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1058      // equality comparison, then we're just comparing whether X itself is
1059      // zero.
1060      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1061          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1062          N0.getOperand(1).getOpcode() == ISD::Constant) {
1063        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1064        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1065            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1066          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1067            // (srl (ctlz x), 5) == 0  -> X != 0
1068            // (srl (ctlz x), 5) != 1  -> X != 0
1069            Cond = ISD::SETNE;
1070          } else {
1071            // (srl (ctlz x), 5) != 0  -> X == 0
1072            // (srl (ctlz x), 5) == 1  -> X == 0
1073            Cond = ISD::SETEQ;
1074          }
1075          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1076          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1077                              Zero, Cond);
1078        }
1079      }
1080
1081      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1082      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1083        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1084
1085        // If the comparison constant has bits in the upper part, the
1086        // zero-extended value could never match.
1087        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1088                                                C1.getBitWidth() - InSize))) {
1089          switch (Cond) {
1090          case ISD::SETUGT:
1091          case ISD::SETUGE:
1092          case ISD::SETEQ: return DAG.getConstant(0, VT);
1093          case ISD::SETULT:
1094          case ISD::SETULE:
1095          case ISD::SETNE: return DAG.getConstant(1, VT);
1096          case ISD::SETGT:
1097          case ISD::SETGE:
1098            // True if the sign bit of C1 is set.
1099            return DAG.getConstant(C1.isNegative(), VT);
1100          case ISD::SETLT:
1101          case ISD::SETLE:
1102            // True if the sign bit of C1 isn't set.
1103            return DAG.getConstant(C1.isNonNegative(), VT);
1104          default:
1105            break;
1106          }
1107        }
1108
1109        // Otherwise, we can perform the comparison with the low bits.
1110        switch (Cond) {
1111        case ISD::SETEQ:
1112        case ISD::SETNE:
1113        case ISD::SETUGT:
1114        case ISD::SETUGE:
1115        case ISD::SETULT:
1116        case ISD::SETULE:
1117          return DAG.getSetCC(VT, N0.getOperand(0),
1118                          DAG.getConstant(APInt(C1).trunc(InSize),
1119                                          N0.getOperand(0).getValueType()),
1120                          Cond);
1121        default:
1122          break;   // todo, be more careful with signed comparisons
1123        }
1124      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1125                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1126        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1127        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1128        MVT ExtDstTy = N0.getValueType();
1129        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1130
1131        // If the extended part has any inconsistent bits, it cannot ever
1132        // compare equal.  In other words, they have to be all ones or all
1133        // zeros.
1134        APInt ExtBits =
1135          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1136        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1137          return DAG.getConstant(Cond == ISD::SETNE, VT);
1138
1139        SDOperand ZextOp;
1140        MVT Op0Ty = N0.getOperand(0).getValueType();
1141        if (Op0Ty == ExtSrcTy) {
1142          ZextOp = N0.getOperand(0);
1143        } else {
1144          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1145          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1146                               DAG.getConstant(Imm, Op0Ty));
1147        }
1148        if (!DCI.isCalledByLegalizer())
1149          DCI.AddToWorklist(ZextOp.Val);
1150        // Otherwise, make this a use of a zext.
1151        return DAG.getSetCC(VT, ZextOp,
1152                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1153                                                               ExtDstTyBits,
1154                                                               ExtSrcTyBits),
1155                                            ExtDstTy),
1156                            Cond);
1157      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1158                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1159
1160        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1161        if (N0.getOpcode() == ISD::SETCC) {
1162          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1163          if (TrueWhenTrue)
1164            return N0;
1165
1166          // Invert the condition.
1167          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1168          CC = ISD::getSetCCInverse(CC,
1169                                   N0.getOperand(0).getValueType().isInteger());
1170          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1171        }
1172
1173        if ((N0.getOpcode() == ISD::XOR ||
1174             (N0.getOpcode() == ISD::AND &&
1175              N0.getOperand(0).getOpcode() == ISD::XOR &&
1176              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1177            isa<ConstantSDNode>(N0.getOperand(1)) &&
1178            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1179          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1180          // can only do this if the top bits are known zero.
1181          unsigned BitWidth = N0.getValueSizeInBits();
1182          if (DAG.MaskedValueIsZero(N0,
1183                                    APInt::getHighBitsSet(BitWidth,
1184                                                          BitWidth-1))) {
1185            // Okay, get the un-inverted input value.
1186            SDOperand Val;
1187            if (N0.getOpcode() == ISD::XOR)
1188              Val = N0.getOperand(0);
1189            else {
1190              assert(N0.getOpcode() == ISD::AND &&
1191                     N0.getOperand(0).getOpcode() == ISD::XOR);
1192              // ((X^1)&1)^1 -> X & 1
1193              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1194                                N0.getOperand(0).getOperand(0),
1195                                N0.getOperand(1));
1196            }
1197            return DAG.getSetCC(VT, Val, N1,
1198                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1199          }
1200        }
1201      }
1202
1203      APInt MinVal, MaxVal;
1204      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1205      if (ISD::isSignedIntSetCC(Cond)) {
1206        MinVal = APInt::getSignedMinValue(OperandBitSize);
1207        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1208      } else {
1209        MinVal = APInt::getMinValue(OperandBitSize);
1210        MaxVal = APInt::getMaxValue(OperandBitSize);
1211      }
1212
1213      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1214      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1215        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1216        // X >= C0 --> X > (C0-1)
1217        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1218                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1219      }
1220
1221      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1222        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1223        // X <= C0 --> X < (C0+1)
1224        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1225                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1226      }
1227
1228      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1229        return DAG.getConstant(0, VT);      // X < MIN --> false
1230      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1231        return DAG.getConstant(1, VT);      // X >= MIN --> true
1232      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1233        return DAG.getConstant(0, VT);      // X > MAX --> false
1234      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1235        return DAG.getConstant(1, VT);      // X <= MAX --> true
1236
1237      // Canonicalize setgt X, Min --> setne X, Min
1238      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1239        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1240      // Canonicalize setlt X, Max --> setne X, Max
1241      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1242        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1243
1244      // If we have setult X, 1, turn it into seteq X, 0
1245      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1246        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1247                        ISD::SETEQ);
1248      // If we have setugt X, Max-1, turn it into seteq X, Max
1249      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1250        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1251                        ISD::SETEQ);
1252
1253      // If we have "setcc X, C0", check to see if we can shrink the immediate
1254      // by changing cc.
1255
1256      // SETUGT X, SINTMAX  -> SETLT X, 0
1257      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1258          C1 == (~0ULL >> (65-OperandBitSize)))
1259        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1260                            ISD::SETLT);
1261
1262      // FIXME: Implement the rest of these.
1263
1264      // Fold bit comparisons when we can.
1265      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1266          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1267        if (ConstantSDNode *AndRHS =
1268                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1269          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1270            // Perform the xform if the AND RHS is a single bit.
1271            if (isPowerOf2_64(AndRHS->getValue())) {
1272              return DAG.getNode(ISD::SRL, VT, N0,
1273                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1274                                             getShiftAmountTy()));
1275            }
1276          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1277            // (X & 8) == 8  -->  (X & 8) >> 3
1278            // Perform the xform if C1 is a single bit.
1279            if (C1.isPowerOf2()) {
1280              return DAG.getNode(ISD::SRL, VT, N0,
1281                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1282            }
1283          }
1284        }
1285    }
1286  } else if (isa<ConstantSDNode>(N0.Val)) {
1287      // Ensure that the constant occurs on the RHS.
1288    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1289  }
1290
1291  if (isa<ConstantFPSDNode>(N0.Val)) {
1292    // Constant fold or commute setcc.
1293    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1294    if (O.Val) return O;
1295  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1296    // If the RHS of an FP comparison is a constant, simplify it away in
1297    // some cases.
1298    if (CFP->getValueAPF().isNaN()) {
1299      // If an operand is known to be a nan, we can fold it.
1300      switch (ISD::getUnorderedFlavor(Cond)) {
1301      default: assert(0 && "Unknown flavor!");
1302      case 0:  // Known false.
1303        return DAG.getConstant(0, VT);
1304      case 1:  // Known true.
1305        return DAG.getConstant(1, VT);
1306      case 2:  // Undefined.
1307        return DAG.getNode(ISD::UNDEF, VT);
1308      }
1309    }
1310
1311    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1312    // constant if knowing that the operand is non-nan is enough.  We prefer to
1313    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1314    // materialize 0.0.
1315    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1316      return DAG.getSetCC(VT, N0, N0, Cond);
1317  }
1318
1319  if (N0 == N1) {
1320    // We can always fold X == X for integer setcc's.
1321    if (N0.getValueType().isInteger())
1322      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1323    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1324    if (UOF == 2)   // FP operators that are undefined on NaNs.
1325      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1326    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1327      return DAG.getConstant(UOF, VT);
1328    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1329    // if it is not already.
1330    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1331    if (NewCond != Cond)
1332      return DAG.getSetCC(VT, N0, N1, NewCond);
1333  }
1334
1335  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1336      N0.getValueType().isInteger()) {
1337    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1338        N0.getOpcode() == ISD::XOR) {
1339      // Simplify (X+Y) == (X+Z) -->  Y == Z
1340      if (N0.getOpcode() == N1.getOpcode()) {
1341        if (N0.getOperand(0) == N1.getOperand(0))
1342          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1343        if (N0.getOperand(1) == N1.getOperand(1))
1344          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1345        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1346          // If X op Y == Y op X, try other combinations.
1347          if (N0.getOperand(0) == N1.getOperand(1))
1348            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1349          if (N0.getOperand(1) == N1.getOperand(0))
1350            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1351        }
1352      }
1353
1354      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1355        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1356          // Turn (X+C1) == C2 --> X == C2-C1
1357          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1358            return DAG.getSetCC(VT, N0.getOperand(0),
1359                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1360                                N0.getValueType()), Cond);
1361          }
1362
1363          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1364          if (N0.getOpcode() == ISD::XOR)
1365            // If we know that all of the inverted bits are zero, don't bother
1366            // performing the inversion.
1367            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1368              return
1369                DAG.getSetCC(VT, N0.getOperand(0),
1370                             DAG.getConstant(LHSR->getAPIntValue() ^
1371                                               RHSC->getAPIntValue(),
1372                                             N0.getValueType()),
1373                             Cond);
1374        }
1375
1376        // Turn (C1-X) == C2 --> X == C1-C2
1377        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1378          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1379            return
1380              DAG.getSetCC(VT, N0.getOperand(1),
1381                           DAG.getConstant(SUBC->getAPIntValue() -
1382                                             RHSC->getAPIntValue(),
1383                                           N0.getValueType()),
1384                           Cond);
1385          }
1386        }
1387      }
1388
1389      // Simplify (X+Z) == X -->  Z == 0
1390      if (N0.getOperand(0) == N1)
1391        return DAG.getSetCC(VT, N0.getOperand(1),
1392                        DAG.getConstant(0, N0.getValueType()), Cond);
1393      if (N0.getOperand(1) == N1) {
1394        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1395          return DAG.getSetCC(VT, N0.getOperand(0),
1396                          DAG.getConstant(0, N0.getValueType()), Cond);
1397        else if (N0.Val->hasOneUse()) {
1398          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1399          // (Z-X) == X  --> Z == X<<1
1400          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1401                                     N1,
1402                                     DAG.getConstant(1, getShiftAmountTy()));
1403          if (!DCI.isCalledByLegalizer())
1404            DCI.AddToWorklist(SH.Val);
1405          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1406        }
1407      }
1408    }
1409
1410    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1411        N1.getOpcode() == ISD::XOR) {
1412      // Simplify  X == (X+Z) -->  Z == 0
1413      if (N1.getOperand(0) == N0) {
1414        return DAG.getSetCC(VT, N1.getOperand(1),
1415                        DAG.getConstant(0, N1.getValueType()), Cond);
1416      } else if (N1.getOperand(1) == N0) {
1417        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1418          return DAG.getSetCC(VT, N1.getOperand(0),
1419                          DAG.getConstant(0, N1.getValueType()), Cond);
1420        } else if (N1.Val->hasOneUse()) {
1421          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1422          // X == (Z-X)  --> X<<1 == Z
1423          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1424                                     DAG.getConstant(1, getShiftAmountTy()));
1425          if (!DCI.isCalledByLegalizer())
1426            DCI.AddToWorklist(SH.Val);
1427          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1428        }
1429      }
1430    }
1431  }
1432
1433  // Fold away ALL boolean setcc's.
1434  SDOperand Temp;
1435  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1436    switch (Cond) {
1437    default: assert(0 && "Unknown integer setcc!");
1438    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1439      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1440      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1441      if (!DCI.isCalledByLegalizer())
1442        DCI.AddToWorklist(Temp.Val);
1443      break;
1444    case ISD::SETNE:  // X != Y   -->  (X^Y)
1445      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1446      break;
1447    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1448    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1449      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1450      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1451      if (!DCI.isCalledByLegalizer())
1452        DCI.AddToWorklist(Temp.Val);
1453      break;
1454    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1455    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1456      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1457      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1458      if (!DCI.isCalledByLegalizer())
1459        DCI.AddToWorklist(Temp.Val);
1460      break;
1461    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1462    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1463      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1464      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1465      if (!DCI.isCalledByLegalizer())
1466        DCI.AddToWorklist(Temp.Val);
1467      break;
1468    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1469    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1470      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1471      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1472      break;
1473    }
1474    if (VT != MVT::i1) {
1475      if (!DCI.isCalledByLegalizer())
1476        DCI.AddToWorklist(N0.Val);
1477      // FIXME: If running after legalize, we probably can't do this.
1478      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1479    }
1480    return N0;
1481  }
1482
1483  // Could not fold it.
1484  return SDOperand();
1485}
1486
1487/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1488/// node is a GlobalAddress + offset.
1489bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1490                                    int64_t &Offset) const {
1491  if (isa<GlobalAddressSDNode>(N)) {
1492    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1493    GA = GASD->getGlobal();
1494    Offset += GASD->getOffset();
1495    return true;
1496  }
1497
1498  if (N->getOpcode() == ISD::ADD) {
1499    SDOperand N1 = N->getOperand(0);
1500    SDOperand N2 = N->getOperand(1);
1501    if (isGAPlusOffset(N1.Val, GA, Offset)) {
1502      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1503      if (V) {
1504        Offset += V->getSignExtended();
1505        return true;
1506      }
1507    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
1508      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1509      if (V) {
1510        Offset += V->getSignExtended();
1511        return true;
1512      }
1513    }
1514  }
1515  return false;
1516}
1517
1518
1519/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1520/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1521/// location that the 'Base' load is loading from.
1522bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1523                                       unsigned Bytes, int Dist,
1524                                       const MachineFrameInfo *MFI) const {
1525  if (LD->getOperand(0).Val != Base->getOperand(0).Val)
1526    return false;
1527  MVT VT = LD->getValueType(0);
1528  if (VT.getSizeInBits() / 8 != Bytes)
1529    return false;
1530
1531  SDOperand Loc = LD->getOperand(1);
1532  SDOperand BaseLoc = Base->getOperand(1);
1533  if (Loc.getOpcode() == ISD::FrameIndex) {
1534    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1535      return false;
1536    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1537    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1538    int FS  = MFI->getObjectSize(FI);
1539    int BFS = MFI->getObjectSize(BFI);
1540    if (FS != BFS || FS != (int)Bytes) return false;
1541    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1542  }
1543
1544  GlobalValue *GV1 = NULL;
1545  GlobalValue *GV2 = NULL;
1546  int64_t Offset1 = 0;
1547  int64_t Offset2 = 0;
1548  bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
1549  bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
1550  if (isGA1 && isGA2 && GV1 == GV2)
1551    return Offset1 == (Offset2 + Dist*Bytes);
1552  return false;
1553}
1554
1555
1556SDOperand TargetLowering::
1557PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1558  // Default implementation: no optimization.
1559  return SDOperand();
1560}
1561
1562//===----------------------------------------------------------------------===//
1563//  Inline Assembler Implementation Methods
1564//===----------------------------------------------------------------------===//
1565
1566
1567TargetLowering::ConstraintType
1568TargetLowering::getConstraintType(const std::string &Constraint) const {
1569  // FIXME: lots more standard ones to handle.
1570  if (Constraint.size() == 1) {
1571    switch (Constraint[0]) {
1572    default: break;
1573    case 'r': return C_RegisterClass;
1574    case 'm':    // memory
1575    case 'o':    // offsetable
1576    case 'V':    // not offsetable
1577      return C_Memory;
1578    case 'i':    // Simple Integer or Relocatable Constant
1579    case 'n':    // Simple Integer
1580    case 's':    // Relocatable Constant
1581    case 'X':    // Allow ANY value.
1582    case 'I':    // Target registers.
1583    case 'J':
1584    case 'K':
1585    case 'L':
1586    case 'M':
1587    case 'N':
1588    case 'O':
1589    case 'P':
1590      return C_Other;
1591    }
1592  }
1593
1594  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1595      Constraint[Constraint.size()-1] == '}')
1596    return C_Register;
1597  return C_Unknown;
1598}
1599
1600/// LowerXConstraint - try to replace an X constraint, which matches anything,
1601/// with another that has more specific requirements based on the type of the
1602/// corresponding operand.
1603const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1604  if (ConstraintVT.isInteger())
1605    return "r";
1606  if (ConstraintVT.isFloatingPoint())
1607    return "f";      // works for many targets
1608  return 0;
1609}
1610
1611/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1612/// vector.  If it is invalid, don't add anything to Ops.
1613void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1614                                                  char ConstraintLetter,
1615                                                  std::vector<SDOperand> &Ops,
1616                                                  SelectionDAG &DAG) const {
1617  switch (ConstraintLetter) {
1618  default: break;
1619  case 'X':     // Allows any operand; labels (basic block) use this.
1620    if (Op.getOpcode() == ISD::BasicBlock) {
1621      Ops.push_back(Op);
1622      return;
1623    }
1624    // fall through
1625  case 'i':    // Simple Integer or Relocatable Constant
1626  case 'n':    // Simple Integer
1627  case 's': {  // Relocatable Constant
1628    // These operands are interested in values of the form (GV+C), where C may
1629    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1630    // is possible and fine if either GV or C are missing.
1631    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1632    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1633
1634    // If we have "(add GV, C)", pull out GV/C
1635    if (Op.getOpcode() == ISD::ADD) {
1636      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1637      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1638      if (C == 0 || GA == 0) {
1639        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1640        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1641      }
1642      if (C == 0 || GA == 0)
1643        C = 0, GA = 0;
1644    }
1645
1646    // If we find a valid operand, map to the TargetXXX version so that the
1647    // value itself doesn't get selected.
1648    if (GA) {   // Either &GV   or   &GV+C
1649      if (ConstraintLetter != 'n') {
1650        int64_t Offs = GA->getOffset();
1651        if (C) Offs += C->getValue();
1652        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1653                                                 Op.getValueType(), Offs));
1654        return;
1655      }
1656    }
1657    if (C) {   // just C, no GV.
1658      // Simple constants are not allowed for 's'.
1659      if (ConstraintLetter != 's') {
1660        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1661        return;
1662      }
1663    }
1664    break;
1665  }
1666  }
1667}
1668
1669std::vector<unsigned> TargetLowering::
1670getRegClassForInlineAsmConstraint(const std::string &Constraint,
1671                                  MVT VT) const {
1672  return std::vector<unsigned>();
1673}
1674
1675
1676std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1677getRegForInlineAsmConstraint(const std::string &Constraint,
1678                             MVT VT) const {
1679  if (Constraint[0] != '{')
1680    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1681  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1682
1683  // Remove the braces from around the name.
1684  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1685
1686  // Figure out which register class contains this reg.
1687  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1688  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1689       E = RI->regclass_end(); RCI != E; ++RCI) {
1690    const TargetRegisterClass *RC = *RCI;
1691
1692    // If none of the the value types for this register class are valid, we
1693    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1694    bool isLegal = false;
1695    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1696         I != E; ++I) {
1697      if (isTypeLegal(*I)) {
1698        isLegal = true;
1699        break;
1700      }
1701    }
1702
1703    if (!isLegal) continue;
1704
1705    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1706         I != E; ++I) {
1707      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1708        return std::make_pair(*I, RC);
1709    }
1710  }
1711
1712  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1713}
1714
1715//===----------------------------------------------------------------------===//
1716// Constraint Selection.
1717
1718/// getConstraintGenerality - Return an integer indicating how general CT
1719/// is.
1720static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1721  switch (CT) {
1722  default: assert(0 && "Unknown constraint type!");
1723  case TargetLowering::C_Other:
1724  case TargetLowering::C_Unknown:
1725    return 0;
1726  case TargetLowering::C_Register:
1727    return 1;
1728  case TargetLowering::C_RegisterClass:
1729    return 2;
1730  case TargetLowering::C_Memory:
1731    return 3;
1732  }
1733}
1734
1735/// ChooseConstraint - If there are multiple different constraints that we
1736/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1737/// This is somewhat tricky: constraints fall into four classes:
1738///    Other         -> immediates and magic values
1739///    Register      -> one specific register
1740///    RegisterClass -> a group of regs
1741///    Memory        -> memory
1742/// Ideally, we would pick the most specific constraint possible: if we have
1743/// something that fits into a register, we would pick it.  The problem here
1744/// is that if we have something that could either be in a register or in
1745/// memory that use of the register could cause selection of *other*
1746/// operands to fail: they might only succeed if we pick memory.  Because of
1747/// this the heuristic we use is:
1748///
1749///  1) If there is an 'other' constraint, and if the operand is valid for
1750///     that constraint, use it.  This makes us take advantage of 'i'
1751///     constraints when available.
1752///  2) Otherwise, pick the most general constraint present.  This prefers
1753///     'm' over 'r', for example.
1754///
1755static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1756                             const TargetLowering &TLI,
1757                             SDOperand Op, SelectionDAG *DAG) {
1758  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1759  unsigned BestIdx = 0;
1760  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1761  int BestGenerality = -1;
1762
1763  // Loop over the options, keeping track of the most general one.
1764  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1765    TargetLowering::ConstraintType CType =
1766      TLI.getConstraintType(OpInfo.Codes[i]);
1767
1768    // If this is an 'other' constraint, see if the operand is valid for it.
1769    // For example, on X86 we might have an 'rI' constraint.  If the operand
1770    // is an integer in the range [0..31] we want to use I (saving a load
1771    // of a register), otherwise we must use 'r'.
1772    if (CType == TargetLowering::C_Other && Op.Val) {
1773      assert(OpInfo.Codes[i].size() == 1 &&
1774             "Unhandled multi-letter 'other' constraint");
1775      std::vector<SDOperand> ResultOps;
1776      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
1777                                       ResultOps, *DAG);
1778      if (!ResultOps.empty()) {
1779        BestType = CType;
1780        BestIdx = i;
1781        break;
1782      }
1783    }
1784
1785    // This constraint letter is more general than the previous one, use it.
1786    int Generality = getConstraintGenerality(CType);
1787    if (Generality > BestGenerality) {
1788      BestType = CType;
1789      BestIdx = i;
1790      BestGenerality = Generality;
1791    }
1792  }
1793
1794  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
1795  OpInfo.ConstraintType = BestType;
1796}
1797
1798/// ComputeConstraintToUse - Determines the constraint code and constraint
1799/// type to use for the specific AsmOperandInfo, setting
1800/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
1801void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1802                                            SDOperand Op,
1803                                            SelectionDAG *DAG) const {
1804  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
1805
1806  // Single-letter constraints ('r') are very common.
1807  if (OpInfo.Codes.size() == 1) {
1808    OpInfo.ConstraintCode = OpInfo.Codes[0];
1809    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1810  } else {
1811    ChooseConstraint(OpInfo, *this, Op, DAG);
1812  }
1813
1814  // 'X' matches anything.
1815  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
1816    // Labels and constants are handled elsewhere ('X' is the only thing
1817    // that matches labels).
1818    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
1819        isa<ConstantInt>(OpInfo.CallOperandVal))
1820      return;
1821
1822    // Otherwise, try to resolve it to something we know about by looking at
1823    // the actual operand type.
1824    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
1825      OpInfo.ConstraintCode = Repl;
1826      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1827    }
1828  }
1829}
1830
1831//===----------------------------------------------------------------------===//
1832//  Loop Strength Reduction hooks
1833//===----------------------------------------------------------------------===//
1834
1835/// isLegalAddressingMode - Return true if the addressing mode represented
1836/// by AM is legal for this target, for a load/store of the specified type.
1837bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1838                                           const Type *Ty) const {
1839  // The default implementation of this implements a conservative RISCy, r+r and
1840  // r+i addr mode.
1841
1842  // Allows a sign-extended 16-bit immediate field.
1843  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1844    return false;
1845
1846  // No global is ever allowed as a base.
1847  if (AM.BaseGV)
1848    return false;
1849
1850  // Only support r+r,
1851  switch (AM.Scale) {
1852  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1853    break;
1854  case 1:
1855    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1856      return false;
1857    // Otherwise we have r+r or r+i.
1858    break;
1859  case 2:
1860    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1861      return false;
1862    // Allow 2*r as r+r.
1863    break;
1864  }
1865
1866  return true;
1867}
1868
1869// Magic for divide replacement
1870
1871struct ms {
1872  int64_t m;  // magic number
1873  int64_t s;  // shift amount
1874};
1875
1876struct mu {
1877  uint64_t m; // magic number
1878  int64_t a;  // add indicator
1879  int64_t s;  // shift amount
1880};
1881
1882/// magic - calculate the magic numbers required to codegen an integer sdiv as
1883/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1884/// or -1.
1885static ms magic32(int32_t d) {
1886  int32_t p;
1887  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1888  const uint32_t two31 = 0x80000000U;
1889  struct ms mag;
1890
1891  ad = abs(d);
1892  t = two31 + ((uint32_t)d >> 31);
1893  anc = t - 1 - t%ad;   // absolute value of nc
1894  p = 31;               // initialize p
1895  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1896  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1897  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1898  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1899  do {
1900    p = p + 1;
1901    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1902    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1903    if (r1 >= anc) {  // must be unsigned comparison
1904      q1 = q1 + 1;
1905      r1 = r1 - anc;
1906    }
1907    q2 = 2*q2;        // update q2 = 2p/abs(d)
1908    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1909    if (r2 >= ad) {   // must be unsigned comparison
1910      q2 = q2 + 1;
1911      r2 = r2 - ad;
1912    }
1913    delta = ad - r2;
1914  } while (q1 < delta || (q1 == delta && r1 == 0));
1915
1916  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1917  if (d < 0) mag.m = -mag.m; // resulting magic number
1918  mag.s = p - 32;            // resulting shift
1919  return mag;
1920}
1921
1922/// magicu - calculate the magic numbers required to codegen an integer udiv as
1923/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1924static mu magicu32(uint32_t d) {
1925  int32_t p;
1926  uint32_t nc, delta, q1, r1, q2, r2;
1927  struct mu magu;
1928  magu.a = 0;               // initialize "add" indicator
1929  nc = - 1 - (-d)%d;
1930  p = 31;                   // initialize p
1931  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1932  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1933  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1934  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1935  do {
1936    p = p + 1;
1937    if (r1 >= nc - r1 ) {
1938      q1 = 2*q1 + 1;  // update q1
1939      r1 = 2*r1 - nc; // update r1
1940    }
1941    else {
1942      q1 = 2*q1; // update q1
1943      r1 = 2*r1; // update r1
1944    }
1945    if (r2 + 1 >= d - r2) {
1946      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1947      q2 = 2*q2 + 1;     // update q2
1948      r2 = 2*r2 + 1 - d; // update r2
1949    }
1950    else {
1951      if (q2 >= 0x80000000) magu.a = 1;
1952      q2 = 2*q2;     // update q2
1953      r2 = 2*r2 + 1; // update r2
1954    }
1955    delta = d - 1 - r2;
1956  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1957  magu.m = q2 + 1; // resulting magic number
1958  magu.s = p - 32;  // resulting shift
1959  return magu;
1960}
1961
1962/// magic - calculate the magic numbers required to codegen an integer sdiv as
1963/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1964/// or -1.
1965static ms magic64(int64_t d) {
1966  int64_t p;
1967  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1968  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1969  struct ms mag;
1970
1971  ad = d >= 0 ? d : -d;
1972  t = two63 + ((uint64_t)d >> 63);
1973  anc = t - 1 - t%ad;   // absolute value of nc
1974  p = 63;               // initialize p
1975  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1976  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1977  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1978  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1979  do {
1980    p = p + 1;
1981    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1982    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1983    if (r1 >= anc) {  // must be unsigned comparison
1984      q1 = q1 + 1;
1985      r1 = r1 - anc;
1986    }
1987    q2 = 2*q2;        // update q2 = 2p/abs(d)
1988    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1989    if (r2 >= ad) {   // must be unsigned comparison
1990      q2 = q2 + 1;
1991      r2 = r2 - ad;
1992    }
1993    delta = ad - r2;
1994  } while (q1 < delta || (q1 == delta && r1 == 0));
1995
1996  mag.m = q2 + 1;
1997  if (d < 0) mag.m = -mag.m; // resulting magic number
1998  mag.s = p - 64;            // resulting shift
1999  return mag;
2000}
2001
2002/// magicu - calculate the magic numbers required to codegen an integer udiv as
2003/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2004static mu magicu64(uint64_t d)
2005{
2006  int64_t p;
2007  uint64_t nc, delta, q1, r1, q2, r2;
2008  struct mu magu;
2009  magu.a = 0;               // initialize "add" indicator
2010  nc = - 1 - (-d)%d;
2011  p = 63;                   // initialize p
2012  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2013  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2014  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2015  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2016  do {
2017    p = p + 1;
2018    if (r1 >= nc - r1 ) {
2019      q1 = 2*q1 + 1;  // update q1
2020      r1 = 2*r1 - nc; // update r1
2021    }
2022    else {
2023      q1 = 2*q1; // update q1
2024      r1 = 2*r1; // update r1
2025    }
2026    if (r2 + 1 >= d - r2) {
2027      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2028      q2 = 2*q2 + 1;     // update q2
2029      r2 = 2*r2 + 1 - d; // update r2
2030    }
2031    else {
2032      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2033      q2 = 2*q2;     // update q2
2034      r2 = 2*r2 + 1; // update r2
2035    }
2036    delta = d - 1 - r2;
2037  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2038  magu.m = q2 + 1; // resulting magic number
2039  magu.s = p - 64;  // resulting shift
2040  return magu;
2041}
2042
2043/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2044/// return a DAG expression to select that will generate the same value by
2045/// multiplying by a magic number.  See:
2046/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2047SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2048                                    std::vector<SDNode*>* Created) const {
2049  MVT VT = N->getValueType(0);
2050
2051  // Check to see if we can do this.
2052  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2053    return SDOperand();       // BuildSDIV only operates on i32 or i64
2054
2055  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2056  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2057
2058  // Multiply the numerator (operand 0) by the magic value
2059  SDOperand Q;
2060  if (isOperationLegal(ISD::MULHS, VT))
2061    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2062                    DAG.getConstant(magics.m, VT));
2063  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2064    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2065                              N->getOperand(0),
2066                              DAG.getConstant(magics.m, VT)).Val, 1);
2067  else
2068    return SDOperand();       // No mulhs or equvialent
2069  // If d > 0 and m < 0, add the numerator
2070  if (d > 0 && magics.m < 0) {
2071    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2072    if (Created)
2073      Created->push_back(Q.Val);
2074  }
2075  // If d < 0 and m > 0, subtract the numerator.
2076  if (d < 0 && magics.m > 0) {
2077    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2078    if (Created)
2079      Created->push_back(Q.Val);
2080  }
2081  // Shift right algebraic if shift value is nonzero
2082  if (magics.s > 0) {
2083    Q = DAG.getNode(ISD::SRA, VT, Q,
2084                    DAG.getConstant(magics.s, getShiftAmountTy()));
2085    if (Created)
2086      Created->push_back(Q.Val);
2087  }
2088  // Extract the sign bit and add it to the quotient
2089  SDOperand T =
2090    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2091                                                 getShiftAmountTy()));
2092  if (Created)
2093    Created->push_back(T.Val);
2094  return DAG.getNode(ISD::ADD, VT, Q, T);
2095}
2096
2097/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2098/// return a DAG expression to select that will generate the same value by
2099/// multiplying by a magic number.  See:
2100/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2101SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2102                                    std::vector<SDNode*>* Created) const {
2103  MVT VT = N->getValueType(0);
2104
2105  // Check to see if we can do this.
2106  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2107    return SDOperand();       // BuildUDIV only operates on i32 or i64
2108
2109  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2110  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2111
2112  // Multiply the numerator (operand 0) by the magic value
2113  SDOperand Q;
2114  if (isOperationLegal(ISD::MULHU, VT))
2115    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2116                    DAG.getConstant(magics.m, VT));
2117  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2118    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2119                              N->getOperand(0),
2120                              DAG.getConstant(magics.m, VT)).Val, 1);
2121  else
2122    return SDOperand();       // No mulhu or equvialent
2123  if (Created)
2124    Created->push_back(Q.Val);
2125
2126  if (magics.a == 0) {
2127    return DAG.getNode(ISD::SRL, VT, Q,
2128                       DAG.getConstant(magics.s, getShiftAmountTy()));
2129  } else {
2130    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2131    if (Created)
2132      Created->push_back(NPQ.Val);
2133    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2134                      DAG.getConstant(1, getShiftAmountTy()));
2135    if (Created)
2136      Created->push_back(NPQ.Val);
2137    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2138    if (Created)
2139      Created->push_back(NPQ.Val);
2140    return DAG.getNode(ISD::SRL, VT, NPQ,
2141                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2142  }
2143}
2144