TargetLowering.cpp revision 2bb1e3eede14dd8a965506465e2876fb1ae765c2
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I32] = "__ashlsi3";
33  Names[RTLIB::SHL_I64] = "__ashldi3";
34  Names[RTLIB::SHL_I128] = "__ashlti3";
35  Names[RTLIB::SRL_I32] = "__lshrsi3";
36  Names[RTLIB::SRL_I64] = "__lshrdi3";
37  Names[RTLIB::SRL_I128] = "__lshrti3";
38  Names[RTLIB::SRA_I32] = "__ashrsi3";
39  Names[RTLIB::SRA_I64] = "__ashrdi3";
40  Names[RTLIB::SRA_I128] = "__ashrti3";
41  Names[RTLIB::MUL_I32] = "__mulsi3";
42  Names[RTLIB::MUL_I64] = "__muldi3";
43  Names[RTLIB::MUL_I128] = "__multi3";
44  Names[RTLIB::SDIV_I32] = "__divsi3";
45  Names[RTLIB::SDIV_I64] = "__divdi3";
46  Names[RTLIB::SDIV_I128] = "__divti3";
47  Names[RTLIB::UDIV_I32] = "__udivsi3";
48  Names[RTLIB::UDIV_I64] = "__udivdi3";
49  Names[RTLIB::UDIV_I128] = "__udivti3";
50  Names[RTLIB::SREM_I32] = "__modsi3";
51  Names[RTLIB::SREM_I64] = "__moddi3";
52  Names[RTLIB::SREM_I128] = "__modti3";
53  Names[RTLIB::UREM_I32] = "__umodsi3";
54  Names[RTLIB::UREM_I64] = "__umoddi3";
55  Names[RTLIB::UREM_I128] = "__umodti3";
56  Names[RTLIB::NEG_I32] = "__negsi2";
57  Names[RTLIB::NEG_I64] = "__negdi2";
58  Names[RTLIB::ADD_F32] = "__addsf3";
59  Names[RTLIB::ADD_F64] = "__adddf3";
60  Names[RTLIB::ADD_F80] = "__addxf3";
61  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
62  Names[RTLIB::SUB_F32] = "__subsf3";
63  Names[RTLIB::SUB_F64] = "__subdf3";
64  Names[RTLIB::SUB_F80] = "__subxf3";
65  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
66  Names[RTLIB::MUL_F32] = "__mulsf3";
67  Names[RTLIB::MUL_F64] = "__muldf3";
68  Names[RTLIB::MUL_F80] = "__mulxf3";
69  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
70  Names[RTLIB::DIV_F32] = "__divsf3";
71  Names[RTLIB::DIV_F64] = "__divdf3";
72  Names[RTLIB::DIV_F80] = "__divxf3";
73  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
74  Names[RTLIB::REM_F32] = "fmodf";
75  Names[RTLIB::REM_F64] = "fmod";
76  Names[RTLIB::REM_F80] = "fmodl";
77  Names[RTLIB::REM_PPCF128] = "fmodl";
78  Names[RTLIB::POWI_F32] = "__powisf2";
79  Names[RTLIB::POWI_F64] = "__powidf2";
80  Names[RTLIB::POWI_F80] = "__powixf2";
81  Names[RTLIB::POWI_PPCF128] = "__powitf2";
82  Names[RTLIB::SQRT_F32] = "sqrtf";
83  Names[RTLIB::SQRT_F64] = "sqrt";
84  Names[RTLIB::SQRT_F80] = "sqrtl";
85  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
86  Names[RTLIB::SIN_F32] = "sinf";
87  Names[RTLIB::SIN_F64] = "sin";
88  Names[RTLIB::SIN_F80] = "sinl";
89  Names[RTLIB::SIN_PPCF128] = "sinl";
90  Names[RTLIB::COS_F32] = "cosf";
91  Names[RTLIB::COS_F64] = "cos";
92  Names[RTLIB::COS_F80] = "cosl";
93  Names[RTLIB::COS_PPCF128] = "cosl";
94  Names[RTLIB::POW_F32] = "powf";
95  Names[RTLIB::POW_F64] = "pow";
96  Names[RTLIB::POW_F80] = "powl";
97  Names[RTLIB::POW_PPCF128] = "powl";
98  Names[RTLIB::CEIL_F32] = "ceilf";
99  Names[RTLIB::CEIL_F64] = "ceil";
100  Names[RTLIB::CEIL_F80] = "ceill";
101  Names[RTLIB::CEIL_PPCF128] = "ceill";
102  Names[RTLIB::TRUNC_F32] = "truncf";
103  Names[RTLIB::TRUNC_F64] = "trunc";
104  Names[RTLIB::TRUNC_F80] = "truncl";
105  Names[RTLIB::TRUNC_PPCF128] = "truncl";
106  Names[RTLIB::RINT_F32] = "rintf";
107  Names[RTLIB::RINT_F64] = "rint";
108  Names[RTLIB::RINT_F80] = "rintl";
109  Names[RTLIB::RINT_PPCF128] = "rintl";
110  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
111  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
112  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
113  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
114  Names[RTLIB::FLOOR_F32] = "floorf";
115  Names[RTLIB::FLOOR_F64] = "floor";
116  Names[RTLIB::FLOOR_F80] = "floorl";
117  Names[RTLIB::FLOOR_PPCF128] = "floorl";
118  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
119  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
120  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
121  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
122  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
123  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
124  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
125  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
126  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
127  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
128  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
129  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
130  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
131  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
132  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
133  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
134  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
135  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
136  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
137  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
138  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
139  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
140  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
141  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
142  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
143  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
144  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
145  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
146  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
147  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
148  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
149  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
150  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
151  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
152  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
153  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
154  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
155  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
156  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
157  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
158  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
159  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
160  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
161  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
162  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
163  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
164  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
165  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
166  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
167  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
168  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
169  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
170  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
171  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
172  Names[RTLIB::OEQ_F32] = "__eqsf2";
173  Names[RTLIB::OEQ_F64] = "__eqdf2";
174  Names[RTLIB::UNE_F32] = "__nesf2";
175  Names[RTLIB::UNE_F64] = "__nedf2";
176  Names[RTLIB::OGE_F32] = "__gesf2";
177  Names[RTLIB::OGE_F64] = "__gedf2";
178  Names[RTLIB::OLT_F32] = "__ltsf2";
179  Names[RTLIB::OLT_F64] = "__ltdf2";
180  Names[RTLIB::OLE_F32] = "__lesf2";
181  Names[RTLIB::OLE_F64] = "__ledf2";
182  Names[RTLIB::OGT_F32] = "__gtsf2";
183  Names[RTLIB::OGT_F64] = "__gtdf2";
184  Names[RTLIB::UO_F32] = "__unordsf2";
185  Names[RTLIB::UO_F64] = "__unorddf2";
186  Names[RTLIB::O_F32] = "__unordsf2";
187  Names[RTLIB::O_F64] = "__unorddf2";
188}
189
190/// getFPEXT - Return the FPEXT_*_* value for the given types, or
191/// UNKNOWN_LIBCALL if there is none.
192RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
193  if (OpVT == MVT::f32) {
194    if (RetVT == MVT::f64)
195      return FPEXT_F32_F64;
196  }
197  return UNKNOWN_LIBCALL;
198}
199
200/// getFPROUND - Return the FPROUND_*_* value for the given types, or
201/// UNKNOWN_LIBCALL if there is none.
202RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
203  if (RetVT == MVT::f32) {
204    if (OpVT == MVT::f64)
205      return FPROUND_F64_F32;
206    if (OpVT == MVT::f80)
207      return FPROUND_F80_F32;
208    if (OpVT == MVT::ppcf128)
209      return FPROUND_PPCF128_F32;
210  } else if (RetVT == MVT::f64) {
211    if (OpVT == MVT::f80)
212      return FPROUND_F80_F64;
213    if (OpVT == MVT::ppcf128)
214      return FPROUND_PPCF128_F64;
215  }
216  return UNKNOWN_LIBCALL;
217}
218
219/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
220/// UNKNOWN_LIBCALL if there is none.
221RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
222  if (OpVT == MVT::f32) {
223    if (RetVT == MVT::i32)
224      return FPTOSINT_F32_I32;
225    if (RetVT == MVT::i64)
226      return FPTOSINT_F32_I64;
227    if (RetVT == MVT::i128)
228      return FPTOSINT_F32_I128;
229  } else if (OpVT == MVT::f64) {
230    if (RetVT == MVT::i32)
231      return FPTOSINT_F64_I32;
232    if (RetVT == MVT::i64)
233      return FPTOSINT_F64_I64;
234    if (RetVT == MVT::i128)
235      return FPTOSINT_F64_I128;
236  } else if (OpVT == MVT::f80) {
237    if (RetVT == MVT::i32)
238      return FPTOSINT_F80_I32;
239    if (RetVT == MVT::i64)
240      return FPTOSINT_F80_I64;
241    if (RetVT == MVT::i128)
242      return FPTOSINT_F80_I128;
243  } else if (OpVT == MVT::ppcf128) {
244    if (RetVT == MVT::i32)
245      return FPTOSINT_PPCF128_I32;
246    if (RetVT == MVT::i64)
247      return FPTOSINT_PPCF128_I64;
248    if (RetVT == MVT::i128)
249      return FPTOSINT_PPCF128_I128;
250  }
251  return UNKNOWN_LIBCALL;
252}
253
254/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
255/// UNKNOWN_LIBCALL if there is none.
256RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
257  if (OpVT == MVT::f32) {
258    if (RetVT == MVT::i32)
259      return FPTOUINT_F32_I32;
260    if (RetVT == MVT::i64)
261      return FPTOUINT_F32_I64;
262    if (RetVT == MVT::i128)
263      return FPTOUINT_F32_I128;
264  } else if (OpVT == MVT::f64) {
265    if (RetVT == MVT::i32)
266      return FPTOUINT_F64_I32;
267    if (RetVT == MVT::i64)
268      return FPTOUINT_F64_I64;
269    if (RetVT == MVT::i128)
270      return FPTOUINT_F64_I128;
271  } else if (OpVT == MVT::f80) {
272    if (RetVT == MVT::i32)
273      return FPTOUINT_F80_I32;
274    if (RetVT == MVT::i64)
275      return FPTOUINT_F80_I64;
276    if (RetVT == MVT::i128)
277      return FPTOUINT_F80_I128;
278  } else if (OpVT == MVT::ppcf128) {
279    if (RetVT == MVT::i32)
280      return FPTOUINT_PPCF128_I32;
281    if (RetVT == MVT::i64)
282      return FPTOUINT_PPCF128_I64;
283    if (RetVT == MVT::i128)
284      return FPTOUINT_PPCF128_I128;
285  }
286  return UNKNOWN_LIBCALL;
287}
288
289/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
290/// UNKNOWN_LIBCALL if there is none.
291RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
292  if (OpVT == MVT::i32) {
293    if (RetVT == MVT::f32)
294      return SINTTOFP_I32_F32;
295    else if (RetVT == MVT::f64)
296      return SINTTOFP_I32_F64;
297    else if (RetVT == MVT::f80)
298      return SINTTOFP_I32_F80;
299    else if (RetVT == MVT::ppcf128)
300      return SINTTOFP_I32_PPCF128;
301  } else if (OpVT == MVT::i64) {
302    if (RetVT == MVT::f32)
303      return SINTTOFP_I64_F32;
304    else if (RetVT == MVT::f64)
305      return SINTTOFP_I64_F64;
306    else if (RetVT == MVT::f80)
307      return SINTTOFP_I64_F80;
308    else if (RetVT == MVT::ppcf128)
309      return SINTTOFP_I64_PPCF128;
310  } else if (OpVT == MVT::i128) {
311    if (RetVT == MVT::f32)
312      return SINTTOFP_I128_F32;
313    else if (RetVT == MVT::f64)
314      return SINTTOFP_I128_F64;
315    else if (RetVT == MVT::f80)
316      return SINTTOFP_I128_F80;
317    else if (RetVT == MVT::ppcf128)
318      return SINTTOFP_I128_PPCF128;
319  }
320  return UNKNOWN_LIBCALL;
321}
322
323/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
324/// UNKNOWN_LIBCALL if there is none.
325RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
326  if (OpVT == MVT::i32) {
327    if (RetVT == MVT::f32)
328      return UINTTOFP_I32_F32;
329    else if (RetVT == MVT::f64)
330      return UINTTOFP_I32_F64;
331    else if (RetVT == MVT::f80)
332      return UINTTOFP_I32_F80;
333    else if (RetVT == MVT::ppcf128)
334      return UINTTOFP_I32_PPCF128;
335  } else if (OpVT == MVT::i64) {
336    if (RetVT == MVT::f32)
337      return UINTTOFP_I64_F32;
338    else if (RetVT == MVT::f64)
339      return UINTTOFP_I64_F64;
340    else if (RetVT == MVT::f80)
341      return UINTTOFP_I64_F80;
342    else if (RetVT == MVT::ppcf128)
343      return UINTTOFP_I64_PPCF128;
344  } else if (OpVT == MVT::i128) {
345    if (RetVT == MVT::f32)
346      return UINTTOFP_I128_F32;
347    else if (RetVT == MVT::f64)
348      return UINTTOFP_I128_F64;
349    else if (RetVT == MVT::f80)
350      return UINTTOFP_I128_F80;
351    else if (RetVT == MVT::ppcf128)
352      return UINTTOFP_I128_PPCF128;
353  }
354  return UNKNOWN_LIBCALL;
355}
356
357/// InitCmpLibcallCCs - Set default comparison libcall CC.
358///
359static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
360  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
361  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
362  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
363  CCs[RTLIB::UNE_F32] = ISD::SETNE;
364  CCs[RTLIB::UNE_F64] = ISD::SETNE;
365  CCs[RTLIB::OGE_F32] = ISD::SETGE;
366  CCs[RTLIB::OGE_F64] = ISD::SETGE;
367  CCs[RTLIB::OLT_F32] = ISD::SETLT;
368  CCs[RTLIB::OLT_F64] = ISD::SETLT;
369  CCs[RTLIB::OLE_F32] = ISD::SETLE;
370  CCs[RTLIB::OLE_F64] = ISD::SETLE;
371  CCs[RTLIB::OGT_F32] = ISD::SETGT;
372  CCs[RTLIB::OGT_F64] = ISD::SETGT;
373  CCs[RTLIB::UO_F32] = ISD::SETNE;
374  CCs[RTLIB::UO_F64] = ISD::SETNE;
375  CCs[RTLIB::O_F32] = ISD::SETEQ;
376  CCs[RTLIB::O_F64] = ISD::SETEQ;
377}
378
379TargetLowering::TargetLowering(TargetMachine &tm)
380  : TM(tm), TD(TM.getTargetData()) {
381  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
382         "Fixed size array in TargetLowering is not large enough!");
383  // All operations default to being supported.
384  memset(OpActions, 0, sizeof(OpActions));
385  memset(LoadXActions, 0, sizeof(LoadXActions));
386  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
387  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
388  memset(ConvertActions, 0, sizeof(ConvertActions));
389
390  // Set default actions for various operations.
391  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
392    // Default all indexed load / store to expand.
393    for (unsigned IM = (unsigned)ISD::PRE_INC;
394         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
395      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
396      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
397    }
398
399    // These operations default to expand.
400    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
401  }
402
403  // Most targets ignore the @llvm.prefetch intrinsic.
404  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
405
406  // ConstantFP nodes default to expand.  Targets can either change this to
407  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
408  // to optimize expansions for certain constants.
409  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
410  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
411  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
412
413  // Default ISD::TRAP to expand (which turns it into abort).
414  setOperationAction(ISD::TRAP, MVT::Other, Expand);
415
416  IsLittleEndian = TD->isLittleEndian();
417  UsesGlobalOffsetTable = false;
418  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
419  ShiftAmtHandling = Undefined;
420  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
421  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
422  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
423  allowUnalignedMemoryAccesses = false;
424  UseUnderscoreSetJmp = false;
425  UseUnderscoreLongJmp = false;
426  SelectIsExpensive = false;
427  IntDivIsCheap = false;
428  Pow2DivIsCheap = false;
429  StackPointerRegisterToSaveRestore = 0;
430  ExceptionPointerRegister = 0;
431  ExceptionSelectorRegister = 0;
432  SetCCResultContents = UndefinedSetCCResult;
433  SchedPreferenceInfo = SchedulingForLatency;
434  JumpBufSize = 0;
435  JumpBufAlignment = 0;
436  IfCvtBlockSizeLimit = 2;
437  IfCvtDupBlockSizeLimit = 0;
438  PrefLoopAlignment = 0;
439
440  InitLibcallNames(LibcallRoutineNames);
441  InitCmpLibcallCCs(CmpLibcallCCs);
442
443  // Tell Legalize whether the assembler supports DEBUG_LOC.
444  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
445    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
446}
447
448TargetLowering::~TargetLowering() {}
449
450/// computeRegisterProperties - Once all of the register classes are added,
451/// this allows us to compute derived properties we expose.
452void TargetLowering::computeRegisterProperties() {
453  assert(MVT::LAST_VALUETYPE <= 32 &&
454         "Too many value types for ValueTypeActions to hold!");
455
456  // Everything defaults to needing one register.
457  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
458    NumRegistersForVT[i] = 1;
459    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
460  }
461  // ...except isVoid, which doesn't need any registers.
462  NumRegistersForVT[MVT::isVoid] = 0;
463
464  // Find the largest integer register class.
465  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
466  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
467    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
468
469  // Every integer value type larger than this largest register takes twice as
470  // many registers to represent as the previous ValueType.
471  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
472    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
473    if (!EVT.isInteger())
474      break;
475    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
476    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
477    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
478    ValueTypeActions.setTypeAction(EVT, Expand);
479  }
480
481  // Inspect all of the ValueType's smaller than the largest integer
482  // register to see which ones need promotion.
483  unsigned LegalIntReg = LargestIntReg;
484  for (unsigned IntReg = LargestIntReg - 1;
485       IntReg >= (unsigned)MVT::i1; --IntReg) {
486    MVT IVT = (MVT::SimpleValueType)IntReg;
487    if (isTypeLegal(IVT)) {
488      LegalIntReg = IntReg;
489    } else {
490      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
491        (MVT::SimpleValueType)LegalIntReg;
492      ValueTypeActions.setTypeAction(IVT, Promote);
493    }
494  }
495
496  // ppcf128 type is really two f64's.
497  if (!isTypeLegal(MVT::ppcf128)) {
498    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
499    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
500    TransformToType[MVT::ppcf128] = MVT::f64;
501    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
502  }
503
504  // Decide how to handle f64. If the target does not have native f64 support,
505  // expand it to i64 and we will be generating soft float library calls.
506  if (!isTypeLegal(MVT::f64)) {
507    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
508    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
509    TransformToType[MVT::f64] = MVT::i64;
510    ValueTypeActions.setTypeAction(MVT::f64, Expand);
511  }
512
513  // Decide how to handle f32. If the target does not have native support for
514  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
515  if (!isTypeLegal(MVT::f32)) {
516    if (isTypeLegal(MVT::f64)) {
517      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
518      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
519      TransformToType[MVT::f32] = MVT::f64;
520      ValueTypeActions.setTypeAction(MVT::f32, Promote);
521    } else {
522      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
523      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
524      TransformToType[MVT::f32] = MVT::i32;
525      ValueTypeActions.setTypeAction(MVT::f32, Expand);
526    }
527  }
528
529  // Loop over all of the vector value types to see which need transformations.
530  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
531       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
532    MVT VT = (MVT::SimpleValueType)i;
533    if (!isTypeLegal(VT)) {
534      MVT IntermediateVT, RegisterVT;
535      unsigned NumIntermediates;
536      NumRegistersForVT[i] =
537        getVectorTypeBreakdown(VT,
538                               IntermediateVT, NumIntermediates,
539                               RegisterVT);
540      RegisterTypeForVT[i] = RegisterVT;
541      TransformToType[i] = MVT::Other; // this isn't actually used
542      ValueTypeActions.setTypeAction(VT, Expand);
543    }
544  }
545}
546
547const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
548  return NULL;
549}
550
551
552MVT TargetLowering::getSetCCResultType(const SDValue &) const {
553  return getValueType(TD->getIntPtrType());
554}
555
556
557/// getVectorTypeBreakdown - Vector types are broken down into some number of
558/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
559/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
560/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
561///
562/// This method returns the number of registers needed, and the VT for each
563/// register.  It also returns the VT and quantity of the intermediate values
564/// before they are promoted/expanded.
565///
566unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
567                                                MVT &IntermediateVT,
568                                                unsigned &NumIntermediates,
569                                      MVT &RegisterVT) const {
570  // Figure out the right, legal destination reg to copy into.
571  unsigned NumElts = VT.getVectorNumElements();
572  MVT EltTy = VT.getVectorElementType();
573
574  unsigned NumVectorRegs = 1;
575
576  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
577  // could break down into LHS/RHS like LegalizeDAG does.
578  if (!isPowerOf2_32(NumElts)) {
579    NumVectorRegs = NumElts;
580    NumElts = 1;
581  }
582
583  // Divide the input until we get to a supported size.  This will always
584  // end with a scalar if the target doesn't support vectors.
585  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
586    NumElts >>= 1;
587    NumVectorRegs <<= 1;
588  }
589
590  NumIntermediates = NumVectorRegs;
591
592  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
593  if (!isTypeLegal(NewVT))
594    NewVT = EltTy;
595  IntermediateVT = NewVT;
596
597  MVT DestVT = getTypeToTransformTo(NewVT);
598  RegisterVT = DestVT;
599  if (DestVT.bitsLT(NewVT)) {
600    // Value is expanded, e.g. i64 -> i16.
601    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
602  } else {
603    // Otherwise, promotion or legal types use the same number of registers as
604    // the vector decimated to the appropriate level.
605    return NumVectorRegs;
606  }
607
608  return 1;
609}
610
611/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
612/// function arguments in the caller parameter area.  This is the actual
613/// alignment, not its logarithm.
614unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
615  return TD->getCallFrameTypeAlignment(Ty);
616}
617
618SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
619                                                 SelectionDAG &DAG) const {
620  if (usesGlobalOffsetTable())
621    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
622  return Table;
623}
624
625//===----------------------------------------------------------------------===//
626//  Optimization Methods
627//===----------------------------------------------------------------------===//
628
629/// ShrinkDemandedConstant - Check to see if the specified operand of the
630/// specified instruction is a constant integer.  If so, check to see if there
631/// are any bits set in the constant that are not demanded.  If so, shrink the
632/// constant and return true.
633bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
634                                                        const APInt &Demanded) {
635  // FIXME: ISD::SELECT, ISD::SELECT_CC
636  switch(Op.getOpcode()) {
637  default: break;
638  case ISD::AND:
639  case ISD::OR:
640  case ISD::XOR:
641    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
642      if (C->getAPIntValue().intersects(~Demanded)) {
643        MVT VT = Op.getValueType();
644        SDValue New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
645                                    DAG.getConstant(Demanded &
646                                                      C->getAPIntValue(),
647                                                    VT));
648        return CombineTo(Op, New);
649      }
650    break;
651  }
652  return false;
653}
654
655/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
656/// DemandedMask bits of the result of Op are ever used downstream.  If we can
657/// use this information to simplify Op, create a new simplified DAG node and
658/// return true, returning the original and new nodes in Old and New. Otherwise,
659/// analyze the expression and return a mask of KnownOne and KnownZero bits for
660/// the expression (used to simplify the caller).  The KnownZero/One bits may
661/// only be accurate for those bits in the DemandedMask.
662bool TargetLowering::SimplifyDemandedBits(SDValue Op,
663                                          const APInt &DemandedMask,
664                                          APInt &KnownZero,
665                                          APInt &KnownOne,
666                                          TargetLoweringOpt &TLO,
667                                          unsigned Depth) const {
668  unsigned BitWidth = DemandedMask.getBitWidth();
669  assert(Op.getValueSizeInBits() == BitWidth &&
670         "Mask size mismatches value type size!");
671  APInt NewMask = DemandedMask;
672
673  // Don't know anything.
674  KnownZero = KnownOne = APInt(BitWidth, 0);
675
676  // Other users may use these bits.
677  if (!Op.Val->hasOneUse()) {
678    if (Depth != 0) {
679      // If not at the root, Just compute the KnownZero/KnownOne bits to
680      // simplify things downstream.
681      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
682      return false;
683    }
684    // If this is the root being simplified, allow it to have multiple uses,
685    // just set the NewMask to all bits.
686    NewMask = APInt::getAllOnesValue(BitWidth);
687  } else if (DemandedMask == 0) {
688    // Not demanding any bits from Op.
689    if (Op.getOpcode() != ISD::UNDEF)
690      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
691    return false;
692  } else if (Depth == 6) {        // Limit search depth.
693    return false;
694  }
695
696  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
697  switch (Op.getOpcode()) {
698  case ISD::Constant:
699    // We know all of the bits for a constant!
700    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
701    KnownZero = ~KnownOne & NewMask;
702    return false;   // Don't fall through, will infinitely loop.
703  case ISD::AND:
704    // If the RHS is a constant, check to see if the LHS would be zero without
705    // using the bits from the RHS.  Below, we use knowledge about the RHS to
706    // simplify the LHS, here we're using information from the LHS to simplify
707    // the RHS.
708    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
709      APInt LHSZero, LHSOne;
710      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
711                                LHSZero, LHSOne, Depth+1);
712      // If the LHS already has zeros where RHSC does, this and is dead.
713      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
714        return TLO.CombineTo(Op, Op.getOperand(0));
715      // If any of the set bits in the RHS are known zero on the LHS, shrink
716      // the constant.
717      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
718        return true;
719    }
720
721    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
722                             KnownOne, TLO, Depth+1))
723      return true;
724    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
725    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
726                             KnownZero2, KnownOne2, TLO, Depth+1))
727      return true;
728    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
729
730    // If all of the demanded bits are known one on one side, return the other.
731    // These bits cannot contribute to the result of the 'and'.
732    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
733      return TLO.CombineTo(Op, Op.getOperand(0));
734    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
735      return TLO.CombineTo(Op, Op.getOperand(1));
736    // If all of the demanded bits in the inputs are known zeros, return zero.
737    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
738      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
739    // If the RHS is a constant, see if we can simplify it.
740    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
741      return true;
742
743    // Output known-1 bits are only known if set in both the LHS & RHS.
744    KnownOne &= KnownOne2;
745    // Output known-0 are known to be clear if zero in either the LHS | RHS.
746    KnownZero |= KnownZero2;
747    break;
748  case ISD::OR:
749    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
750                             KnownOne, TLO, Depth+1))
751      return true;
752    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
753    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
754                             KnownZero2, KnownOne2, TLO, Depth+1))
755      return true;
756    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
757
758    // If all of the demanded bits are known zero on one side, return the other.
759    // These bits cannot contribute to the result of the 'or'.
760    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
761      return TLO.CombineTo(Op, Op.getOperand(0));
762    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
763      return TLO.CombineTo(Op, Op.getOperand(1));
764    // If all of the potentially set bits on one side are known to be set on
765    // the other side, just use the 'other' side.
766    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
767      return TLO.CombineTo(Op, Op.getOperand(0));
768    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
769      return TLO.CombineTo(Op, Op.getOperand(1));
770    // If the RHS is a constant, see if we can simplify it.
771    if (TLO.ShrinkDemandedConstant(Op, NewMask))
772      return true;
773
774    // Output known-0 bits are only known if clear in both the LHS & RHS.
775    KnownZero &= KnownZero2;
776    // Output known-1 are known to be set if set in either the LHS | RHS.
777    KnownOne |= KnownOne2;
778    break;
779  case ISD::XOR:
780    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
781                             KnownOne, TLO, Depth+1))
782      return true;
783    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
784    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
785                             KnownOne2, TLO, Depth+1))
786      return true;
787    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
788
789    // If all of the demanded bits are known zero on one side, return the other.
790    // These bits cannot contribute to the result of the 'xor'.
791    if ((KnownZero & NewMask) == NewMask)
792      return TLO.CombineTo(Op, Op.getOperand(0));
793    if ((KnownZero2 & NewMask) == NewMask)
794      return TLO.CombineTo(Op, Op.getOperand(1));
795
796    // If all of the unknown bits are known to be zero on one side or the other
797    // (but not both) turn this into an *inclusive* or.
798    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
799    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
800      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
801                                               Op.getOperand(0),
802                                               Op.getOperand(1)));
803
804    // Output known-0 bits are known if clear or set in both the LHS & RHS.
805    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
806    // Output known-1 are known to be set if set in only one of the LHS, RHS.
807    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
808
809    // If all of the demanded bits on one side are known, and all of the set
810    // bits on that side are also known to be set on the other side, turn this
811    // into an AND, as we know the bits will be cleared.
812    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
813    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
814      if ((KnownOne & KnownOne2) == KnownOne) {
815        MVT VT = Op.getValueType();
816        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
817        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
818                                                 ANDC));
819      }
820    }
821
822    // If the RHS is a constant, see if we can simplify it.
823    // for XOR, we prefer to force bits to 1 if they will make a -1.
824    // if we can't force bits, try to shrink constant
825    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
826      APInt Expanded = C->getAPIntValue() | (~NewMask);
827      // if we can expand it to have all bits set, do it
828      if (Expanded.isAllOnesValue()) {
829        if (Expanded != C->getAPIntValue()) {
830          MVT VT = Op.getValueType();
831          SDValue New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
832                                          TLO.DAG.getConstant(Expanded, VT));
833          return TLO.CombineTo(Op, New);
834        }
835        // if it already has all the bits set, nothing to change
836        // but don't shrink either!
837      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
838        return true;
839      }
840    }
841
842    KnownZero = KnownZeroOut;
843    KnownOne  = KnownOneOut;
844    break;
845  case ISD::SELECT:
846    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
847                             KnownOne, TLO, Depth+1))
848      return true;
849    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
850                             KnownOne2, TLO, Depth+1))
851      return true;
852    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
853    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
854
855    // If the operands are constants, see if we can simplify them.
856    if (TLO.ShrinkDemandedConstant(Op, NewMask))
857      return true;
858
859    // Only known if known in both the LHS and RHS.
860    KnownOne &= KnownOne2;
861    KnownZero &= KnownZero2;
862    break;
863  case ISD::SELECT_CC:
864    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
865                             KnownOne, TLO, Depth+1))
866      return true;
867    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
868                             KnownOne2, TLO, Depth+1))
869      return true;
870    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
871    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
872
873    // If the operands are constants, see if we can simplify them.
874    if (TLO.ShrinkDemandedConstant(Op, NewMask))
875      return true;
876
877    // Only known if known in both the LHS and RHS.
878    KnownOne &= KnownOne2;
879    KnownZero &= KnownZero2;
880    break;
881  case ISD::SHL:
882    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
883      unsigned ShAmt = SA->getValue();
884      SDValue InOp = Op.getOperand(0);
885
886      // If the shift count is an invalid immediate, don't do anything.
887      if (ShAmt >= BitWidth)
888        break;
889
890      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
891      // single shift.  We can do this if the bottom bits (which are shifted
892      // out) are never demanded.
893      if (InOp.getOpcode() == ISD::SRL &&
894          isa<ConstantSDNode>(InOp.getOperand(1))) {
895        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
896          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
897          unsigned Opc = ISD::SHL;
898          int Diff = ShAmt-C1;
899          if (Diff < 0) {
900            Diff = -Diff;
901            Opc = ISD::SRL;
902          }
903
904          SDValue NewSA =
905            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
906          MVT VT = Op.getValueType();
907          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
908                                                   InOp.getOperand(0), NewSA));
909        }
910      }
911
912      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
913                               KnownZero, KnownOne, TLO, Depth+1))
914        return true;
915      KnownZero <<= SA->getValue();
916      KnownOne  <<= SA->getValue();
917      // low bits known zero.
918      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
919    }
920    break;
921  case ISD::SRL:
922    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
923      MVT VT = Op.getValueType();
924      unsigned ShAmt = SA->getValue();
925      unsigned VTSize = VT.getSizeInBits();
926      SDValue InOp = Op.getOperand(0);
927
928      // If the shift count is an invalid immediate, don't do anything.
929      if (ShAmt >= BitWidth)
930        break;
931
932      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
933      // single shift.  We can do this if the top bits (which are shifted out)
934      // are never demanded.
935      if (InOp.getOpcode() == ISD::SHL &&
936          isa<ConstantSDNode>(InOp.getOperand(1))) {
937        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
938          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
939          unsigned Opc = ISD::SRL;
940          int Diff = ShAmt-C1;
941          if (Diff < 0) {
942            Diff = -Diff;
943            Opc = ISD::SHL;
944          }
945
946          SDValue NewSA =
947            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
948          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
949                                                   InOp.getOperand(0), NewSA));
950        }
951      }
952
953      // Compute the new bits that are at the top now.
954      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
955                               KnownZero, KnownOne, TLO, Depth+1))
956        return true;
957      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
958      KnownZero = KnownZero.lshr(ShAmt);
959      KnownOne  = KnownOne.lshr(ShAmt);
960
961      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
962      KnownZero |= HighBits;  // High bits known zero.
963    }
964    break;
965  case ISD::SRA:
966    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
967      MVT VT = Op.getValueType();
968      unsigned ShAmt = SA->getValue();
969
970      // If the shift count is an invalid immediate, don't do anything.
971      if (ShAmt >= BitWidth)
972        break;
973
974      APInt InDemandedMask = (NewMask << ShAmt);
975
976      // If any of the demanded bits are produced by the sign extension, we also
977      // demand the input sign bit.
978      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
979      if (HighBits.intersects(NewMask))
980        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
981
982      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
983                               KnownZero, KnownOne, TLO, Depth+1))
984        return true;
985      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
986      KnownZero = KnownZero.lshr(ShAmt);
987      KnownOne  = KnownOne.lshr(ShAmt);
988
989      // Handle the sign bit, adjusted to where it is now in the mask.
990      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
991
992      // If the input sign bit is known to be zero, or if none of the top bits
993      // are demanded, turn this into an unsigned shift right.
994      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
995        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
996                                                 Op.getOperand(1)));
997      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
998        KnownOne |= HighBits;
999      }
1000    }
1001    break;
1002  case ISD::SIGN_EXTEND_INREG: {
1003    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1004
1005    // Sign extension.  Compute the demanded bits in the result that are not
1006    // present in the input.
1007    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1008                                          BitWidth - EVT.getSizeInBits()) &
1009                    NewMask;
1010
1011    // If none of the extended bits are demanded, eliminate the sextinreg.
1012    if (NewBits == 0)
1013      return TLO.CombineTo(Op, Op.getOperand(0));
1014
1015    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1016    InSignBit.zext(BitWidth);
1017    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1018                                                   EVT.getSizeInBits()) &
1019                              NewMask;
1020
1021    // Since the sign extended bits are demanded, we know that the sign
1022    // bit is demanded.
1023    InputDemandedBits |= InSignBit;
1024
1025    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1026                             KnownZero, KnownOne, TLO, Depth+1))
1027      return true;
1028    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1029
1030    // If the sign bit of the input is known set or clear, then we know the
1031    // top bits of the result.
1032
1033    // If the input sign bit is known zero, convert this into a zero extension.
1034    if (KnownZero.intersects(InSignBit))
1035      return TLO.CombineTo(Op,
1036                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
1037
1038    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1039      KnownOne |= NewBits;
1040      KnownZero &= ~NewBits;
1041    } else {                       // Input sign bit unknown
1042      KnownZero &= ~NewBits;
1043      KnownOne &= ~NewBits;
1044    }
1045    break;
1046  }
1047  case ISD::ZERO_EXTEND: {
1048    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1049    APInt InMask = NewMask;
1050    InMask.trunc(OperandBitWidth);
1051
1052    // If none of the top bits are demanded, convert this into an any_extend.
1053    APInt NewBits =
1054      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1055    if (!NewBits.intersects(NewMask))
1056      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
1057                                               Op.getValueType(),
1058                                               Op.getOperand(0)));
1059
1060    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1061                             KnownZero, KnownOne, TLO, Depth+1))
1062      return true;
1063    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1064    KnownZero.zext(BitWidth);
1065    KnownOne.zext(BitWidth);
1066    KnownZero |= NewBits;
1067    break;
1068  }
1069  case ISD::SIGN_EXTEND: {
1070    MVT InVT = Op.getOperand(0).getValueType();
1071    unsigned InBits = InVT.getSizeInBits();
1072    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1073    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1074    APInt NewBits   = ~InMask & NewMask;
1075
1076    // If none of the top bits are demanded, convert this into an any_extend.
1077    if (NewBits == 0)
1078      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
1079                                           Op.getOperand(0)));
1080
1081    // Since some of the sign extended bits are demanded, we know that the sign
1082    // bit is demanded.
1083    APInt InDemandedBits = InMask & NewMask;
1084    InDemandedBits |= InSignBit;
1085    InDemandedBits.trunc(InBits);
1086
1087    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1088                             KnownOne, TLO, Depth+1))
1089      return true;
1090    KnownZero.zext(BitWidth);
1091    KnownOne.zext(BitWidth);
1092
1093    // If the sign bit is known zero, convert this to a zero extend.
1094    if (KnownZero.intersects(InSignBit))
1095      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
1096                                               Op.getValueType(),
1097                                               Op.getOperand(0)));
1098
1099    // If the sign bit is known one, the top bits match.
1100    if (KnownOne.intersects(InSignBit)) {
1101      KnownOne  |= NewBits;
1102      KnownZero &= ~NewBits;
1103    } else {   // Otherwise, top bits aren't known.
1104      KnownOne  &= ~NewBits;
1105      KnownZero &= ~NewBits;
1106    }
1107    break;
1108  }
1109  case ISD::ANY_EXTEND: {
1110    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1111    APInt InMask = NewMask;
1112    InMask.trunc(OperandBitWidth);
1113    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1114                             KnownZero, KnownOne, TLO, Depth+1))
1115      return true;
1116    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1117    KnownZero.zext(BitWidth);
1118    KnownOne.zext(BitWidth);
1119    break;
1120  }
1121  case ISD::TRUNCATE: {
1122    // Simplify the input, using demanded bit information, and compute the known
1123    // zero/one bits live out.
1124    APInt TruncMask = NewMask;
1125    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1126    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1127                             KnownZero, KnownOne, TLO, Depth+1))
1128      return true;
1129    KnownZero.trunc(BitWidth);
1130    KnownOne.trunc(BitWidth);
1131
1132    // If the input is only used by this truncate, see if we can shrink it based
1133    // on the known demanded bits.
1134    if (Op.getOperand(0).Val->hasOneUse()) {
1135      SDValue In = Op.getOperand(0);
1136      unsigned InBitWidth = In.getValueSizeInBits();
1137      switch (In.getOpcode()) {
1138      default: break;
1139      case ISD::SRL:
1140        // Shrink SRL by a constant if none of the high bits shifted in are
1141        // demanded.
1142        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1143          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1144                                                 InBitWidth - BitWidth);
1145          HighBits = HighBits.lshr(ShAmt->getValue());
1146          HighBits.trunc(BitWidth);
1147
1148          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
1149            // None of the shifted in bits are needed.  Add a truncate of the
1150            // shift input, then shift it.
1151            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
1152                                                 Op.getValueType(),
1153                                                 In.getOperand(0));
1154            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
1155                                                   NewTrunc, In.getOperand(1)));
1156          }
1157        }
1158        break;
1159      }
1160    }
1161
1162    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1163    break;
1164  }
1165  case ISD::AssertZext: {
1166    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1167    APInt InMask = APInt::getLowBitsSet(BitWidth,
1168                                        VT.getSizeInBits());
1169    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1170                             KnownZero, KnownOne, TLO, Depth+1))
1171      return true;
1172    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1173    KnownZero |= ~InMask & NewMask;
1174    break;
1175  }
1176  case ISD::BIT_CONVERT:
1177#if 0
1178    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1179    // is demanded, turn this into a FGETSIGN.
1180    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1181        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1182        !MVT::isVector(Op.getOperand(0).getValueType())) {
1183      // Only do this xform if FGETSIGN is valid or if before legalize.
1184      if (!TLO.AfterLegalize ||
1185          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1186        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1187        // place.  We expect the SHL to be eliminated by other optimizations.
1188        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1189                                         Op.getOperand(0));
1190        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1191        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1192        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1193                                                 Sign, ShAmt));
1194      }
1195    }
1196#endif
1197    break;
1198  default:
1199    // Just use ComputeMaskedBits to compute output bits.
1200    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1201    break;
1202  }
1203
1204  // If we know the value of all of the demanded bits, return this as a
1205  // constant.
1206  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1207    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1208
1209  return false;
1210}
1211
1212/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1213/// in Mask are known to be either zero or one and return them in the
1214/// KnownZero/KnownOne bitsets.
1215void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1216                                                    const APInt &Mask,
1217                                                    APInt &KnownZero,
1218                                                    APInt &KnownOne,
1219                                                    const SelectionDAG &DAG,
1220                                                    unsigned Depth) const {
1221  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1222          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1223          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1224          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1225         "Should use MaskedValueIsZero if you don't know whether Op"
1226         " is a target node!");
1227  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1228}
1229
1230/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1231/// targets that want to expose additional information about sign bits to the
1232/// DAG Combiner.
1233unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1234                                                         unsigned Depth) const {
1235  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1236          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1237          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1238          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1239         "Should use ComputeNumSignBits if you don't know whether Op"
1240         " is a target node!");
1241  return 1;
1242}
1243
1244
1245/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1246/// and cc. If it is unable to simplify it, return a null SDValue.
1247SDValue
1248TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1249                              ISD::CondCode Cond, bool foldBooleans,
1250                              DAGCombinerInfo &DCI) const {
1251  SelectionDAG &DAG = DCI.DAG;
1252
1253  // These setcc operations always fold.
1254  switch (Cond) {
1255  default: break;
1256  case ISD::SETFALSE:
1257  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1258  case ISD::SETTRUE:
1259  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1260  }
1261
1262  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1263    const APInt &C1 = N1C->getAPIntValue();
1264    if (isa<ConstantSDNode>(N0.Val)) {
1265      return DAG.FoldSetCC(VT, N0, N1, Cond);
1266    } else {
1267      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1268      // equality comparison, then we're just comparing whether X itself is
1269      // zero.
1270      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1271          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1272          N0.getOperand(1).getOpcode() == ISD::Constant) {
1273        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1274        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1275            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1276          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1277            // (srl (ctlz x), 5) == 0  -> X != 0
1278            // (srl (ctlz x), 5) != 1  -> X != 0
1279            Cond = ISD::SETNE;
1280          } else {
1281            // (srl (ctlz x), 5) != 0  -> X == 0
1282            // (srl (ctlz x), 5) == 1  -> X == 0
1283            Cond = ISD::SETEQ;
1284          }
1285          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1286          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1287                              Zero, Cond);
1288        }
1289      }
1290
1291      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1292      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1293        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1294
1295        // If the comparison constant has bits in the upper part, the
1296        // zero-extended value could never match.
1297        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1298                                                C1.getBitWidth() - InSize))) {
1299          switch (Cond) {
1300          case ISD::SETUGT:
1301          case ISD::SETUGE:
1302          case ISD::SETEQ: return DAG.getConstant(0, VT);
1303          case ISD::SETULT:
1304          case ISD::SETULE:
1305          case ISD::SETNE: return DAG.getConstant(1, VT);
1306          case ISD::SETGT:
1307          case ISD::SETGE:
1308            // True if the sign bit of C1 is set.
1309            return DAG.getConstant(C1.isNegative(), VT);
1310          case ISD::SETLT:
1311          case ISD::SETLE:
1312            // True if the sign bit of C1 isn't set.
1313            return DAG.getConstant(C1.isNonNegative(), VT);
1314          default:
1315            break;
1316          }
1317        }
1318
1319        // Otherwise, we can perform the comparison with the low bits.
1320        switch (Cond) {
1321        case ISD::SETEQ:
1322        case ISD::SETNE:
1323        case ISD::SETUGT:
1324        case ISD::SETUGE:
1325        case ISD::SETULT:
1326        case ISD::SETULE:
1327          return DAG.getSetCC(VT, N0.getOperand(0),
1328                          DAG.getConstant(APInt(C1).trunc(InSize),
1329                                          N0.getOperand(0).getValueType()),
1330                          Cond);
1331        default:
1332          break;   // todo, be more careful with signed comparisons
1333        }
1334      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1335                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1336        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1337        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1338        MVT ExtDstTy = N0.getValueType();
1339        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1340
1341        // If the extended part has any inconsistent bits, it cannot ever
1342        // compare equal.  In other words, they have to be all ones or all
1343        // zeros.
1344        APInt ExtBits =
1345          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1346        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1347          return DAG.getConstant(Cond == ISD::SETNE, VT);
1348
1349        SDValue ZextOp;
1350        MVT Op0Ty = N0.getOperand(0).getValueType();
1351        if (Op0Ty == ExtSrcTy) {
1352          ZextOp = N0.getOperand(0);
1353        } else {
1354          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1355          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1356                               DAG.getConstant(Imm, Op0Ty));
1357        }
1358        if (!DCI.isCalledByLegalizer())
1359          DCI.AddToWorklist(ZextOp.Val);
1360        // Otherwise, make this a use of a zext.
1361        return DAG.getSetCC(VT, ZextOp,
1362                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1363                                                               ExtDstTyBits,
1364                                                               ExtSrcTyBits),
1365                                            ExtDstTy),
1366                            Cond);
1367      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1368                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1369
1370        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1371        if (N0.getOpcode() == ISD::SETCC) {
1372          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1373          if (TrueWhenTrue)
1374            return N0;
1375
1376          // Invert the condition.
1377          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1378          CC = ISD::getSetCCInverse(CC,
1379                                   N0.getOperand(0).getValueType().isInteger());
1380          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1381        }
1382
1383        if ((N0.getOpcode() == ISD::XOR ||
1384             (N0.getOpcode() == ISD::AND &&
1385              N0.getOperand(0).getOpcode() == ISD::XOR &&
1386              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1387            isa<ConstantSDNode>(N0.getOperand(1)) &&
1388            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1389          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1390          // can only do this if the top bits are known zero.
1391          unsigned BitWidth = N0.getValueSizeInBits();
1392          if (DAG.MaskedValueIsZero(N0,
1393                                    APInt::getHighBitsSet(BitWidth,
1394                                                          BitWidth-1))) {
1395            // Okay, get the un-inverted input value.
1396            SDValue Val;
1397            if (N0.getOpcode() == ISD::XOR)
1398              Val = N0.getOperand(0);
1399            else {
1400              assert(N0.getOpcode() == ISD::AND &&
1401                     N0.getOperand(0).getOpcode() == ISD::XOR);
1402              // ((X^1)&1)^1 -> X & 1
1403              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1404                                N0.getOperand(0).getOperand(0),
1405                                N0.getOperand(1));
1406            }
1407            return DAG.getSetCC(VT, Val, N1,
1408                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1409          }
1410        }
1411      }
1412
1413      APInt MinVal, MaxVal;
1414      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1415      if (ISD::isSignedIntSetCC(Cond)) {
1416        MinVal = APInt::getSignedMinValue(OperandBitSize);
1417        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1418      } else {
1419        MinVal = APInt::getMinValue(OperandBitSize);
1420        MaxVal = APInt::getMaxValue(OperandBitSize);
1421      }
1422
1423      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1424      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1425        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1426        // X >= C0 --> X > (C0-1)
1427        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1428                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1429      }
1430
1431      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1432        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1433        // X <= C0 --> X < (C0+1)
1434        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1435                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1436      }
1437
1438      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1439        return DAG.getConstant(0, VT);      // X < MIN --> false
1440      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1441        return DAG.getConstant(1, VT);      // X >= MIN --> true
1442      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1443        return DAG.getConstant(0, VT);      // X > MAX --> false
1444      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1445        return DAG.getConstant(1, VT);      // X <= MAX --> true
1446
1447      // Canonicalize setgt X, Min --> setne X, Min
1448      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1449        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1450      // Canonicalize setlt X, Max --> setne X, Max
1451      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1452        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1453
1454      // If we have setult X, 1, turn it into seteq X, 0
1455      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1456        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1457                        ISD::SETEQ);
1458      // If we have setugt X, Max-1, turn it into seteq X, Max
1459      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1460        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1461                        ISD::SETEQ);
1462
1463      // If we have "setcc X, C0", check to see if we can shrink the immediate
1464      // by changing cc.
1465
1466      // SETUGT X, SINTMAX  -> SETLT X, 0
1467      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1468          C1 == (~0ULL >> (65-OperandBitSize)))
1469        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1470                            ISD::SETLT);
1471
1472      // FIXME: Implement the rest of these.
1473
1474      // Fold bit comparisons when we can.
1475      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1476          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1477        if (ConstantSDNode *AndRHS =
1478                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1479          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1480            // Perform the xform if the AND RHS is a single bit.
1481            if (isPowerOf2_64(AndRHS->getValue())) {
1482              return DAG.getNode(ISD::SRL, VT, N0,
1483                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1484                                             getShiftAmountTy()));
1485            }
1486          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1487            // (X & 8) == 8  -->  (X & 8) >> 3
1488            // Perform the xform if C1 is a single bit.
1489            if (C1.isPowerOf2()) {
1490              return DAG.getNode(ISD::SRL, VT, N0,
1491                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1492            }
1493          }
1494        }
1495    }
1496  } else if (isa<ConstantSDNode>(N0.Val)) {
1497      // Ensure that the constant occurs on the RHS.
1498    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1499  }
1500
1501  if (isa<ConstantFPSDNode>(N0.Val)) {
1502    // Constant fold or commute setcc.
1503    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond);
1504    if (O.Val) return O;
1505  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1506    // If the RHS of an FP comparison is a constant, simplify it away in
1507    // some cases.
1508    if (CFP->getValueAPF().isNaN()) {
1509      // If an operand is known to be a nan, we can fold it.
1510      switch (ISD::getUnorderedFlavor(Cond)) {
1511      default: assert(0 && "Unknown flavor!");
1512      case 0:  // Known false.
1513        return DAG.getConstant(0, VT);
1514      case 1:  // Known true.
1515        return DAG.getConstant(1, VT);
1516      case 2:  // Undefined.
1517        return DAG.getNode(ISD::UNDEF, VT);
1518      }
1519    }
1520
1521    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1522    // constant if knowing that the operand is non-nan is enough.  We prefer to
1523    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1524    // materialize 0.0.
1525    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1526      return DAG.getSetCC(VT, N0, N0, Cond);
1527  }
1528
1529  if (N0 == N1) {
1530    // We can always fold X == X for integer setcc's.
1531    if (N0.getValueType().isInteger())
1532      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1533    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1534    if (UOF == 2)   // FP operators that are undefined on NaNs.
1535      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1536    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1537      return DAG.getConstant(UOF, VT);
1538    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1539    // if it is not already.
1540    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1541    if (NewCond != Cond)
1542      return DAG.getSetCC(VT, N0, N1, NewCond);
1543  }
1544
1545  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1546      N0.getValueType().isInteger()) {
1547    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1548        N0.getOpcode() == ISD::XOR) {
1549      // Simplify (X+Y) == (X+Z) -->  Y == Z
1550      if (N0.getOpcode() == N1.getOpcode()) {
1551        if (N0.getOperand(0) == N1.getOperand(0))
1552          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1553        if (N0.getOperand(1) == N1.getOperand(1))
1554          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1555        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1556          // If X op Y == Y op X, try other combinations.
1557          if (N0.getOperand(0) == N1.getOperand(1))
1558            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1559          if (N0.getOperand(1) == N1.getOperand(0))
1560            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1561        }
1562      }
1563
1564      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1565        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1566          // Turn (X+C1) == C2 --> X == C2-C1
1567          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1568            return DAG.getSetCC(VT, N0.getOperand(0),
1569                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1570                                N0.getValueType()), Cond);
1571          }
1572
1573          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1574          if (N0.getOpcode() == ISD::XOR)
1575            // If we know that all of the inverted bits are zero, don't bother
1576            // performing the inversion.
1577            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1578              return
1579                DAG.getSetCC(VT, N0.getOperand(0),
1580                             DAG.getConstant(LHSR->getAPIntValue() ^
1581                                               RHSC->getAPIntValue(),
1582                                             N0.getValueType()),
1583                             Cond);
1584        }
1585
1586        // Turn (C1-X) == C2 --> X == C1-C2
1587        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1588          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1589            return
1590              DAG.getSetCC(VT, N0.getOperand(1),
1591                           DAG.getConstant(SUBC->getAPIntValue() -
1592                                             RHSC->getAPIntValue(),
1593                                           N0.getValueType()),
1594                           Cond);
1595          }
1596        }
1597      }
1598
1599      // Simplify (X+Z) == X -->  Z == 0
1600      if (N0.getOperand(0) == N1)
1601        return DAG.getSetCC(VT, N0.getOperand(1),
1602                        DAG.getConstant(0, N0.getValueType()), Cond);
1603      if (N0.getOperand(1) == N1) {
1604        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1605          return DAG.getSetCC(VT, N0.getOperand(0),
1606                          DAG.getConstant(0, N0.getValueType()), Cond);
1607        else if (N0.Val->hasOneUse()) {
1608          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1609          // (Z-X) == X  --> Z == X<<1
1610          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1611                                     N1,
1612                                     DAG.getConstant(1, getShiftAmountTy()));
1613          if (!DCI.isCalledByLegalizer())
1614            DCI.AddToWorklist(SH.Val);
1615          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1616        }
1617      }
1618    }
1619
1620    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1621        N1.getOpcode() == ISD::XOR) {
1622      // Simplify  X == (X+Z) -->  Z == 0
1623      if (N1.getOperand(0) == N0) {
1624        return DAG.getSetCC(VT, N1.getOperand(1),
1625                        DAG.getConstant(0, N1.getValueType()), Cond);
1626      } else if (N1.getOperand(1) == N0) {
1627        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1628          return DAG.getSetCC(VT, N1.getOperand(0),
1629                          DAG.getConstant(0, N1.getValueType()), Cond);
1630        } else if (N1.Val->hasOneUse()) {
1631          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1632          // X == (Z-X)  --> X<<1 == Z
1633          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1634                                     DAG.getConstant(1, getShiftAmountTy()));
1635          if (!DCI.isCalledByLegalizer())
1636            DCI.AddToWorklist(SH.Val);
1637          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1638        }
1639      }
1640    }
1641  }
1642
1643  // Fold away ALL boolean setcc's.
1644  SDValue Temp;
1645  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1646    switch (Cond) {
1647    default: assert(0 && "Unknown integer setcc!");
1648    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1649      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1650      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1651      if (!DCI.isCalledByLegalizer())
1652        DCI.AddToWorklist(Temp.Val);
1653      break;
1654    case ISD::SETNE:  // X != Y   -->  (X^Y)
1655      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1656      break;
1657    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1658    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1659      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1660      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1661      if (!DCI.isCalledByLegalizer())
1662        DCI.AddToWorklist(Temp.Val);
1663      break;
1664    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1665    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1666      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1667      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1668      if (!DCI.isCalledByLegalizer())
1669        DCI.AddToWorklist(Temp.Val);
1670      break;
1671    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1672    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1673      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1674      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1675      if (!DCI.isCalledByLegalizer())
1676        DCI.AddToWorklist(Temp.Val);
1677      break;
1678    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1679    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1680      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1681      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1682      break;
1683    }
1684    if (VT != MVT::i1) {
1685      if (!DCI.isCalledByLegalizer())
1686        DCI.AddToWorklist(N0.Val);
1687      // FIXME: If running after legalize, we probably can't do this.
1688      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1689    }
1690    return N0;
1691  }
1692
1693  // Could not fold it.
1694  return SDValue();
1695}
1696
1697/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1698/// node is a GlobalAddress + offset.
1699bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1700                                    int64_t &Offset) const {
1701  if (isa<GlobalAddressSDNode>(N)) {
1702    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1703    GA = GASD->getGlobal();
1704    Offset += GASD->getOffset();
1705    return true;
1706  }
1707
1708  if (N->getOpcode() == ISD::ADD) {
1709    SDValue N1 = N->getOperand(0);
1710    SDValue N2 = N->getOperand(1);
1711    if (isGAPlusOffset(N1.Val, GA, Offset)) {
1712      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1713      if (V) {
1714        Offset += V->getSignExtended();
1715        return true;
1716      }
1717    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
1718      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1719      if (V) {
1720        Offset += V->getSignExtended();
1721        return true;
1722      }
1723    }
1724  }
1725  return false;
1726}
1727
1728
1729/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1730/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1731/// location that the 'Base' load is loading from.
1732bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1733                                       unsigned Bytes, int Dist,
1734                                       const MachineFrameInfo *MFI) const {
1735  if (LD->getOperand(0).Val != Base->getOperand(0).Val)
1736    return false;
1737  MVT VT = LD->getValueType(0);
1738  if (VT.getSizeInBits() / 8 != Bytes)
1739    return false;
1740
1741  SDValue Loc = LD->getOperand(1);
1742  SDValue BaseLoc = Base->getOperand(1);
1743  if (Loc.getOpcode() == ISD::FrameIndex) {
1744    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1745      return false;
1746    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1747    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1748    int FS  = MFI->getObjectSize(FI);
1749    int BFS = MFI->getObjectSize(BFI);
1750    if (FS != BFS || FS != (int)Bytes) return false;
1751    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1752  }
1753
1754  GlobalValue *GV1 = NULL;
1755  GlobalValue *GV2 = NULL;
1756  int64_t Offset1 = 0;
1757  int64_t Offset2 = 0;
1758  bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
1759  bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
1760  if (isGA1 && isGA2 && GV1 == GV2)
1761    return Offset1 == (Offset2 + Dist*Bytes);
1762  return false;
1763}
1764
1765
1766SDValue TargetLowering::
1767PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1768  // Default implementation: no optimization.
1769  return SDValue();
1770}
1771
1772//===----------------------------------------------------------------------===//
1773//  Inline Assembler Implementation Methods
1774//===----------------------------------------------------------------------===//
1775
1776
1777TargetLowering::ConstraintType
1778TargetLowering::getConstraintType(const std::string &Constraint) const {
1779  // FIXME: lots more standard ones to handle.
1780  if (Constraint.size() == 1) {
1781    switch (Constraint[0]) {
1782    default: break;
1783    case 'r': return C_RegisterClass;
1784    case 'm':    // memory
1785    case 'o':    // offsetable
1786    case 'V':    // not offsetable
1787      return C_Memory;
1788    case 'i':    // Simple Integer or Relocatable Constant
1789    case 'n':    // Simple Integer
1790    case 's':    // Relocatable Constant
1791    case 'X':    // Allow ANY value.
1792    case 'I':    // Target registers.
1793    case 'J':
1794    case 'K':
1795    case 'L':
1796    case 'M':
1797    case 'N':
1798    case 'O':
1799    case 'P':
1800      return C_Other;
1801    }
1802  }
1803
1804  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1805      Constraint[Constraint.size()-1] == '}')
1806    return C_Register;
1807  return C_Unknown;
1808}
1809
1810/// LowerXConstraint - try to replace an X constraint, which matches anything,
1811/// with another that has more specific requirements based on the type of the
1812/// corresponding operand.
1813const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1814  if (ConstraintVT.isInteger())
1815    return "r";
1816  if (ConstraintVT.isFloatingPoint())
1817    return "f";      // works for many targets
1818  return 0;
1819}
1820
1821/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1822/// vector.  If it is invalid, don't add anything to Ops.
1823void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1824                                                  char ConstraintLetter,
1825                                                  std::vector<SDValue> &Ops,
1826                                                  SelectionDAG &DAG) const {
1827  switch (ConstraintLetter) {
1828  default: break;
1829  case 'X':     // Allows any operand; labels (basic block) use this.
1830    if (Op.getOpcode() == ISD::BasicBlock) {
1831      Ops.push_back(Op);
1832      return;
1833    }
1834    // fall through
1835  case 'i':    // Simple Integer or Relocatable Constant
1836  case 'n':    // Simple Integer
1837  case 's': {  // Relocatable Constant
1838    // These operands are interested in values of the form (GV+C), where C may
1839    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1840    // is possible and fine if either GV or C are missing.
1841    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1842    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1843
1844    // If we have "(add GV, C)", pull out GV/C
1845    if (Op.getOpcode() == ISD::ADD) {
1846      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1847      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1848      if (C == 0 || GA == 0) {
1849        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1850        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1851      }
1852      if (C == 0 || GA == 0)
1853        C = 0, GA = 0;
1854    }
1855
1856    // If we find a valid operand, map to the TargetXXX version so that the
1857    // value itself doesn't get selected.
1858    if (GA) {   // Either &GV   or   &GV+C
1859      if (ConstraintLetter != 'n') {
1860        int64_t Offs = GA->getOffset();
1861        if (C) Offs += C->getValue();
1862        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1863                                                 Op.getValueType(), Offs));
1864        return;
1865      }
1866    }
1867    if (C) {   // just C, no GV.
1868      // Simple constants are not allowed for 's'.
1869      if (ConstraintLetter != 's') {
1870        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1871        return;
1872      }
1873    }
1874    break;
1875  }
1876  }
1877}
1878
1879std::vector<unsigned> TargetLowering::
1880getRegClassForInlineAsmConstraint(const std::string &Constraint,
1881                                  MVT VT) const {
1882  return std::vector<unsigned>();
1883}
1884
1885
1886std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1887getRegForInlineAsmConstraint(const std::string &Constraint,
1888                             MVT VT) const {
1889  if (Constraint[0] != '{')
1890    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1891  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1892
1893  // Remove the braces from around the name.
1894  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1895
1896  // Figure out which register class contains this reg.
1897  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1898  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1899       E = RI->regclass_end(); RCI != E; ++RCI) {
1900    const TargetRegisterClass *RC = *RCI;
1901
1902    // If none of the the value types for this register class are valid, we
1903    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1904    bool isLegal = false;
1905    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1906         I != E; ++I) {
1907      if (isTypeLegal(*I)) {
1908        isLegal = true;
1909        break;
1910      }
1911    }
1912
1913    if (!isLegal) continue;
1914
1915    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1916         I != E; ++I) {
1917      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1918        return std::make_pair(*I, RC);
1919    }
1920  }
1921
1922  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1923}
1924
1925//===----------------------------------------------------------------------===//
1926// Constraint Selection.
1927
1928/// getConstraintGenerality - Return an integer indicating how general CT
1929/// is.
1930static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1931  switch (CT) {
1932  default: assert(0 && "Unknown constraint type!");
1933  case TargetLowering::C_Other:
1934  case TargetLowering::C_Unknown:
1935    return 0;
1936  case TargetLowering::C_Register:
1937    return 1;
1938  case TargetLowering::C_RegisterClass:
1939    return 2;
1940  case TargetLowering::C_Memory:
1941    return 3;
1942  }
1943}
1944
1945/// ChooseConstraint - If there are multiple different constraints that we
1946/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1947/// This is somewhat tricky: constraints fall into four classes:
1948///    Other         -> immediates and magic values
1949///    Register      -> one specific register
1950///    RegisterClass -> a group of regs
1951///    Memory        -> memory
1952/// Ideally, we would pick the most specific constraint possible: if we have
1953/// something that fits into a register, we would pick it.  The problem here
1954/// is that if we have something that could either be in a register or in
1955/// memory that use of the register could cause selection of *other*
1956/// operands to fail: they might only succeed if we pick memory.  Because of
1957/// this the heuristic we use is:
1958///
1959///  1) If there is an 'other' constraint, and if the operand is valid for
1960///     that constraint, use it.  This makes us take advantage of 'i'
1961///     constraints when available.
1962///  2) Otherwise, pick the most general constraint present.  This prefers
1963///     'm' over 'r', for example.
1964///
1965static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1966                             const TargetLowering &TLI,
1967                             SDValue Op, SelectionDAG *DAG) {
1968  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1969  unsigned BestIdx = 0;
1970  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1971  int BestGenerality = -1;
1972
1973  // Loop over the options, keeping track of the most general one.
1974  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1975    TargetLowering::ConstraintType CType =
1976      TLI.getConstraintType(OpInfo.Codes[i]);
1977
1978    // If this is an 'other' constraint, see if the operand is valid for it.
1979    // For example, on X86 we might have an 'rI' constraint.  If the operand
1980    // is an integer in the range [0..31] we want to use I (saving a load
1981    // of a register), otherwise we must use 'r'.
1982    if (CType == TargetLowering::C_Other && Op.Val) {
1983      assert(OpInfo.Codes[i].size() == 1 &&
1984             "Unhandled multi-letter 'other' constraint");
1985      std::vector<SDValue> ResultOps;
1986      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
1987                                       ResultOps, *DAG);
1988      if (!ResultOps.empty()) {
1989        BestType = CType;
1990        BestIdx = i;
1991        break;
1992      }
1993    }
1994
1995    // This constraint letter is more general than the previous one, use it.
1996    int Generality = getConstraintGenerality(CType);
1997    if (Generality > BestGenerality) {
1998      BestType = CType;
1999      BestIdx = i;
2000      BestGenerality = Generality;
2001    }
2002  }
2003
2004  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2005  OpInfo.ConstraintType = BestType;
2006}
2007
2008/// ComputeConstraintToUse - Determines the constraint code and constraint
2009/// type to use for the specific AsmOperandInfo, setting
2010/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2011void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2012                                            SDValue Op,
2013                                            SelectionDAG *DAG) const {
2014  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2015
2016  // Single-letter constraints ('r') are very common.
2017  if (OpInfo.Codes.size() == 1) {
2018    OpInfo.ConstraintCode = OpInfo.Codes[0];
2019    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2020  } else {
2021    ChooseConstraint(OpInfo, *this, Op, DAG);
2022  }
2023
2024  // 'X' matches anything.
2025  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2026    // Labels and constants are handled elsewhere ('X' is the only thing
2027    // that matches labels).
2028    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2029        isa<ConstantInt>(OpInfo.CallOperandVal))
2030      return;
2031
2032    // Otherwise, try to resolve it to something we know about by looking at
2033    // the actual operand type.
2034    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2035      OpInfo.ConstraintCode = Repl;
2036      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2037    }
2038  }
2039}
2040
2041//===----------------------------------------------------------------------===//
2042//  Loop Strength Reduction hooks
2043//===----------------------------------------------------------------------===//
2044
2045/// isLegalAddressingMode - Return true if the addressing mode represented
2046/// by AM is legal for this target, for a load/store of the specified type.
2047bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2048                                           const Type *Ty) const {
2049  // The default implementation of this implements a conservative RISCy, r+r and
2050  // r+i addr mode.
2051
2052  // Allows a sign-extended 16-bit immediate field.
2053  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2054    return false;
2055
2056  // No global is ever allowed as a base.
2057  if (AM.BaseGV)
2058    return false;
2059
2060  // Only support r+r,
2061  switch (AM.Scale) {
2062  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2063    break;
2064  case 1:
2065    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2066      return false;
2067    // Otherwise we have r+r or r+i.
2068    break;
2069  case 2:
2070    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2071      return false;
2072    // Allow 2*r as r+r.
2073    break;
2074  }
2075
2076  return true;
2077}
2078
2079// Magic for divide replacement
2080
2081struct ms {
2082  int64_t m;  // magic number
2083  int64_t s;  // shift amount
2084};
2085
2086struct mu {
2087  uint64_t m; // magic number
2088  int64_t a;  // add indicator
2089  int64_t s;  // shift amount
2090};
2091
2092/// magic - calculate the magic numbers required to codegen an integer sdiv as
2093/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2094/// or -1.
2095static ms magic32(int32_t d) {
2096  int32_t p;
2097  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
2098  const uint32_t two31 = 0x80000000U;
2099  struct ms mag;
2100
2101  ad = abs(d);
2102  t = two31 + ((uint32_t)d >> 31);
2103  anc = t - 1 - t%ad;   // absolute value of nc
2104  p = 31;               // initialize p
2105  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
2106  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2107  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
2108  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2109  do {
2110    p = p + 1;
2111    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2112    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2113    if (r1 >= anc) {  // must be unsigned comparison
2114      q1 = q1 + 1;
2115      r1 = r1 - anc;
2116    }
2117    q2 = 2*q2;        // update q2 = 2p/abs(d)
2118    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2119    if (r2 >= ad) {   // must be unsigned comparison
2120      q2 = q2 + 1;
2121      r2 = r2 - ad;
2122    }
2123    delta = ad - r2;
2124  } while (q1 < delta || (q1 == delta && r1 == 0));
2125
2126  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
2127  if (d < 0) mag.m = -mag.m; // resulting magic number
2128  mag.s = p - 32;            // resulting shift
2129  return mag;
2130}
2131
2132/// magicu - calculate the magic numbers required to codegen an integer udiv as
2133/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2134static mu magicu32(uint32_t d) {
2135  int32_t p;
2136  uint32_t nc, delta, q1, r1, q2, r2;
2137  struct mu magu;
2138  magu.a = 0;               // initialize "add" indicator
2139  nc = - 1 - (-d)%d;
2140  p = 31;                   // initialize p
2141  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
2142  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
2143  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
2144  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
2145  do {
2146    p = p + 1;
2147    if (r1 >= nc - r1 ) {
2148      q1 = 2*q1 + 1;  // update q1
2149      r1 = 2*r1 - nc; // update r1
2150    }
2151    else {
2152      q1 = 2*q1; // update q1
2153      r1 = 2*r1; // update r1
2154    }
2155    if (r2 + 1 >= d - r2) {
2156      if (q2 >= 0x7FFFFFFF) magu.a = 1;
2157      q2 = 2*q2 + 1;     // update q2
2158      r2 = 2*r2 + 1 - d; // update r2
2159    }
2160    else {
2161      if (q2 >= 0x80000000) magu.a = 1;
2162      q2 = 2*q2;     // update q2
2163      r2 = 2*r2 + 1; // update r2
2164    }
2165    delta = d - 1 - r2;
2166  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
2167  magu.m = q2 + 1; // resulting magic number
2168  magu.s = p - 32;  // resulting shift
2169  return magu;
2170}
2171
2172/// magic - calculate the magic numbers required to codegen an integer sdiv as
2173/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2174/// or -1.
2175static ms magic64(int64_t d) {
2176  int64_t p;
2177  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
2178  const uint64_t two63 = 9223372036854775808ULL; // 2^63
2179  struct ms mag;
2180
2181  ad = d >= 0 ? d : -d;
2182  t = two63 + ((uint64_t)d >> 63);
2183  anc = t - 1 - t%ad;   // absolute value of nc
2184  p = 63;               // initialize p
2185  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
2186  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
2187  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
2188  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
2189  do {
2190    p = p + 1;
2191    q1 = 2*q1;        // update q1 = 2p/abs(nc)
2192    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
2193    if (r1 >= anc) {  // must be unsigned comparison
2194      q1 = q1 + 1;
2195      r1 = r1 - anc;
2196    }
2197    q2 = 2*q2;        // update q2 = 2p/abs(d)
2198    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
2199    if (r2 >= ad) {   // must be unsigned comparison
2200      q2 = q2 + 1;
2201      r2 = r2 - ad;
2202    }
2203    delta = ad - r2;
2204  } while (q1 < delta || (q1 == delta && r1 == 0));
2205
2206  mag.m = q2 + 1;
2207  if (d < 0) mag.m = -mag.m; // resulting magic number
2208  mag.s = p - 64;            // resulting shift
2209  return mag;
2210}
2211
2212/// magicu - calculate the magic numbers required to codegen an integer udiv as
2213/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2214static mu magicu64(uint64_t d)
2215{
2216  int64_t p;
2217  uint64_t nc, delta, q1, r1, q2, r2;
2218  struct mu magu;
2219  magu.a = 0;               // initialize "add" indicator
2220  nc = - 1 - (-d)%d;
2221  p = 63;                   // initialize p
2222  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
2223  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
2224  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
2225  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
2226  do {
2227    p = p + 1;
2228    if (r1 >= nc - r1 ) {
2229      q1 = 2*q1 + 1;  // update q1
2230      r1 = 2*r1 - nc; // update r1
2231    }
2232    else {
2233      q1 = 2*q1; // update q1
2234      r1 = 2*r1; // update r1
2235    }
2236    if (r2 + 1 >= d - r2) {
2237      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2238      q2 = 2*q2 + 1;     // update q2
2239      r2 = 2*r2 + 1 - d; // update r2
2240    }
2241    else {
2242      if (q2 >= 0x8000000000000000ull) magu.a = 1;
2243      q2 = 2*q2;     // update q2
2244      r2 = 2*r2 + 1; // update r2
2245    }
2246    delta = d - 1 - r2;
2247  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2248  magu.m = q2 + 1; // resulting magic number
2249  magu.s = p - 64;  // resulting shift
2250  return magu;
2251}
2252
2253/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2254/// return a DAG expression to select that will generate the same value by
2255/// multiplying by a magic number.  See:
2256/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2257SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2258                                  std::vector<SDNode*>* Created) const {
2259  MVT VT = N->getValueType(0);
2260
2261  // Check to see if we can do this.
2262  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2263    return SDValue();       // BuildSDIV only operates on i32 or i64
2264
2265  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2266  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2267
2268  // Multiply the numerator (operand 0) by the magic value
2269  SDValue Q;
2270  if (isOperationLegal(ISD::MULHS, VT))
2271    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2272                    DAG.getConstant(magics.m, VT));
2273  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2274    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2275                              N->getOperand(0),
2276                              DAG.getConstant(magics.m, VT)).Val, 1);
2277  else
2278    return SDValue();       // No mulhs or equvialent
2279  // If d > 0 and m < 0, add the numerator
2280  if (d > 0 && magics.m < 0) {
2281    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2282    if (Created)
2283      Created->push_back(Q.Val);
2284  }
2285  // If d < 0 and m > 0, subtract the numerator.
2286  if (d < 0 && magics.m > 0) {
2287    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2288    if (Created)
2289      Created->push_back(Q.Val);
2290  }
2291  // Shift right algebraic if shift value is nonzero
2292  if (magics.s > 0) {
2293    Q = DAG.getNode(ISD::SRA, VT, Q,
2294                    DAG.getConstant(magics.s, getShiftAmountTy()));
2295    if (Created)
2296      Created->push_back(Q.Val);
2297  }
2298  // Extract the sign bit and add it to the quotient
2299  SDValue T =
2300    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2301                                                 getShiftAmountTy()));
2302  if (Created)
2303    Created->push_back(T.Val);
2304  return DAG.getNode(ISD::ADD, VT, Q, T);
2305}
2306
2307/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2308/// return a DAG expression to select that will generate the same value by
2309/// multiplying by a magic number.  See:
2310/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2311SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2312                                  std::vector<SDNode*>* Created) const {
2313  MVT VT = N->getValueType(0);
2314
2315  // Check to see if we can do this.
2316  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2317    return SDValue();       // BuildUDIV only operates on i32 or i64
2318
2319  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2320  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2321
2322  // Multiply the numerator (operand 0) by the magic value
2323  SDValue Q;
2324  if (isOperationLegal(ISD::MULHU, VT))
2325    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2326                    DAG.getConstant(magics.m, VT));
2327  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2328    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2329                              N->getOperand(0),
2330                              DAG.getConstant(magics.m, VT)).Val, 1);
2331  else
2332    return SDValue();       // No mulhu or equvialent
2333  if (Created)
2334    Created->push_back(Q.Val);
2335
2336  if (magics.a == 0) {
2337    return DAG.getNode(ISD::SRL, VT, Q,
2338                       DAG.getConstant(magics.s, getShiftAmountTy()));
2339  } else {
2340    SDValue NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2341    if (Created)
2342      Created->push_back(NPQ.Val);
2343    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2344                      DAG.getConstant(1, getShiftAmountTy()));
2345    if (Created)
2346      Created->push_back(NPQ.Val);
2347    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2348    if (Created)
2349      Created->push_back(NPQ.Val);
2350    return DAG.getNode(ISD::SRL, VT, NPQ,
2351                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2352  }
2353}
2354