X86MCTargetDesc.cpp revision 439661395fd2a2a832dba01c65bc88718528313c
1//===-- X86MCTargetDesc.cpp - X86 Target Descriptions -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides X86 specific target descriptions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86MCTargetDesc.h"
15#include "X86MCAsmInfo.h"
16#include "llvm/MC/MachineLocation.h"
17#include "llvm/MC/MCInstrInfo.h"
18#include "llvm/MC/MCRegisterInfo.h"
19#include "llvm/MC/MCSubtargetInfo.h"
20#include "llvm/Target/TargetRegistry.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Support/Host.h"
23
24#define GET_REGINFO_MC_DESC
25#include "X86GenRegisterInfo.inc"
26
27#define GET_INSTRINFO_MC_DESC
28#include "X86GenInstrInfo.inc"
29
30#define GET_SUBTARGETINFO_MC_DESC
31#include "X86GenSubtargetInfo.inc"
32
33using namespace llvm;
34
35
36std::string X86_MC::ParseX86Triple(StringRef TT) {
37  Triple TheTriple(TT);
38  if (TheTriple.getArch() == Triple::x86_64)
39    return "+64bit-mode";
40  return "-64bit-mode";
41}
42
43/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
44/// specified arguments.  If we can't run cpuid on the host, return true.
45bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
46                             unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
47#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
48  #if defined(__GNUC__)
49    // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
50    asm ("movq\t%%rbx, %%rsi\n\t"
51         "cpuid\n\t"
52         "xchgq\t%%rbx, %%rsi\n\t"
53         : "=a" (*rEAX),
54           "=S" (*rEBX),
55           "=c" (*rECX),
56           "=d" (*rEDX)
57         :  "a" (value));
58    return false;
59  #elif defined(_MSC_VER)
60    int registers[4];
61    __cpuid(registers, value);
62    *rEAX = registers[0];
63    *rEBX = registers[1];
64    *rECX = registers[2];
65    *rEDX = registers[3];
66    return false;
67  #endif
68#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
69  #if defined(__GNUC__)
70    asm ("movl\t%%ebx, %%esi\n\t"
71         "cpuid\n\t"
72         "xchgl\t%%ebx, %%esi\n\t"
73         : "=a" (*rEAX),
74           "=S" (*rEBX),
75           "=c" (*rECX),
76           "=d" (*rEDX)
77         :  "a" (value));
78    return false;
79  #elif defined(_MSC_VER)
80    __asm {
81      mov   eax,value
82      cpuid
83      mov   esi,rEAX
84      mov   dword ptr [esi],eax
85      mov   esi,rEBX
86      mov   dword ptr [esi],ebx
87      mov   esi,rECX
88      mov   dword ptr [esi],ecx
89      mov   esi,rEDX
90      mov   dword ptr [esi],edx
91    }
92    return false;
93  #endif
94#endif
95  return true;
96}
97
98void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family,
99                               unsigned &Model) {
100  Family = (EAX >> 8) & 0xf; // Bits 8 - 11
101  Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
102  if (Family == 6 || Family == 0xf) {
103    if (Family == 0xf)
104      // Examine extended family ID if family ID is F.
105      Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
106    // Examine extended model ID if family ID is 6 or F.
107    Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
108  }
109}
110
111unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) {
112  Triple TheTriple(TT);
113  if (TheTriple.getArch() == Triple::x86_64)
114    return DWARFFlavour::X86_64;
115
116  if (TheTriple.isOSDarwin())
117    return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic;
118  if (TheTriple.getOS() == Triple::MinGW32 ||
119      TheTriple.getOS() == Triple::Cygwin)
120    // Unsupported by now, just quick fallback
121    return DWARFFlavour::X86_32_Generic;
122  return DWARFFlavour::X86_32_Generic;
123}
124
125/// getX86RegNum - This function maps LLVM register identifiers to their X86
126/// specific numbering, which is used in various places encoding instructions.
127unsigned X86_MC::getX86RegNum(unsigned RegNo) {
128  switch(RegNo) {
129  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
130  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
131  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
132  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
133  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
134    return N86::ESP;
135  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
136    return N86::EBP;
137  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
138    return N86::ESI;
139  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
140    return N86::EDI;
141
142  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
143    return N86::EAX;
144  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
145    return N86::ECX;
146  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
147    return N86::EDX;
148  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
149    return N86::EBX;
150  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
151    return N86::ESP;
152  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
153    return N86::EBP;
154  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
155    return N86::ESI;
156  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
157    return N86::EDI;
158
159  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
160  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
161    return RegNo-X86::ST0;
162
163  case X86::XMM0: case X86::XMM8:
164  case X86::YMM0: case X86::YMM8: case X86::MM0:
165    return 0;
166  case X86::XMM1: case X86::XMM9:
167  case X86::YMM1: case X86::YMM9: case X86::MM1:
168    return 1;
169  case X86::XMM2: case X86::XMM10:
170  case X86::YMM2: case X86::YMM10: case X86::MM2:
171    return 2;
172  case X86::XMM3: case X86::XMM11:
173  case X86::YMM3: case X86::YMM11: case X86::MM3:
174    return 3;
175  case X86::XMM4: case X86::XMM12:
176  case X86::YMM4: case X86::YMM12: case X86::MM4:
177    return 4;
178  case X86::XMM5: case X86::XMM13:
179  case X86::YMM5: case X86::YMM13: case X86::MM5:
180    return 5;
181  case X86::XMM6: case X86::XMM14:
182  case X86::YMM6: case X86::YMM14: case X86::MM6:
183    return 6;
184  case X86::XMM7: case X86::XMM15:
185  case X86::YMM7: case X86::YMM15: case X86::MM7:
186    return 7;
187
188  case X86::ES: return 0;
189  case X86::CS: return 1;
190  case X86::SS: return 2;
191  case X86::DS: return 3;
192  case X86::FS: return 4;
193  case X86::GS: return 5;
194
195  case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
196  case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
197  case X86::CR2: case X86::CR10: case X86::DR2: return 2;
198  case X86::CR3: case X86::CR11: case X86::DR3: return 3;
199  case X86::CR4: case X86::CR12: case X86::DR4: return 4;
200  case X86::CR5: case X86::CR13: case X86::DR5: return 5;
201  case X86::CR6: case X86::CR14: case X86::DR6: return 6;
202  case X86::CR7: case X86::CR15: case X86::DR7: return 7;
203
204  // Pseudo index registers are equivalent to a "none"
205  // scaled index (See Intel Manual 2A, table 2-3)
206  case X86::EIZ:
207  case X86::RIZ:
208    return 4;
209
210  default:
211    assert((int(RegNo) > 0) && "Unknown physical register!");
212    return 0;
213  }
214}
215
216void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) {
217  // FIXME: TableGen these.
218  for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) {
219    int SEH = X86_MC::getX86RegNum(Reg);
220    switch (Reg) {
221    case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
222    case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
223    case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
224    case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
225    case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
226    case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
227    case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
228    case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
229    case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
230    case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
231    case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
232    case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
233      SEH += 8;
234      break;
235    }
236    MRI->mapLLVMRegToSEHReg(Reg, SEH);
237  }
238}
239
240MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU,
241                                                  StringRef FS) {
242  std::string ArchFS = X86_MC::ParseX86Triple(TT);
243  if (!FS.empty()) {
244    if (!ArchFS.empty())
245      ArchFS = ArchFS + "," + FS.str();
246    else
247      ArchFS = FS;
248  }
249
250  std::string CPUName = CPU;
251  if (CPUName.empty()) {
252#if defined (__x86_64__) || defined(__i386__)
253    CPUName = sys::getHostCPUName();
254#else
255    CPUName = "generic";
256#endif
257  }
258
259  MCSubtargetInfo *X = new MCSubtargetInfo();
260  InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS);
261  return X;
262}
263
264// Force static initialization.
265extern "C" void LLVMInitializeX86MCSubtargetInfo() {
266  TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target,
267                                          X86_MC::createX86MCSubtargetInfo);
268  TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target,
269                                          X86_MC::createX86MCSubtargetInfo);
270}
271
272static MCInstrInfo *createX86MCInstrInfo() {
273  MCInstrInfo *X = new MCInstrInfo();
274  InitX86MCInstrInfo(X);
275  return X;
276}
277
278extern "C" void LLVMInitializeX86MCInstrInfo() {
279  TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo);
280  TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo);
281}
282
283static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) {
284  Triple TheTriple(TT);
285  unsigned RA = (TheTriple.getArch() == Triple::x86_64)
286    ? X86::RIP     // Should have dwarf #16.
287    : X86::EIP;    // Should have dwarf #8.
288
289  MCRegisterInfo *X = new MCRegisterInfo();
290  InitX86MCRegisterInfo(X, RA,
291                        X86_MC::getDwarfRegFlavour(TT, false),
292                        X86_MC::getDwarfRegFlavour(TT, true));
293  X86_MC::InitLLVM2SEHRegisterMapping(X);
294  return X;
295}
296
297extern "C" void LLVMInitializeX86MCRegisterInfo() {
298  TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo);
299  TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo);
300}
301
302
303static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) {
304  Triple TheTriple(TT);
305  bool is64Bit = TheTriple.getArch() == Triple::x86_64;
306
307  MCAsmInfo *MAI;
308  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
309    if (is64Bit)
310      MAI = new X86_64MCAsmInfoDarwin(TheTriple);
311    else
312      MAI = new X86MCAsmInfoDarwin(TheTriple);
313  } else if (TheTriple.isOSWindows()) {
314    MAI = new X86MCAsmInfoCOFF(TheTriple);
315  } else {
316    MAI = new X86ELFMCAsmInfo(TheTriple);
317  }
318
319  // Initialize initial frame state.
320  // Calculate amount of bytes used for return address storing
321  int stackGrowth = is64Bit ? -8 : -4;
322
323  // Initial state of the frame pointer is esp+stackGrowth.
324  MachineLocation Dst(MachineLocation::VirtualFP);
325  MachineLocation Src(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
326  MAI->addInitialFrameState(0, Dst, Src);
327
328  // Add return address to move list
329  MachineLocation CSDst(is64Bit ? X86::RSP : X86::ESP, stackGrowth);
330  MachineLocation CSSrc(is64Bit ? X86::RIP : X86::EIP);
331  MAI->addInitialFrameState(0, CSDst, CSSrc);
332
333  return MAI;
334}
335
336extern "C" void LLVMInitializeX86MCAsmInfo() {
337  // Register the target asm info.
338  RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo);
339  RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo);
340}
341
342MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM) {
343  MCCodeGenInfo *X = new MCCodeGenInfo();
344
345  Triple T(TT);
346  bool is64Bit = T.getArch() == Triple::x86_64;
347
348  if (RM == Reloc::Default) {
349    // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
350    // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
351    // use static relocation model by default.
352    if (T.isOSDarwin()) {
353      if (is64Bit)
354        RM = Reloc::PIC_;
355      else
356        RM = Reloc::DynamicNoPIC;
357    } else if (T.isOSWindows() && is64Bit)
358      RM = Reloc::PIC_;
359    else
360      RM = Reloc::Static;
361  }
362
363  // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
364  // is defined as a model for code which may be used in static or dynamic
365  // executables but not necessarily a shared library. On X86-32 we just
366  // compile in -static mode, in x86-64 we use PIC.
367  if (RM == Reloc::DynamicNoPIC) {
368    if (is64Bit)
369      RM = Reloc::PIC_;
370    else if (!T.isOSDarwin())
371      RM = Reloc::Static;
372  }
373
374  // If we are on Darwin, disallow static relocation model in X86-64 mode, since
375  // the Mach-O file format doesn't support it.
376  if (RM == Reloc::Static && T.isOSDarwin() && is64Bit)
377    RM = Reloc::PIC_;
378
379  X->InitMCCodeGenInfo(RM);
380  return X;
381}
382
383extern "C" void LLVMInitializeX86MCCodeGenInfo() {
384  // Register the target asm info.
385  RegisterMCCodeGenInfoFn A(TheX86_32Target, createX86MCCodeGenInfo);
386  RegisterMCCodeGenInfoFn B(TheX86_64Target, createX86MCCodeGenInfo);
387}
388