X86FloatingPoint.cpp revision 86556a5f42c549a7a13c82fb65330ab53826fb17
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "fp"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/ADT/DepthFirstIterator.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/STLExtras.h"
44#include <algorithm>
45#include <set>
46using namespace llvm;
47
48namespace {
49  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
50  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
51
52  struct FPS : public MachineFunctionPass {
53    virtual bool runOnMachineFunction(MachineFunction &MF);
54
55    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
56
57    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
58      AU.addRequired<LiveVariables>();
59      MachineFunctionPass::getAnalysisUsage(AU);
60    }
61  private:
62    LiveVariables     *LV;    // Live variable info for current function...
63    MachineBasicBlock *MBB;   // Current basic block
64    unsigned Stack[8];        // FP<n> Registers in each stack slot...
65    unsigned RegMap[8];       // Track which stack slot contains each register
66    unsigned StackTop;        // The current top of the FP stack.
67
68    void dumpStack() const {
69      std::cerr << "Stack contents:";
70      for (unsigned i = 0; i != StackTop; ++i) {
71        std::cerr << " FP" << Stack[i];
72        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
73      }
74      std::cerr << "\n";
75    }
76  private:
77    // getSlot - Return the stack slot number a particular register number is
78    // in...
79    unsigned getSlot(unsigned RegNo) const {
80      assert(RegNo < 8 && "Regno out of range!");
81      return RegMap[RegNo];
82    }
83
84    // getStackEntry - Return the X86::FP<n> register in register ST(i)
85    unsigned getStackEntry(unsigned STi) const {
86      assert(STi < StackTop && "Access past stack top!");
87      return Stack[StackTop-1-STi];
88    }
89
90    // getSTReg - Return the X86::ST(i) register which contains the specified
91    // FP<RegNo> register
92    unsigned getSTReg(unsigned RegNo) const {
93      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
94    }
95
96    // pushReg - Push the specified FP<n> register onto the stack
97    void pushReg(unsigned Reg) {
98      assert(Reg < 8 && "Register number out of range!");
99      assert(StackTop < 8 && "Stack overflow!");
100      Stack[StackTop] = Reg;
101      RegMap[Reg] = StackTop++;
102    }
103
104    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
105    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
106      if (!isAtTop(RegNo)) {
107        unsigned Slot = getSlot(RegNo);
108        unsigned STReg = getSTReg(RegNo);
109        unsigned RegOnTop = getStackEntry(0);
110
111        // Swap the slots the regs are in
112        std::swap(RegMap[RegNo], RegMap[RegOnTop]);
113
114        // Swap stack slot contents
115        assert(RegMap[RegOnTop] < StackTop);
116        std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
117
118        // Emit an fxch to update the runtime processors version of the state
119        BuildMI(*MBB, I, X86::FXCH, 1).addReg(STReg);
120        NumFXCH++;
121      }
122    }
123
124    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
125      unsigned STReg = getSTReg(RegNo);
126      pushReg(AsReg);   // New register on top of stack
127
128      BuildMI(*MBB, I, X86::FLDrr, 1).addReg(STReg);
129    }
130
131    // popStackAfter - Pop the current value off of the top of the FP stack
132    // after the specified instruction.
133    void popStackAfter(MachineBasicBlock::iterator &I);
134
135    // freeStackSlotAfter - Free the specified register from the register stack,
136    // so that it is no longer in a register.  If the register is currently at
137    // the top of the stack, we just pop the current instruction, otherwise we
138    // store the current top-of-stack into the specified slot, then pop the top
139    // of stack.
140    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
141
142    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
143
144    void handleZeroArgFP(MachineBasicBlock::iterator &I);
145    void handleOneArgFP(MachineBasicBlock::iterator &I);
146    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
147    void handleTwoArgFP(MachineBasicBlock::iterator &I);
148    void handleCompareFP(MachineBasicBlock::iterator &I);
149    void handleCondMovFP(MachineBasicBlock::iterator &I);
150    void handleSpecialFP(MachineBasicBlock::iterator &I);
151  };
152}
153
154FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
155
156/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
157/// register references into FP stack references.
158///
159bool FPS::runOnMachineFunction(MachineFunction &MF) {
160  // We only need to run this pass if there are any FP registers used in this
161  // function.  If it is all integer, there is nothing for us to do!
162  const bool *PhysRegsUsed = MF.getUsedPhysregs();
163  bool FPIsUsed = false;
164
165  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
166  for (unsigned i = 0; i <= 6; ++i)
167    if (PhysRegsUsed[X86::FP0+i]) {
168      FPIsUsed = true;
169      break;
170    }
171
172  // Early exit.
173  if (!FPIsUsed) return false;
174
175  LV = &getAnalysis<LiveVariables>();
176  StackTop = 0;
177
178  // Process the function in depth first order so that we process at least one
179  // of the predecessors for every reachable block in the function.
180  std::set<MachineBasicBlock*> Processed;
181  MachineBasicBlock *Entry = MF.begin();
182
183  bool Changed = false;
184  for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
185         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
186       I != E; ++I)
187    Changed |= processBasicBlock(MF, **I);
188
189  return Changed;
190}
191
192/// processBasicBlock - Loop over all of the instructions in the basic block,
193/// transforming FP instructions into their stack form.
194///
195bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
196  const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
197  bool Changed = false;
198  MBB = &BB;
199
200  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
201    MachineInstr *MI = I;
202    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
203    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
204      continue;  // Efficiently ignore non-fp insts!
205
206    MachineInstr *PrevMI = 0;
207    if (I != BB.begin())
208        PrevMI = prior(I);
209
210    ++NumFP;  // Keep track of # of pseudo instrs
211    DEBUG(std::cerr << "\nFPInst:\t"; MI->print(std::cerr, &(MF.getTarget())));
212
213    // Get dead variables list now because the MI pointer may be deleted as part
214    // of processing!
215    LiveVariables::killed_iterator IB, IE;
216    tie(IB, IE) = LV->dead_range(MI);
217
218    DEBUG(
219      const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
220      LiveVariables::killed_iterator I = LV->killed_begin(MI);
221      LiveVariables::killed_iterator E = LV->killed_end(MI);
222      if (I != E) {
223        std::cerr << "Killed Operands:";
224        for (; I != E; ++I)
225          std::cerr << " %" << MRI->getName(*I);
226        std::cerr << "\n";
227      }
228    );
229
230    switch (Flags & X86II::FPTypeMask) {
231    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
232    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
233    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
234    case X86II::TwoArgFP:   handleTwoArgFP(I); break;
235    case X86II::CompareFP:  handleCompareFP(I); break;
236    case X86II::CondMovFP:  handleCondMovFP(I); break;
237    case X86II::SpecialFP:  handleSpecialFP(I); break;
238    default: assert(0 && "Unknown FP Type!");
239    }
240
241    // Check to see if any of the values defined by this instruction are dead
242    // after definition.  If so, pop them.
243    for (; IB != IE; ++IB) {
244      unsigned Reg = *IB;
245      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
246        DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
247        freeStackSlotAfter(I, Reg-X86::FP0);
248      }
249    }
250
251    // Print out all of the instructions expanded to if -debug
252    DEBUG(
253      MachineBasicBlock::iterator PrevI(PrevMI);
254      if (I == PrevI) {
255        std::cerr << "Just deleted pseudo instruction\n";
256      } else {
257        MachineBasicBlock::iterator Start = I;
258        // Rewind to first instruction newly inserted.
259        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
260        std::cerr << "Inserted instructions:\n\t";
261        Start->print(std::cerr, &MF.getTarget());
262        while (++Start != next(I));
263      }
264      dumpStack();
265    );
266
267    Changed = true;
268  }
269
270  assert(StackTop == 0 && "Stack not empty at end of basic block?");
271  return Changed;
272}
273
274//===----------------------------------------------------------------------===//
275// Efficient Lookup Table Support
276//===----------------------------------------------------------------------===//
277
278namespace {
279  struct TableEntry {
280    unsigned from;
281    unsigned to;
282    bool operator<(const TableEntry &TE) const { return from < TE.from; }
283    bool operator<(unsigned V) const { return from < V; }
284  };
285}
286
287static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
288  for (unsigned i = 0; i != NumEntries-1; ++i)
289    if (!(Table[i] < Table[i+1])) return false;
290  return true;
291}
292
293static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
294  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
295  if (I != Table+N && I->from == Opcode)
296    return I->to;
297  return -1;
298}
299
300#define ARRAY_SIZE(TABLE)  \
301   (sizeof(TABLE)/sizeof(TABLE[0]))
302
303#ifdef NDEBUG
304#define ASSERT_SORTED(TABLE)
305#else
306#define ASSERT_SORTED(TABLE)                                              \
307  { static bool TABLE##Checked = false;                                   \
308    if (!TABLE##Checked)                                                  \
309       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
310              "All lookup tables must be sorted for efficient access!");  \
311  }
312#endif
313
314//===----------------------------------------------------------------------===//
315// Register File -> Register Stack Mapping Methods
316//===----------------------------------------------------------------------===//
317
318// OpcodeTable - Sorted map of register instructions to their stack version.
319// The first element is an register file pseudo instruction, the second is the
320// concrete X86 instruction which uses the register stack.
321//
322static const TableEntry OpcodeTable[] = {
323  { X86::FpABS     , X86::FABS     },
324  { X86::FpADD32m  , X86::FADD32m  },
325  { X86::FpADD64m  , X86::FADD64m  },
326  { X86::FpCHS     , X86::FCHS     },
327  { X86::FpCMOVB   , X86::FCMOVB   },
328  { X86::FpCMOVBE  , X86::FCMOVBE  },
329  { X86::FpCMOVE   , X86::FCMOVE   },
330  { X86::FpCMOVNB  , X86::FCMOVNB  },
331  { X86::FpCMOVNBE , X86::FCMOVNBE },
332  { X86::FpCMOVNE  , X86::FCMOVNE  },
333  { X86::FpCMOVNP  , X86::FCMOVNP  },
334  { X86::FpCMOVP   , X86::FCMOVP   },
335  { X86::FpCOS     , X86::FCOS     },
336  { X86::FpDIV32m  , X86::FDIV32m  },
337  { X86::FpDIV64m  , X86::FDIV64m  },
338  { X86::FpDIVR32m , X86::FDIVR32m },
339  { X86::FpDIVR64m , X86::FDIVR64m },
340  { X86::FpIADD16m , X86::FIADD16m },
341  { X86::FpIADD32m , X86::FIADD32m },
342  { X86::FpIDIV16m , X86::FIDIV16m },
343  { X86::FpIDIV32m , X86::FIDIV32m },
344  { X86::FpIDIVR16m, X86::FIDIVR16m},
345  { X86::FpIDIVR32m, X86::FIDIVR32m},
346  { X86::FpILD16m  , X86::FILD16m  },
347  { X86::FpILD32m  , X86::FILD32m  },
348  { X86::FpILD64m  , X86::FILD64m  },
349  { X86::FpIMUL16m , X86::FIMUL16m },
350  { X86::FpIMUL32m , X86::FIMUL32m },
351  { X86::FpIST16m  , X86::FIST16m  },
352  { X86::FpIST32m  , X86::FIST32m  },
353  { X86::FpIST64m  , X86::FISTP64m },
354  { X86::FpISUB16m , X86::FISUB16m },
355  { X86::FpISUB32m , X86::FISUB32m },
356  { X86::FpISUBR16m, X86::FISUBR16m},
357  { X86::FpISUBR32m, X86::FISUBR32m},
358  { X86::FpLD0     , X86::FLD0     },
359  { X86::FpLD1     , X86::FLD1     },
360  { X86::FpLD32m   , X86::FLD32m   },
361  { X86::FpLD64m   , X86::FLD64m   },
362  { X86::FpMUL32m  , X86::FMUL32m  },
363  { X86::FpMUL64m  , X86::FMUL64m  },
364  { X86::FpSIN     , X86::FSIN     },
365  { X86::FpSQRT    , X86::FSQRT    },
366  { X86::FpST32m   , X86::FST32m   },
367  { X86::FpST64m   , X86::FST64m   },
368  { X86::FpSUB32m  , X86::FSUB32m  },
369  { X86::FpSUB64m  , X86::FSUB64m  },
370  { X86::FpSUBR32m , X86::FSUBR32m },
371  { X86::FpSUBR64m , X86::FSUBR64m },
372  { X86::FpTST     , X86::FTST     },
373  { X86::FpUCOMIr  , X86::FUCOMIr  },
374  { X86::FpUCOMr   , X86::FUCOMr   },
375};
376
377static unsigned getConcreteOpcode(unsigned Opcode) {
378  ASSERT_SORTED(OpcodeTable);
379  int Opc = Lookup(OpcodeTable, ARRAY_SIZE(OpcodeTable), Opcode);
380  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
381  return Opc;
382}
383
384//===----------------------------------------------------------------------===//
385// Helper Methods
386//===----------------------------------------------------------------------===//
387
388// PopTable - Sorted map of instructions to their popping version.  The first
389// element is an instruction, the second is the version which pops.
390//
391static const TableEntry PopTable[] = {
392  { X86::FADDrST0 , X86::FADDPrST0  },
393
394  { X86::FDIVRrST0, X86::FDIVRPrST0 },
395  { X86::FDIVrST0 , X86::FDIVPrST0  },
396
397  { X86::FIST16m  , X86::FISTP16m   },
398  { X86::FIST32m  , X86::FISTP32m   },
399
400  { X86::FMULrST0 , X86::FMULPrST0  },
401
402  { X86::FST32m   , X86::FSTP32m    },
403  { X86::FST64m   , X86::FSTP64m    },
404  { X86::FSTrr    , X86::FSTPrr     },
405
406  { X86::FSUBRrST0, X86::FSUBRPrST0 },
407  { X86::FSUBrST0 , X86::FSUBPrST0  },
408
409  { X86::FUCOMIr  , X86::FUCOMIPr   },
410
411  { X86::FUCOMPr  , X86::FUCOMPPr   },
412  { X86::FUCOMr   , X86::FUCOMPr    },
413};
414
415/// popStackAfter - Pop the current value off of the top of the FP stack after
416/// the specified instruction.  This attempts to be sneaky and combine the pop
417/// into the instruction itself if possible.  The iterator is left pointing to
418/// the last instruction, be it a new pop instruction inserted, or the old
419/// instruction if it was modified in place.
420///
421void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
422  ASSERT_SORTED(PopTable);
423  assert(StackTop > 0 && "Cannot pop empty stack!");
424  RegMap[Stack[--StackTop]] = ~0;     // Update state
425
426  // Check to see if there is a popping version of this instruction...
427  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
428  if (Opcode != -1) {
429    I->setOpcode(Opcode);
430    if (Opcode == X86::FUCOMPPr)
431      I->RemoveOperand(0);
432
433  } else {    // Insert an explicit pop
434    I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(X86::ST0);
435  }
436}
437
438/// freeStackSlotAfter - Free the specified register from the register stack, so
439/// that it is no longer in a register.  If the register is currently at the top
440/// of the stack, we just pop the current instruction, otherwise we store the
441/// current top-of-stack into the specified slot, then pop the top of stack.
442void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
443  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
444    popStackAfter(I);
445    return;
446  }
447
448  // Otherwise, store the top of stack into the dead slot, killing the operand
449  // without having to add in an explicit xchg then pop.
450  //
451  unsigned STReg    = getSTReg(FPRegNo);
452  unsigned OldSlot  = getSlot(FPRegNo);
453  unsigned TopReg   = Stack[StackTop-1];
454  Stack[OldSlot]    = TopReg;
455  RegMap[TopReg]    = OldSlot;
456  RegMap[FPRegNo]   = ~0;
457  Stack[--StackTop] = ~0;
458  I = BuildMI(*MBB, ++I, X86::FSTPrr, 1).addReg(STReg);
459}
460
461
462static unsigned getFPReg(const MachineOperand &MO) {
463  assert(MO.isRegister() && "Expected an FP register!");
464  unsigned Reg = MO.getReg();
465  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
466  return Reg - X86::FP0;
467}
468
469
470//===----------------------------------------------------------------------===//
471// Instruction transformation implementation
472//===----------------------------------------------------------------------===//
473
474/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
475///
476void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
477  MachineInstr *MI = I;
478  unsigned DestReg = getFPReg(MI->getOperand(0));
479
480  // Change from the pseudo instruction to the concrete instruction.
481  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
482  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
483
484  // Result gets pushed on the stack.
485  pushReg(DestReg);
486}
487
488/// handleOneArgFP - fst <mem>, ST(0)
489///
490void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
491  MachineInstr *MI = I;
492  assert((MI->getNumOperands() == 5 || MI->getNumOperands() == 1) &&
493         "Can only handle fst* & ftst instructions!");
494
495  // Is this the last use of the source register?
496  unsigned Reg = getFPReg(MI->getOperand(MI->getNumOperands()-1));
497  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
498
499  // FISTP64r is strange because there isn't a non-popping versions.
500  // If we have one _and_ we don't want to pop the operand, duplicate the value
501  // on the stack instead of moving it.  This ensure that popping the value is
502  // always ok.
503  //
504  if (MI->getOpcode() == X86::FpIST64m && !KillsSrc) {
505    duplicateToTop(Reg, 7 /*temp register*/, I);
506  } else {
507    moveToTop(Reg, I);            // Move to the top of the stack...
508  }
509
510  // Convert from the pseudo instruction to the concrete instruction.
511  MI->RemoveOperand(MI->getNumOperands()-1);    // Remove explicit ST(0) operand
512  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
513
514  if (MI->getOpcode() == X86::FISTP64m) {
515    assert(StackTop > 0 && "Stack empty??");
516    --StackTop;
517  } else if (KillsSrc) { // Last use of operand?
518    popStackAfter(I);
519  }
520}
521
522
523/// handleOneArgFPRW: Handle instructions that read from the top of stack and
524/// replace the value with a newly computed value.  These instructions may have
525/// non-fp operands after their FP operands.
526///
527///  Examples:
528///     R1 = fchs R2
529///     R1 = fadd R2, [mem]
530///
531void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
532  MachineInstr *MI = I;
533  assert(MI->getNumOperands() >= 2 && "FPRW instructions must have 2 ops!!");
534
535  // Is this the last use of the source register?
536  unsigned Reg = getFPReg(MI->getOperand(1));
537  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
538
539  if (KillsSrc) {
540    // If this is the last use of the source register, just make sure it's on
541    // the top of the stack.
542    moveToTop(Reg, I);
543    assert(StackTop > 0 && "Stack cannot be empty!");
544    --StackTop;
545    pushReg(getFPReg(MI->getOperand(0)));
546  } else {
547    // If this is not the last use of the source register, _copy_ it to the top
548    // of the stack.
549    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
550  }
551
552  // Change from the pseudo instruction to the concrete instruction.
553  MI->RemoveOperand(1);   // Drop the source operand.
554  MI->RemoveOperand(0);   // Drop the destination operand.
555  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
556}
557
558
559//===----------------------------------------------------------------------===//
560// Define tables of various ways to map pseudo instructions
561//
562
563// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
564static const TableEntry ForwardST0Table[] = {
565  { X86::FpADD  , X86::FADDST0r },
566  { X86::FpDIV  , X86::FDIVST0r },
567  { X86::FpMUL  , X86::FMULST0r },
568  { X86::FpSUB  , X86::FSUBST0r },
569};
570
571// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
572static const TableEntry ReverseST0Table[] = {
573  { X86::FpADD  , X86::FADDST0r  },   // commutative
574  { X86::FpDIV  , X86::FDIVRST0r },
575  { X86::FpMUL  , X86::FMULST0r  },   // commutative
576  { X86::FpSUB  , X86::FSUBRST0r },
577};
578
579// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
580static const TableEntry ForwardSTiTable[] = {
581  { X86::FpADD  , X86::FADDrST0  },   // commutative
582  { X86::FpDIV  , X86::FDIVRrST0 },
583  { X86::FpMUL  , X86::FMULrST0  },   // commutative
584  { X86::FpSUB  , X86::FSUBRrST0 },
585};
586
587// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
588static const TableEntry ReverseSTiTable[] = {
589  { X86::FpADD  , X86::FADDrST0 },
590  { X86::FpDIV  , X86::FDIVrST0 },
591  { X86::FpMUL  , X86::FMULrST0 },
592  { X86::FpSUB  , X86::FSUBrST0 },
593};
594
595
596/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
597/// instructions which need to be simplified and possibly transformed.
598///
599/// Result: ST(0) = fsub  ST(0), ST(i)
600///         ST(i) = fsub  ST(0), ST(i)
601///         ST(0) = fsubr ST(0), ST(i)
602///         ST(i) = fsubr ST(0), ST(i)
603///
604void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
605  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
606  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
607  MachineInstr *MI = I;
608
609  unsigned NumOperands = MI->getNumOperands();
610  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
611  unsigned Dest = getFPReg(MI->getOperand(0));
612  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
613  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
614  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
615  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
616
617  unsigned TOS = getStackEntry(0);
618
619  // One of our operands must be on the top of the stack.  If neither is yet, we
620  // need to move one.
621  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
622    // We can choose to move either operand to the top of the stack.  If one of
623    // the operands is killed by this instruction, we want that one so that we
624    // can update right on top of the old version.
625    if (KillsOp0) {
626      moveToTop(Op0, I);         // Move dead operand to TOS.
627      TOS = Op0;
628    } else if (KillsOp1) {
629      moveToTop(Op1, I);
630      TOS = Op1;
631    } else {
632      // All of the operands are live after this instruction executes, so we
633      // cannot update on top of any operand.  Because of this, we must
634      // duplicate one of the stack elements to the top.  It doesn't matter
635      // which one we pick.
636      //
637      duplicateToTop(Op0, Dest, I);
638      Op0 = TOS = Dest;
639      KillsOp0 = true;
640    }
641  } else if (!KillsOp0 && !KillsOp1) {
642    // If we DO have one of our operands at the top of the stack, but we don't
643    // have a dead operand, we must duplicate one of the operands to a new slot
644    // on the stack.
645    duplicateToTop(Op0, Dest, I);
646    Op0 = TOS = Dest;
647    KillsOp0 = true;
648  }
649
650  // Now we know that one of our operands is on the top of the stack, and at
651  // least one of our operands is killed by this instruction.
652  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
653         "Stack conditions not set up right!");
654
655  // We decide which form to use based on what is on the top of the stack, and
656  // which operand is killed by this instruction.
657  const TableEntry *InstTable;
658  bool isForward = TOS == Op0;
659  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
660  if (updateST0) {
661    if (isForward)
662      InstTable = ForwardST0Table;
663    else
664      InstTable = ReverseST0Table;
665  } else {
666    if (isForward)
667      InstTable = ForwardSTiTable;
668    else
669      InstTable = ReverseSTiTable;
670  }
671
672  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
673  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
674
675  // NotTOS - The register which is not on the top of stack...
676  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
677
678  // Replace the old instruction with a new instruction
679  MBB->remove(I++);
680  I = BuildMI(*MBB, I, Opcode, 1).addReg(getSTReg(NotTOS));
681
682  // If both operands are killed, pop one off of the stack in addition to
683  // overwriting the other one.
684  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
685    assert(!updateST0 && "Should have updated other operand!");
686    popStackAfter(I);   // Pop the top of stack
687  }
688
689  // Update stack information so that we know the destination register is now on
690  // the stack.
691  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
692  assert(UpdatedSlot < StackTop && Dest < 7);
693  Stack[UpdatedSlot]   = Dest;
694  RegMap[Dest]         = UpdatedSlot;
695  delete MI;   // Remove the old instruction
696}
697
698/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
699/// register arguments and no explicit destinations.
700///
701void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
702  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
703  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
704  MachineInstr *MI = I;
705
706  unsigned NumOperands = MI->getNumOperands();
707  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
708  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
709  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
710  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
711  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
712
713  // Make sure the first operand is on the top of stack, the other one can be
714  // anywhere.
715  moveToTop(Op0, I);
716
717  // Change from the pseudo instruction to the concrete instruction.
718  MI->getOperand(0).setReg(getSTReg(Op1));
719  MI->RemoveOperand(1);
720  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
721
722  // If any of the operands are killed by this instruction, free them.
723  if (KillsOp0) freeStackSlotAfter(I, Op0);
724  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
725}
726
727/// handleCondMovFP - Handle two address conditional move instructions.  These
728/// instructions move a st(i) register to st(0) iff a condition is true.  These
729/// instructions require that the first operand is at the top of the stack, but
730/// otherwise don't modify the stack at all.
731void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
732  MachineInstr *MI = I;
733
734  unsigned Op0 = getFPReg(MI->getOperand(0));
735  unsigned Op1 = getFPReg(MI->getOperand(1));
736
737  // The first operand *must* be on the top of the stack.
738  moveToTop(Op0, I);
739
740  // Change the second operand to the stack register that the operand is in.
741  // Change from the pseudo instruction to the concrete instruction.
742  MI->RemoveOperand(0);
743  MI->getOperand(0).setReg(getSTReg(Op1));
744  MI->setOpcode(getConcreteOpcode(MI->getOpcode()));
745
746
747  // If we kill the second operand, make sure to pop it from the stack.
748  if (Op0 != Op1 && LV->KillsRegister(MI, X86::FP0+Op1)) {
749    // Get this value off of the register stack.
750    freeStackSlotAfter(I, Op1);
751  }
752}
753
754
755/// handleSpecialFP - Handle special instructions which behave unlike other
756/// floating point instructions.  This is primarily intended for use by pseudo
757/// instructions.
758///
759void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
760  MachineInstr *MI = I;
761  switch (MI->getOpcode()) {
762  default: assert(0 && "Unknown SpecialFP instruction!");
763  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
764    assert(StackTop == 0 && "Stack should be empty after a call!");
765    pushReg(getFPReg(MI->getOperand(0)));
766    break;
767  case X86::FpSETRESULT:
768    assert(StackTop == 1 && "Stack should have one element on it to return!");
769    --StackTop;   // "Forget" we have something on the top of stack!
770    break;
771  case X86::FpMOV: {
772    unsigned SrcReg = getFPReg(MI->getOperand(1));
773    unsigned DestReg = getFPReg(MI->getOperand(0));
774
775    if (LV->KillsRegister(MI, X86::FP0+SrcReg)) {
776      // If the input operand is killed, we can just change the owner of the
777      // incoming stack slot into the result.
778      unsigned Slot = getSlot(SrcReg);
779      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
780      Stack[Slot] = DestReg;
781      RegMap[DestReg] = Slot;
782
783    } else {
784      // For FMOV we just duplicate the specified value to a new stack slot.
785      // This could be made better, but would require substantial changes.
786      duplicateToTop(SrcReg, DestReg, I);
787    }
788    break;
789  }
790  }
791
792  I = MBB->erase(I);  // Remove the pseudo instruction
793  --I;
794}
795