X86FloatingPoint.cpp revision a40ce7e394283d78bdda3d7ea728ba2ffae0ef39
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// pseudo registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
20//
21// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
23//
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "x86-codegen"
27#include "X86.h"
28#include "X86InstrInfo.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetMachine.h"
44#include <algorithm>
45using namespace llvm;
46
47STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48STATISTIC(NumFP  , "Number of floating point instructions");
49
50namespace {
51  struct FPS : public MachineFunctionPass {
52    static char ID;
53    FPS() : MachineFunctionPass(&ID) {
54      // This is really only to keep valgrind quiet.
55      // The logic in isLive() is too much for it.
56      memset(Stack, 0, sizeof(Stack));
57      memset(RegMap, 0, sizeof(RegMap));
58    }
59
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.setPreservesCFG();
62      AU.addPreservedID(MachineLoopInfoID);
63      AU.addPreservedID(MachineDominatorsID);
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnMachineFunction(MachineFunction &MF);
68
69    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
70
71  private:
72    const TargetInstrInfo *TII; // Machine instruction info.
73
74    // Two CFG edges are related if they leave the same block, or enter the same
75    // block. The transitive closure of an edge under this relation is a
76    // LiveBundle. It represents a set of CFG edges where the live FP stack
77    // registers must be allocated identically in the x87 stack.
78    //
79    // A LiveBundle is usually all the edges leaving a block, or all the edges
80    // entering a block, but it can contain more edges if critical edges are
81    // present.
82    //
83    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
84    // but the exact mapping of FP registers to stack slots is fixed later.
85    struct LiveBundle {
86      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
87      unsigned Mask;
88
89      // Number of pre-assigned live registers in FixStack. This is 0 when the
90      // stack order has not yet been fixed.
91      unsigned FixCount;
92
93      // Assigned stack order for live-in registers.
94      // FixStack[i] == getStackEntry(i) for all i < FixCount.
95      unsigned char FixStack[8];
96
97      LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
98
99      // Have the live registers been assigned a stack order yet?
100      bool isFixed() const { return !Mask || FixCount; }
101    };
102
103    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
104    // with no live FP registers.
105    SmallVector<LiveBundle, 8> LiveBundles;
106
107    // Map each MBB in the current function to an (ingoing, outgoing) index into
108    // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
109    // and are not actually stored in the map.
110    DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
111
112    // Return a bitmask of FP registers in block's live-in list.
113    unsigned calcLiveInMask(MachineBasicBlock *MBB) {
114      unsigned Mask = 0;
115      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
116           E = MBB->livein_end(); I != E; ++I) {
117        unsigned Reg = *I - X86::FP0;
118        if (Reg < 8)
119          Mask |= 1 << Reg;
120      }
121      return Mask;
122    }
123
124    // Partition all the CFG edges into LiveBundles.
125    void bundleCFG(MachineFunction &MF);
126
127    MachineBasicBlock *MBB;     // Current basic block
128    unsigned Stack[8];          // FP<n> Registers in each stack slot...
129    unsigned RegMap[8];         // Track which stack slot contains each register
130    unsigned StackTop;          // The current top of the FP stack.
131
132    // Set up our stack model to match the incoming registers to MBB.
133    void setupBlockStack();
134
135    // Shuffle live registers to match the expectations of successor blocks.
136    void finishBlockStack();
137
138    void dumpStack() const {
139      dbgs() << "Stack contents:";
140      for (unsigned i = 0; i != StackTop; ++i) {
141        dbgs() << " FP" << Stack[i];
142        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
143      }
144      dbgs() << "\n";
145    }
146
147    /// isStackEmpty - Return true if the FP stack is empty.
148    bool isStackEmpty() const {
149      return StackTop == 0;
150    }
151
152    /// getSlot - Return the stack slot number a particular register number is
153    /// in.
154    unsigned getSlot(unsigned RegNo) const {
155      assert(RegNo < 8 && "Regno out of range!");
156      return RegMap[RegNo];
157    }
158
159    /// isLive - Is RegNo currently live in the stack?
160    bool isLive(unsigned RegNo) const {
161      unsigned Slot = getSlot(RegNo);
162      return Slot < StackTop && Stack[Slot] == RegNo;
163    }
164
165    /// getScratchReg - Return an FP register that is not currently in use.
166    unsigned getScratchReg() {
167      for (int i = 7; i >= 0; --i)
168        if (!isLive(i))
169          return i;
170      llvm_unreachable("Ran out of scratch FP registers");
171    }
172
173    /// getStackEntry - Return the X86::FP<n> register in register ST(i).
174    unsigned getStackEntry(unsigned STi) const {
175      assert(STi < StackTop && "Access past stack top!");
176      return Stack[StackTop-1-STi];
177    }
178
179    /// getSTReg - Return the X86::ST(i) register which contains the specified
180    /// FP<RegNo> register.
181    unsigned getSTReg(unsigned RegNo) const {
182      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
183    }
184
185    // pushReg - Push the specified FP<n> register onto the stack.
186    void pushReg(unsigned Reg) {
187      assert(Reg < 8 && "Register number out of range!");
188      assert(StackTop < 8 && "Stack overflow!");
189      Stack[StackTop] = Reg;
190      RegMap[Reg] = StackTop++;
191    }
192
193    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
194    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
195      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
196      if (isAtTop(RegNo)) return;
197
198      unsigned STReg = getSTReg(RegNo);
199      unsigned RegOnTop = getStackEntry(0);
200
201      // Swap the slots the regs are in.
202      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
203
204      // Swap stack slot contents.
205      assert(RegMap[RegOnTop] < StackTop);
206      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
207
208      // Emit an fxch to update the runtime processors version of the state.
209      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
210      ++NumFXCH;
211    }
212
213    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
214      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
215      unsigned STReg = getSTReg(RegNo);
216      pushReg(AsReg);   // New register on top of stack
217
218      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
219    }
220
221    /// popStackAfter - Pop the current value off of the top of the FP stack
222    /// after the specified instruction.
223    void popStackAfter(MachineBasicBlock::iterator &I);
224
225    /// freeStackSlotAfter - Free the specified register from the register
226    /// stack, so that it is no longer in a register.  If the register is
227    /// currently at the top of the stack, we just pop the current instruction,
228    /// otherwise we store the current top-of-stack into the specified slot,
229    /// then pop the top of stack.
230    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
231
232    /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
233    /// instruction.
234    MachineBasicBlock::iterator
235    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
236
237    /// Adjust the live registers to be the set in Mask.
238    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
239
240    /// Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
241    /// st(0), FP reg FixStack[1] is st(1) etc.
242    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
243                         MachineBasicBlock::iterator I);
244
245    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
246
247    void handleZeroArgFP(MachineBasicBlock::iterator &I);
248    void handleOneArgFP(MachineBasicBlock::iterator &I);
249    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
250    void handleTwoArgFP(MachineBasicBlock::iterator &I);
251    void handleCompareFP(MachineBasicBlock::iterator &I);
252    void handleCondMovFP(MachineBasicBlock::iterator &I);
253    void handleSpecialFP(MachineBasicBlock::iterator &I);
254
255    bool translateCopy(MachineInstr*);
256  };
257  char FPS::ID = 0;
258}
259
260FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
261
262/// getFPReg - Return the X86::FPx register number for the specified operand.
263/// For example, this returns 3 for X86::FP3.
264static unsigned getFPReg(const MachineOperand &MO) {
265  assert(MO.isReg() && "Expected an FP register!");
266  unsigned Reg = MO.getReg();
267  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
268  return Reg - X86::FP0;
269}
270
271/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
272/// register references into FP stack references.
273///
274bool FPS::runOnMachineFunction(MachineFunction &MF) {
275  // We only need to run this pass if there are any FP registers used in this
276  // function.  If it is all integer, there is nothing for us to do!
277  bool FPIsUsed = false;
278
279  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
280  for (unsigned i = 0; i <= 6; ++i)
281    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
282      FPIsUsed = true;
283      break;
284    }
285
286  // Early exit.
287  if (!FPIsUsed) return false;
288
289  TII = MF.getTarget().getInstrInfo();
290
291  // Prepare cross-MBB liveness.
292  bundleCFG(MF);
293
294  StackTop = 0;
295
296  // Process the function in depth first order so that we process at least one
297  // of the predecessors for every reachable block in the function.
298  SmallPtrSet<MachineBasicBlock*, 8> Processed;
299  MachineBasicBlock *Entry = MF.begin();
300
301  bool Changed = false;
302  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
303         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
304       I != E; ++I)
305    Changed |= processBasicBlock(MF, **I);
306
307  // Process any unreachable blocks in arbitrary order now.
308  if (MF.size() != Processed.size())
309    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
310      if (Processed.insert(BB))
311        Changed |= processBasicBlock(MF, *BB);
312
313  BlockBundle.clear();
314  LiveBundles.clear();
315
316  return Changed;
317}
318
319/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
320/// live-out sets for the FP registers. Consistent means that the set of
321/// registers live-out from a block is identical to the live-in set of all
322/// successors. This is not enforced by the normal live-in lists since
323/// registers may be implicitly defined, or not used by all successors.
324void FPS::bundleCFG(MachineFunction &MF) {
325  assert(LiveBundles.empty() && "Stale data in LiveBundles");
326  assert(BlockBundle.empty() && "Stale data in BlockBundle");
327  SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
328
329  // LiveBundle[0] is the empty live-in set.
330  LiveBundles.resize(1);
331
332  // First gather the actual live-in masks for all MBBs.
333  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
334    MachineBasicBlock *MBB = I;
335    const unsigned Mask = calcLiveInMask(MBB);
336    if (!Mask)
337      continue;
338    // Ingoing bundle index.
339    unsigned &Idx = BlockBundle[MBB].first;
340    // Already assigned an ingoing bundle?
341    if (Idx)
342      continue;
343    // Allocate a new LiveBundle struct for this block's live-ins.
344    const unsigned BundleIdx = Idx = LiveBundles.size();
345    DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
346                 << MBB->getNumber());
347    LiveBundles.push_back(Mask);
348    LiveBundle &Bundle = LiveBundles.back();
349
350    // Make sure all predecessors have the same live-out set.
351    PropUp.insert(MBB);
352
353    // Keep pushing liveness up and down the CFG until convergence.
354    // Only critical edges cause iteration here, but when they do, multiple
355    // blocks can be assigned to the same LiveBundle index.
356    do {
357      // Assign BundleIdx as liveout from predecessors in PropUp.
358      for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
359           E = PropUp.end(); I != E; ++I) {
360        MachineBasicBlock *MBB = *I;
361        for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
362             LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
363          MachineBasicBlock *PredMBB = *LinkI;
364          // PredMBB's liveout bundle should be set to LIIdx.
365          unsigned &Idx = BlockBundle[PredMBB].second;
366          if (Idx) {
367            assert(Idx == BundleIdx && "Inconsistent CFG");
368            continue;
369          }
370          Idx = BundleIdx;
371          DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
372          // Propagate to siblings.
373          if (PredMBB->succ_size() > 1)
374            PropDown.insert(PredMBB);
375        }
376      }
377      PropUp.clear();
378
379      // Assign BundleIdx as livein to successors in PropDown.
380      for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
381           E = PropDown.end(); I != E; ++I) {
382        MachineBasicBlock *MBB = *I;
383        for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
384             LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
385          MachineBasicBlock *SuccMBB = *LinkI;
386          // LinkMBB's livein bundle should be set to BundleIdx.
387          unsigned &Idx = BlockBundle[SuccMBB].first;
388          if (Idx) {
389            assert(Idx == BundleIdx && "Inconsistent CFG");
390            continue;
391          }
392          Idx = BundleIdx;
393          DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
394          // Propagate to siblings.
395          if (SuccMBB->pred_size() > 1)
396            PropUp.insert(SuccMBB);
397          // Also accumulate the bundle liveness mask from the liveins here.
398          Bundle.Mask |= calcLiveInMask(SuccMBB);
399        }
400      }
401      PropDown.clear();
402    } while (!PropUp.empty());
403    DEBUG({
404      dbgs() << " live:";
405      for (unsigned i = 0; i < 8; ++i)
406        if (Bundle.Mask & (1<<i))
407          dbgs() << " %FP" << i;
408      dbgs() << '\n';
409    });
410  }
411}
412
413/// processBasicBlock - Loop over all of the instructions in the basic block,
414/// transforming FP instructions into their stack form.
415///
416bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
417  bool Changed = false;
418  MBB = &BB;
419
420  setupBlockStack();
421
422  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
423    MachineInstr *MI = I;
424    uint64_t Flags = MI->getDesc().TSFlags;
425
426    unsigned FPInstClass = Flags & X86II::FPTypeMask;
427    if (MI->isInlineAsm())
428      FPInstClass = X86II::SpecialFP;
429
430    if (MI->isCopy() && translateCopy(MI))
431      FPInstClass = X86II::SpecialFP;
432
433    if (FPInstClass == X86II::NotFP)
434      continue;  // Efficiently ignore non-fp insts!
435
436    MachineInstr *PrevMI = 0;
437    if (I != BB.begin())
438      PrevMI = prior(I);
439
440    ++NumFP;  // Keep track of # of pseudo instrs
441    DEBUG(dbgs() << "\nFPInst:\t" << *MI);
442
443    // Get dead variables list now because the MI pointer may be deleted as part
444    // of processing!
445    SmallVector<unsigned, 8> DeadRegs;
446    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
447      const MachineOperand &MO = MI->getOperand(i);
448      if (MO.isReg() && MO.isDead())
449        DeadRegs.push_back(MO.getReg());
450    }
451
452    switch (FPInstClass) {
453    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
454    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
455    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
456    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
457    case X86II::CompareFP:  handleCompareFP(I); break;
458    case X86II::CondMovFP:  handleCondMovFP(I); break;
459    case X86II::SpecialFP:  handleSpecialFP(I); break;
460    default: llvm_unreachable("Unknown FP Type!");
461    }
462
463    // Check to see if any of the values defined by this instruction are dead
464    // after definition.  If so, pop them.
465    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
466      unsigned Reg = DeadRegs[i];
467      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
468        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
469        freeStackSlotAfter(I, Reg-X86::FP0);
470      }
471    }
472
473    // Print out all of the instructions expanded to if -debug
474    DEBUG(
475      MachineBasicBlock::iterator PrevI(PrevMI);
476      if (I == PrevI) {
477        dbgs() << "Just deleted pseudo instruction\n";
478      } else {
479        MachineBasicBlock::iterator Start = I;
480        // Rewind to first instruction newly inserted.
481        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
482        dbgs() << "Inserted instructions:\n\t";
483        Start->print(dbgs(), &MF.getTarget());
484        while (++Start != llvm::next(I)) {}
485      }
486      dumpStack();
487    );
488
489    Changed = true;
490  }
491
492  finishBlockStack();
493
494  return Changed;
495}
496
497/// setupBlockStack - Use the BlockBundle map to set up our model of the stack
498/// to match predecessors' live out stack.
499void FPS::setupBlockStack() {
500  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
501               << " derived from " << MBB->getName() << ".\n");
502  StackTop = 0;
503  const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
504
505  if (!Bundle.Mask) {
506    DEBUG(dbgs() << "Block has no FP live-ins.\n");
507    return;
508  }
509
510  // Depth-first iteration should ensure that we always have an assigned stack.
511  assert(Bundle.isFixed() && "Reached block before any predecessors");
512
513  // Push the fixed live-in registers.
514  for (unsigned i = Bundle.FixCount; i > 0; --i) {
515    MBB->addLiveIn(X86::ST0+i-1);
516    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
517                 << unsigned(Bundle.FixStack[i-1]) << '\n');
518    pushReg(Bundle.FixStack[i-1]);
519  }
520
521  // Kill off unwanted live-ins. This can happen with a critical edge.
522  // FIXME: We could keep these live registers around as zombies. They may need
523  // to be revived at the end of a short block. It might save a few instrs.
524  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
525  DEBUG(MBB->dump());
526}
527
528/// finishBlockStack - Revive live-outs that are implicitly defined out of
529/// MBB. Shuffle live registers to match the expected fixed stack of any
530/// predecessors, and ensure that all predecessors are expecting the same
531/// stack.
532void FPS::finishBlockStack() {
533  // The RET handling below takes care of return blocks for us.
534  if (MBB->succ_empty())
535    return;
536
537  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
538               << " derived from " << MBB->getName() << ".\n");
539
540  unsigned BundleIdx = BlockBundle.lookup(MBB).second;
541  LiveBundle &Bundle = LiveBundles[BundleIdx];
542
543  // We may need to kill and define some registers to match successors.
544  // FIXME: This can probably be combined with the shuffle below.
545  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
546  adjustLiveRegs(Bundle.Mask, Term);
547
548  if (!Bundle.Mask) {
549    DEBUG(dbgs() << "No live-outs.\n");
550    return;
551  }
552
553  // Has the stack order been fixed yet?
554  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
555  if (Bundle.isFixed()) {
556    DEBUG(dbgs() << "Shuffling stack to match.\n");
557    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
558  } else {
559    // Not fixed yet, we get to choose.
560    DEBUG(dbgs() << "Fixing stack order now.\n");
561    Bundle.FixCount = StackTop;
562    for (unsigned i = 0; i < StackTop; ++i)
563      Bundle.FixStack[i] = getStackEntry(i);
564  }
565}
566
567
568//===----------------------------------------------------------------------===//
569// Efficient Lookup Table Support
570//===----------------------------------------------------------------------===//
571
572namespace {
573  struct TableEntry {
574    unsigned from;
575    unsigned to;
576    bool operator<(const TableEntry &TE) const { return from < TE.from; }
577    friend bool operator<(const TableEntry &TE, unsigned V) {
578      return TE.from < V;
579    }
580    friend bool operator<(unsigned V, const TableEntry &TE) {
581      return V < TE.from;
582    }
583  };
584}
585
586#ifndef NDEBUG
587static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
588  for (unsigned i = 0; i != NumEntries-1; ++i)
589    if (!(Table[i] < Table[i+1])) return false;
590  return true;
591}
592#endif
593
594static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
595  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
596  if (I != Table+N && I->from == Opcode)
597    return I->to;
598  return -1;
599}
600
601#ifdef NDEBUG
602#define ASSERT_SORTED(TABLE)
603#else
604#define ASSERT_SORTED(TABLE)                                              \
605  { static bool TABLE##Checked = false;                                   \
606    if (!TABLE##Checked) {                                                \
607       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
608              "All lookup tables must be sorted for efficient access!");  \
609       TABLE##Checked = true;                                             \
610    }                                                                     \
611  }
612#endif
613
614//===----------------------------------------------------------------------===//
615// Register File -> Register Stack Mapping Methods
616//===----------------------------------------------------------------------===//
617
618// OpcodeTable - Sorted map of register instructions to their stack version.
619// The first element is an register file pseudo instruction, the second is the
620// concrete X86 instruction which uses the register stack.
621//
622static const TableEntry OpcodeTable[] = {
623  { X86::ABS_Fp32     , X86::ABS_F     },
624  { X86::ABS_Fp64     , X86::ABS_F     },
625  { X86::ABS_Fp80     , X86::ABS_F     },
626  { X86::ADD_Fp32m    , X86::ADD_F32m  },
627  { X86::ADD_Fp64m    , X86::ADD_F64m  },
628  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
629  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
630  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
631  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
632  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
633  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
634  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
635  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
636  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
637  { X86::CHS_Fp32     , X86::CHS_F     },
638  { X86::CHS_Fp64     , X86::CHS_F     },
639  { X86::CHS_Fp80     , X86::CHS_F     },
640  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
641  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
642  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
643  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
644  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
645  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
646  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
647  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
648  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
649  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
650  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
651  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
652  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
653  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
654  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
655  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
656  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
657  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
658  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
659  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
660  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
661  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
662  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
663  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
664  { X86::COS_Fp32     , X86::COS_F     },
665  { X86::COS_Fp64     , X86::COS_F     },
666  { X86::COS_Fp80     , X86::COS_F     },
667  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
668  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
669  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
670  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
671  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
672  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
673  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
674  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
675  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
676  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
677  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
678  { X86::DIV_Fp32m    , X86::DIV_F32m  },
679  { X86::DIV_Fp64m    , X86::DIV_F64m  },
680  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
681  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
682  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
683  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
684  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
685  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
686  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
687  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
688  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
689  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
690  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
691  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
692  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
693  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
694  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
695  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
696  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
697  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
698  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
699  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
700  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
701  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
702  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
703  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
704  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
705  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
706  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
707  { X86::IST_Fp16m32  , X86::IST_F16m  },
708  { X86::IST_Fp16m64  , X86::IST_F16m  },
709  { X86::IST_Fp16m80  , X86::IST_F16m  },
710  { X86::IST_Fp32m32  , X86::IST_F32m  },
711  { X86::IST_Fp32m64  , X86::IST_F32m  },
712  { X86::IST_Fp32m80  , X86::IST_F32m  },
713  { X86::IST_Fp64m32  , X86::IST_FP64m },
714  { X86::IST_Fp64m64  , X86::IST_FP64m },
715  { X86::IST_Fp64m80  , X86::IST_FP64m },
716  { X86::LD_Fp032     , X86::LD_F0     },
717  { X86::LD_Fp064     , X86::LD_F0     },
718  { X86::LD_Fp080     , X86::LD_F0     },
719  { X86::LD_Fp132     , X86::LD_F1     },
720  { X86::LD_Fp164     , X86::LD_F1     },
721  { X86::LD_Fp180     , X86::LD_F1     },
722  { X86::LD_Fp32m     , X86::LD_F32m   },
723  { X86::LD_Fp32m64   , X86::LD_F32m   },
724  { X86::LD_Fp32m80   , X86::LD_F32m   },
725  { X86::LD_Fp64m     , X86::LD_F64m   },
726  { X86::LD_Fp64m80   , X86::LD_F64m   },
727  { X86::LD_Fp80m     , X86::LD_F80m   },
728  { X86::MUL_Fp32m    , X86::MUL_F32m  },
729  { X86::MUL_Fp64m    , X86::MUL_F64m  },
730  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
731  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
732  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
733  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
734  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
735  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
736  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
737  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
738  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
739  { X86::SIN_Fp32     , X86::SIN_F     },
740  { X86::SIN_Fp64     , X86::SIN_F     },
741  { X86::SIN_Fp80     , X86::SIN_F     },
742  { X86::SQRT_Fp32    , X86::SQRT_F    },
743  { X86::SQRT_Fp64    , X86::SQRT_F    },
744  { X86::SQRT_Fp80    , X86::SQRT_F    },
745  { X86::ST_Fp32m     , X86::ST_F32m   },
746  { X86::ST_Fp64m     , X86::ST_F64m   },
747  { X86::ST_Fp64m32   , X86::ST_F32m   },
748  { X86::ST_Fp80m32   , X86::ST_F32m   },
749  { X86::ST_Fp80m64   , X86::ST_F64m   },
750  { X86::ST_FpP80m    , X86::ST_FP80m  },
751  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
752  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
753  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
754  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
755  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
756  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
757  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
758  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
759  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
760  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
761  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
762  { X86::SUB_Fp32m    , X86::SUB_F32m  },
763  { X86::SUB_Fp64m    , X86::SUB_F64m  },
764  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
765  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
766  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
767  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
768  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
769  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
770  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
771  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
772  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
773  { X86::TST_Fp32     , X86::TST_F     },
774  { X86::TST_Fp64     , X86::TST_F     },
775  { X86::TST_Fp80     , X86::TST_F     },
776  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
777  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
778  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
779  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
780  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
781  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
782};
783
784static unsigned getConcreteOpcode(unsigned Opcode) {
785  ASSERT_SORTED(OpcodeTable);
786  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
787  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
788  return Opc;
789}
790
791//===----------------------------------------------------------------------===//
792// Helper Methods
793//===----------------------------------------------------------------------===//
794
795// PopTable - Sorted map of instructions to their popping version.  The first
796// element is an instruction, the second is the version which pops.
797//
798static const TableEntry PopTable[] = {
799  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
800
801  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
802  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
803
804  { X86::IST_F16m  , X86::IST_FP16m   },
805  { X86::IST_F32m  , X86::IST_FP32m   },
806
807  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
808
809  { X86::ST_F32m   , X86::ST_FP32m    },
810  { X86::ST_F64m   , X86::ST_FP64m    },
811  { X86::ST_Frr    , X86::ST_FPrr     },
812
813  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
814  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
815
816  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
817
818  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
819  { X86::UCOM_Fr   , X86::UCOM_FPr    },
820};
821
822/// popStackAfter - Pop the current value off of the top of the FP stack after
823/// the specified instruction.  This attempts to be sneaky and combine the pop
824/// into the instruction itself if possible.  The iterator is left pointing to
825/// the last instruction, be it a new pop instruction inserted, or the old
826/// instruction if it was modified in place.
827///
828void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
829  MachineInstr* MI = I;
830  DebugLoc dl = MI->getDebugLoc();
831  ASSERT_SORTED(PopTable);
832  assert(StackTop > 0 && "Cannot pop empty stack!");
833  RegMap[Stack[--StackTop]] = ~0;     // Update state
834
835  // Check to see if there is a popping version of this instruction...
836  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
837  if (Opcode != -1) {
838    I->setDesc(TII->get(Opcode));
839    if (Opcode == X86::UCOM_FPPr)
840      I->RemoveOperand(0);
841  } else {    // Insert an explicit pop
842    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
843  }
844}
845
846/// freeStackSlotAfter - Free the specified register from the register stack, so
847/// that it is no longer in a register.  If the register is currently at the top
848/// of the stack, we just pop the current instruction, otherwise we store the
849/// current top-of-stack into the specified slot, then pop the top of stack.
850void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
851  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
852    popStackAfter(I);
853    return;
854  }
855
856  // Otherwise, store the top of stack into the dead slot, killing the operand
857  // without having to add in an explicit xchg then pop.
858  //
859  I = freeStackSlotBefore(++I, FPRegNo);
860}
861
862/// freeStackSlotBefore - Free the specified register without trying any
863/// folding.
864MachineBasicBlock::iterator
865FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
866  unsigned STReg    = getSTReg(FPRegNo);
867  unsigned OldSlot  = getSlot(FPRegNo);
868  unsigned TopReg   = Stack[StackTop-1];
869  Stack[OldSlot]    = TopReg;
870  RegMap[TopReg]    = OldSlot;
871  RegMap[FPRegNo]   = ~0;
872  Stack[--StackTop] = ~0;
873  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
874}
875
876/// adjustLiveRegs - Kill and revive registers such that exactly the FP
877/// registers with a bit in Mask are live.
878void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
879  unsigned Defs = Mask;
880  unsigned Kills = 0;
881  for (unsigned i = 0; i < StackTop; ++i) {
882    unsigned RegNo = Stack[i];
883    if (!(Defs & (1 << RegNo)))
884      // This register is live, but we don't want it.
885      Kills |= (1 << RegNo);
886    else
887      // We don't need to imp-def this live register.
888      Defs &= ~(1 << RegNo);
889  }
890  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
891
892  // Produce implicit-defs for free by using killed registers.
893  while (Kills && Defs) {
894    unsigned KReg = CountTrailingZeros_32(Kills);
895    unsigned DReg = CountTrailingZeros_32(Defs);
896    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
897    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
898    std::swap(RegMap[KReg], RegMap[DReg]);
899    Kills &= ~(1 << KReg);
900    Defs &= ~(1 << DReg);
901  }
902
903  // Kill registers by popping.
904  if (Kills && I != MBB->begin()) {
905    MachineBasicBlock::iterator I2 = llvm::prior(I);
906    for (;;) {
907      unsigned KReg = getStackEntry(0);
908      if (!(Kills & (1 << KReg)))
909        break;
910      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
911      popStackAfter(I2);
912      Kills &= ~(1 << KReg);
913    }
914  }
915
916  // Manually kill the rest.
917  while (Kills) {
918    unsigned KReg = CountTrailingZeros_32(Kills);
919    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
920    freeStackSlotBefore(I, KReg);
921    Kills &= ~(1 << KReg);
922  }
923
924  // Load zeros for all the imp-defs.
925  while(Defs) {
926    unsigned DReg = CountTrailingZeros_32(Defs);
927    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
928    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
929    pushReg(DReg);
930    Defs &= ~(1 << DReg);
931  }
932
933  // Now we should have the correct registers live.
934  DEBUG(dumpStack());
935  assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
936}
937
938/// shuffleStackTop - emit fxch instructions before I to shuffle the top
939/// FixCount entries into the order given by FixStack.
940/// FIXME: Is there a better algorithm than insertion sort?
941void FPS::shuffleStackTop(const unsigned char *FixStack,
942                          unsigned FixCount,
943                          MachineBasicBlock::iterator I) {
944  // Move items into place, starting from the desired stack bottom.
945  while (FixCount--) {
946    // Old register at position FixCount.
947    unsigned OldReg = getStackEntry(FixCount);
948    // Desired register at position FixCount.
949    unsigned Reg = FixStack[FixCount];
950    if (Reg == OldReg)
951      continue;
952    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
953    moveToTop(Reg, I);
954    moveToTop(OldReg, I);
955  }
956  DEBUG(dumpStack());
957}
958
959
960//===----------------------------------------------------------------------===//
961// Instruction transformation implementation
962//===----------------------------------------------------------------------===//
963
964/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
965///
966void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
967  MachineInstr *MI = I;
968  unsigned DestReg = getFPReg(MI->getOperand(0));
969
970  // Change from the pseudo instruction to the concrete instruction.
971  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
972  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
973
974  // Result gets pushed on the stack.
975  pushReg(DestReg);
976}
977
978/// handleOneArgFP - fst <mem>, ST(0)
979///
980void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
981  MachineInstr *MI = I;
982  unsigned NumOps = MI->getDesc().getNumOperands();
983  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
984         "Can only handle fst* & ftst instructions!");
985
986  // Is this the last use of the source register?
987  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
988  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
989
990  // FISTP64m is strange because there isn't a non-popping versions.
991  // If we have one _and_ we don't want to pop the operand, duplicate the value
992  // on the stack instead of moving it.  This ensure that popping the value is
993  // always ok.
994  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
995  //
996  if (!KillsSrc &&
997      (MI->getOpcode() == X86::IST_Fp64m32 ||
998       MI->getOpcode() == X86::ISTT_Fp16m32 ||
999       MI->getOpcode() == X86::ISTT_Fp32m32 ||
1000       MI->getOpcode() == X86::ISTT_Fp64m32 ||
1001       MI->getOpcode() == X86::IST_Fp64m64 ||
1002       MI->getOpcode() == X86::ISTT_Fp16m64 ||
1003       MI->getOpcode() == X86::ISTT_Fp32m64 ||
1004       MI->getOpcode() == X86::ISTT_Fp64m64 ||
1005       MI->getOpcode() == X86::IST_Fp64m80 ||
1006       MI->getOpcode() == X86::ISTT_Fp16m80 ||
1007       MI->getOpcode() == X86::ISTT_Fp32m80 ||
1008       MI->getOpcode() == X86::ISTT_Fp64m80 ||
1009       MI->getOpcode() == X86::ST_FpP80m)) {
1010    duplicateToTop(Reg, getScratchReg(), I);
1011  } else {
1012    moveToTop(Reg, I);            // Move to the top of the stack...
1013  }
1014
1015  // Convert from the pseudo instruction to the concrete instruction.
1016  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1017  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1018
1019  if (MI->getOpcode() == X86::IST_FP64m ||
1020      MI->getOpcode() == X86::ISTT_FP16m ||
1021      MI->getOpcode() == X86::ISTT_FP32m ||
1022      MI->getOpcode() == X86::ISTT_FP64m ||
1023      MI->getOpcode() == X86::ST_FP80m) {
1024    assert(StackTop > 0 && "Stack empty??");
1025    --StackTop;
1026  } else if (KillsSrc) { // Last use of operand?
1027    popStackAfter(I);
1028  }
1029}
1030
1031
1032/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1033/// replace the value with a newly computed value.  These instructions may have
1034/// non-fp operands after their FP operands.
1035///
1036///  Examples:
1037///     R1 = fchs R2
1038///     R1 = fadd R2, [mem]
1039///
1040void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1041  MachineInstr *MI = I;
1042#ifndef NDEBUG
1043  unsigned NumOps = MI->getDesc().getNumOperands();
1044  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1045#endif
1046
1047  // Is this the last use of the source register?
1048  unsigned Reg = getFPReg(MI->getOperand(1));
1049  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1050
1051  if (KillsSrc) {
1052    // If this is the last use of the source register, just make sure it's on
1053    // the top of the stack.
1054    moveToTop(Reg, I);
1055    assert(StackTop > 0 && "Stack cannot be empty!");
1056    --StackTop;
1057    pushReg(getFPReg(MI->getOperand(0)));
1058  } else {
1059    // If this is not the last use of the source register, _copy_ it to the top
1060    // of the stack.
1061    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1062  }
1063
1064  // Change from the pseudo instruction to the concrete instruction.
1065  MI->RemoveOperand(1);   // Drop the source operand.
1066  MI->RemoveOperand(0);   // Drop the destination operand.
1067  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1068}
1069
1070
1071//===----------------------------------------------------------------------===//
1072// Define tables of various ways to map pseudo instructions
1073//
1074
1075// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1076static const TableEntry ForwardST0Table[] = {
1077  { X86::ADD_Fp32  , X86::ADD_FST0r },
1078  { X86::ADD_Fp64  , X86::ADD_FST0r },
1079  { X86::ADD_Fp80  , X86::ADD_FST0r },
1080  { X86::DIV_Fp32  , X86::DIV_FST0r },
1081  { X86::DIV_Fp64  , X86::DIV_FST0r },
1082  { X86::DIV_Fp80  , X86::DIV_FST0r },
1083  { X86::MUL_Fp32  , X86::MUL_FST0r },
1084  { X86::MUL_Fp64  , X86::MUL_FST0r },
1085  { X86::MUL_Fp80  , X86::MUL_FST0r },
1086  { X86::SUB_Fp32  , X86::SUB_FST0r },
1087  { X86::SUB_Fp64  , X86::SUB_FST0r },
1088  { X86::SUB_Fp80  , X86::SUB_FST0r },
1089};
1090
1091// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1092static const TableEntry ReverseST0Table[] = {
1093  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1094  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1095  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1096  { X86::DIV_Fp32  , X86::DIVR_FST0r },
1097  { X86::DIV_Fp64  , X86::DIVR_FST0r },
1098  { X86::DIV_Fp80  , X86::DIVR_FST0r },
1099  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1100  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1101  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1102  { X86::SUB_Fp32  , X86::SUBR_FST0r },
1103  { X86::SUB_Fp64  , X86::SUBR_FST0r },
1104  { X86::SUB_Fp80  , X86::SUBR_FST0r },
1105};
1106
1107// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1108static const TableEntry ForwardSTiTable[] = {
1109  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1110  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1111  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1112  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1113  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1114  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1115  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1116  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1117  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1118  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1119  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1120  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1121};
1122
1123// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1124static const TableEntry ReverseSTiTable[] = {
1125  { X86::ADD_Fp32  , X86::ADD_FrST0 },
1126  { X86::ADD_Fp64  , X86::ADD_FrST0 },
1127  { X86::ADD_Fp80  , X86::ADD_FrST0 },
1128  { X86::DIV_Fp32  , X86::DIV_FrST0 },
1129  { X86::DIV_Fp64  , X86::DIV_FrST0 },
1130  { X86::DIV_Fp80  , X86::DIV_FrST0 },
1131  { X86::MUL_Fp32  , X86::MUL_FrST0 },
1132  { X86::MUL_Fp64  , X86::MUL_FrST0 },
1133  { X86::MUL_Fp80  , X86::MUL_FrST0 },
1134  { X86::SUB_Fp32  , X86::SUB_FrST0 },
1135  { X86::SUB_Fp64  , X86::SUB_FrST0 },
1136  { X86::SUB_Fp80  , X86::SUB_FrST0 },
1137};
1138
1139
1140/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1141/// instructions which need to be simplified and possibly transformed.
1142///
1143/// Result: ST(0) = fsub  ST(0), ST(i)
1144///         ST(i) = fsub  ST(0), ST(i)
1145///         ST(0) = fsubr ST(0), ST(i)
1146///         ST(i) = fsubr ST(0), ST(i)
1147///
1148void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1149  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1150  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1151  MachineInstr *MI = I;
1152
1153  unsigned NumOperands = MI->getDesc().getNumOperands();
1154  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1155  unsigned Dest = getFPReg(MI->getOperand(0));
1156  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1157  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1158  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1159  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1160  DebugLoc dl = MI->getDebugLoc();
1161
1162  unsigned TOS = getStackEntry(0);
1163
1164  // One of our operands must be on the top of the stack.  If neither is yet, we
1165  // need to move one.
1166  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1167    // We can choose to move either operand to the top of the stack.  If one of
1168    // the operands is killed by this instruction, we want that one so that we
1169    // can update right on top of the old version.
1170    if (KillsOp0) {
1171      moveToTop(Op0, I);         // Move dead operand to TOS.
1172      TOS = Op0;
1173    } else if (KillsOp1) {
1174      moveToTop(Op1, I);
1175      TOS = Op1;
1176    } else {
1177      // All of the operands are live after this instruction executes, so we
1178      // cannot update on top of any operand.  Because of this, we must
1179      // duplicate one of the stack elements to the top.  It doesn't matter
1180      // which one we pick.
1181      //
1182      duplicateToTop(Op0, Dest, I);
1183      Op0 = TOS = Dest;
1184      KillsOp0 = true;
1185    }
1186  } else if (!KillsOp0 && !KillsOp1) {
1187    // If we DO have one of our operands at the top of the stack, but we don't
1188    // have a dead operand, we must duplicate one of the operands to a new slot
1189    // on the stack.
1190    duplicateToTop(Op0, Dest, I);
1191    Op0 = TOS = Dest;
1192    KillsOp0 = true;
1193  }
1194
1195  // Now we know that one of our operands is on the top of the stack, and at
1196  // least one of our operands is killed by this instruction.
1197  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1198         "Stack conditions not set up right!");
1199
1200  // We decide which form to use based on what is on the top of the stack, and
1201  // which operand is killed by this instruction.
1202  const TableEntry *InstTable;
1203  bool isForward = TOS == Op0;
1204  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1205  if (updateST0) {
1206    if (isForward)
1207      InstTable = ForwardST0Table;
1208    else
1209      InstTable = ReverseST0Table;
1210  } else {
1211    if (isForward)
1212      InstTable = ForwardSTiTable;
1213    else
1214      InstTable = ReverseSTiTable;
1215  }
1216
1217  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1218                      MI->getOpcode());
1219  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1220
1221  // NotTOS - The register which is not on the top of stack...
1222  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1223
1224  // Replace the old instruction with a new instruction
1225  MBB->remove(I++);
1226  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1227
1228  // If both operands are killed, pop one off of the stack in addition to
1229  // overwriting the other one.
1230  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1231    assert(!updateST0 && "Should have updated other operand!");
1232    popStackAfter(I);   // Pop the top of stack
1233  }
1234
1235  // Update stack information so that we know the destination register is now on
1236  // the stack.
1237  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1238  assert(UpdatedSlot < StackTop && Dest < 7);
1239  Stack[UpdatedSlot]   = Dest;
1240  RegMap[Dest]         = UpdatedSlot;
1241  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1242}
1243
1244/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1245/// register arguments and no explicit destinations.
1246///
1247void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1248  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1249  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1250  MachineInstr *MI = I;
1251
1252  unsigned NumOperands = MI->getDesc().getNumOperands();
1253  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1254  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1255  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1256  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1257  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1258
1259  // Make sure the first operand is on the top of stack, the other one can be
1260  // anywhere.
1261  moveToTop(Op0, I);
1262
1263  // Change from the pseudo instruction to the concrete instruction.
1264  MI->getOperand(0).setReg(getSTReg(Op1));
1265  MI->RemoveOperand(1);
1266  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1267
1268  // If any of the operands are killed by this instruction, free them.
1269  if (KillsOp0) freeStackSlotAfter(I, Op0);
1270  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1271}
1272
1273/// handleCondMovFP - Handle two address conditional move instructions.  These
1274/// instructions move a st(i) register to st(0) iff a condition is true.  These
1275/// instructions require that the first operand is at the top of the stack, but
1276/// otherwise don't modify the stack at all.
1277void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1278  MachineInstr *MI = I;
1279
1280  unsigned Op0 = getFPReg(MI->getOperand(0));
1281  unsigned Op1 = getFPReg(MI->getOperand(2));
1282  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1283
1284  // The first operand *must* be on the top of the stack.
1285  moveToTop(Op0, I);
1286
1287  // Change the second operand to the stack register that the operand is in.
1288  // Change from the pseudo instruction to the concrete instruction.
1289  MI->RemoveOperand(0);
1290  MI->RemoveOperand(1);
1291  MI->getOperand(0).setReg(getSTReg(Op1));
1292  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1293
1294  // If we kill the second operand, make sure to pop it from the stack.
1295  if (Op0 != Op1 && KillsOp1) {
1296    // Get this value off of the register stack.
1297    freeStackSlotAfter(I, Op1);
1298  }
1299}
1300
1301
1302/// handleSpecialFP - Handle special instructions which behave unlike other
1303/// floating point instructions.  This is primarily intended for use by pseudo
1304/// instructions.
1305///
1306void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1307  MachineInstr *MI = I;
1308  DebugLoc dl = MI->getDebugLoc();
1309  switch (MI->getOpcode()) {
1310  default: llvm_unreachable("Unknown SpecialFP instruction!");
1311  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1312  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1313  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
1314    assert(StackTop == 0 && "Stack should be empty after a call!");
1315    pushReg(getFPReg(MI->getOperand(0)));
1316    break;
1317  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1318  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1319  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1320    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1321    // The pattern we expect is:
1322    //  CALL
1323    //  FP1 = FpGET_ST0
1324    //  FP4 = FpGET_ST1
1325    //
1326    // At this point, we've pushed FP1 on the top of stack, so it should be
1327    // present if it isn't dead.  If it was dead, we already emitted a pop to
1328    // remove it from the stack and StackTop = 0.
1329
1330    // Push FP4 as top of stack next.
1331    pushReg(getFPReg(MI->getOperand(0)));
1332
1333    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1334    // dead.  In this case, the ST(1) value is the only thing that is live, so
1335    // it should be on the TOS (after the pop that was emitted) and is.  Just
1336    // continue in this case.
1337    if (StackTop == 1)
1338      break;
1339
1340    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1341    // elements so that our accounting is correct.
1342    unsigned RegOnTop = getStackEntry(0);
1343    unsigned RegNo = getStackEntry(1);
1344
1345    // Swap the slots the regs are in.
1346    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1347
1348    // Swap stack slot contents.
1349    assert(RegMap[RegOnTop] < StackTop);
1350    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1351    break;
1352  }
1353  case X86::FpSET_ST0_32:
1354  case X86::FpSET_ST0_64:
1355  case X86::FpSET_ST0_80: {
1356    // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1357    // arguments that use an st constraint. We expect a sequence of
1358    // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
1359    unsigned Op0 = getFPReg(MI->getOperand(0));
1360
1361    if (!MI->killsRegister(X86::FP0 + Op0)) {
1362      // Duplicate Op0 into a temporary on the stack top.
1363      duplicateToTop(Op0, getScratchReg(), I);
1364    } else {
1365      // Op0 is killed, so just swap it into position.
1366      moveToTop(Op0, I);
1367    }
1368    --StackTop;   // "Forget" we have something on the top of stack!
1369    break;
1370  }
1371  case X86::FpSET_ST1_32:
1372  case X86::FpSET_ST1_64:
1373  case X86::FpSET_ST1_80: {
1374    // Set up st(1) for inline asm. We are assuming that st(0) has already been
1375    // set up by FpSET_ST0, and our StackTop is off by one because of it.
1376    unsigned Op0 = getFPReg(MI->getOperand(0));
1377    // Restore the actual StackTop from before Fp_SET_ST0.
1378    // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1379    // are not enforcing the constraint.
1380    ++StackTop;
1381    unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1382    if (!MI->killsRegister(X86::FP0 + Op0)) {
1383      duplicateToTop(Op0, getScratchReg(), I);
1384      moveToTop(RegOnTop, I);
1385    } else if (getSTReg(Op0) != X86::ST1) {
1386      // We have the wrong value at st(1). Shuffle! Untested!
1387      moveToTop(getStackEntry(1), I);
1388      moveToTop(Op0, I);
1389      moveToTop(RegOnTop, I);
1390    }
1391    assert(StackTop >= 2 && "Too few live registers");
1392    StackTop -= 2; // "Forget" both st(0) and st(1).
1393    break;
1394  }
1395  case X86::MOV_Fp3232:
1396  case X86::MOV_Fp3264:
1397  case X86::MOV_Fp6432:
1398  case X86::MOV_Fp6464:
1399  case X86::MOV_Fp3280:
1400  case X86::MOV_Fp6480:
1401  case X86::MOV_Fp8032:
1402  case X86::MOV_Fp8064:
1403  case X86::MOV_Fp8080: {
1404    const MachineOperand &MO1 = MI->getOperand(1);
1405    unsigned SrcReg = getFPReg(MO1);
1406
1407    const MachineOperand &MO0 = MI->getOperand(0);
1408    unsigned DestReg = getFPReg(MO0);
1409    if (MI->killsRegister(X86::FP0+SrcReg)) {
1410      // If the input operand is killed, we can just change the owner of the
1411      // incoming stack slot into the result.
1412      unsigned Slot = getSlot(SrcReg);
1413      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1414      Stack[Slot] = DestReg;
1415      RegMap[DestReg] = Slot;
1416
1417    } else {
1418      // For FMOV we just duplicate the specified value to a new stack slot.
1419      // This could be made better, but would require substantial changes.
1420      duplicateToTop(SrcReg, DestReg, I);
1421    }
1422    }
1423    break;
1424  case TargetOpcode::INLINEASM: {
1425    // The inline asm MachineInstr currently only *uses* FP registers for the
1426    // 'f' constraint.  These should be turned into the current ST(x) register
1427    // in the machine instr.  Also, any kills should be explicitly popped after
1428    // the inline asm.
1429    unsigned Kills = 0;
1430    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1431      MachineOperand &Op = MI->getOperand(i);
1432      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1433        continue;
1434      assert(Op.isUse() && "Only handle inline asm uses right now");
1435
1436      unsigned FPReg = getFPReg(Op);
1437      Op.setReg(getSTReg(FPReg));
1438
1439      // If we kill this operand, make sure to pop it from the stack after the
1440      // asm.  We just remember it for now, and pop them all off at the end in
1441      // a batch.
1442      if (Op.isKill())
1443        Kills |= 1U << FPReg;
1444    }
1445
1446    // If this asm kills any FP registers (is the last use of them) we must
1447    // explicitly emit pop instructions for them.  Do this now after the asm has
1448    // executed so that the ST(x) numbers are not off (which would happen if we
1449    // did this inline with operand rewriting).
1450    //
1451    // Note: this might be a non-optimal pop sequence.  We might be able to do
1452    // better by trying to pop in stack order or something.
1453    MachineBasicBlock::iterator InsertPt = MI;
1454    while (Kills) {
1455      unsigned FPReg = CountTrailingZeros_32(Kills);
1456      freeStackSlotAfter(InsertPt, FPReg);
1457      Kills &= ~(1U << FPReg);
1458    }
1459    // Don't delete the inline asm!
1460    return;
1461  }
1462
1463  case X86::RET:
1464  case X86::RETI:
1465    // If RET has an FP register use operand, pass the first one in ST(0) and
1466    // the second one in ST(1).
1467
1468    // Find the register operands.
1469    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1470    unsigned LiveMask = 0;
1471
1472    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1473      MachineOperand &Op = MI->getOperand(i);
1474      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1475        continue;
1476      // FP Register uses must be kills unless there are two uses of the same
1477      // register, in which case only one will be a kill.
1478      assert(Op.isUse() &&
1479             (Op.isKill() ||                        // Marked kill.
1480              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1481              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1482             "Ret only defs operands, and values aren't live beyond it");
1483
1484      if (FirstFPRegOp == ~0U)
1485        FirstFPRegOp = getFPReg(Op);
1486      else {
1487        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1488        SecondFPRegOp = getFPReg(Op);
1489      }
1490      LiveMask |= (1 << getFPReg(Op));
1491
1492      // Remove the operand so that later passes don't see it.
1493      MI->RemoveOperand(i);
1494      --i, --e;
1495    }
1496
1497    // We may have been carrying spurious live-ins, so make sure only the returned
1498    // registers are left live.
1499    adjustLiveRegs(LiveMask, MI);
1500    if (!LiveMask) return;  // Quick check to see if any are possible.
1501
1502    // There are only four possibilities here:
1503    // 1) we are returning a single FP value.  In this case, it has to be in
1504    //    ST(0) already, so just declare success by removing the value from the
1505    //    FP Stack.
1506    if (SecondFPRegOp == ~0U) {
1507      // Assert that the top of stack contains the right FP register.
1508      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1509             "Top of stack not the right register for RET!");
1510
1511      // Ok, everything is good, mark the value as not being on the stack
1512      // anymore so that our assertion about the stack being empty at end of
1513      // block doesn't fire.
1514      StackTop = 0;
1515      return;
1516    }
1517
1518    // Otherwise, we are returning two values:
1519    // 2) If returning the same value for both, we only have one thing in the FP
1520    //    stack.  Consider:  RET FP1, FP1
1521    if (StackTop == 1) {
1522      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1523             "Stack misconfiguration for RET!");
1524
1525      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1526      // register to hold it.
1527      unsigned NewReg = getScratchReg();
1528      duplicateToTop(FirstFPRegOp, NewReg, MI);
1529      FirstFPRegOp = NewReg;
1530    }
1531
1532    /// Okay we know we have two different FPx operands now:
1533    assert(StackTop == 2 && "Must have two values live!");
1534
1535    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1536    ///    in ST(1).  In this case, emit an fxch.
1537    if (getStackEntry(0) == SecondFPRegOp) {
1538      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1539      moveToTop(FirstFPRegOp, MI);
1540    }
1541
1542    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1543    /// ST(1).  Just remove both from our understanding of the stack and return.
1544    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1545    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1546    StackTop = 0;
1547    return;
1548  }
1549
1550  I = MBB->erase(I);  // Remove the pseudo instruction
1551
1552  // We want to leave I pointing to the previous instruction, but what if we
1553  // just erased the first instruction?
1554  if (I == MBB->begin()) {
1555    DEBUG(dbgs() << "Inserting dummy KILL\n");
1556    I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1557  } else
1558    --I;
1559}
1560
1561// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1562bool FPS::translateCopy(MachineInstr *MI) {
1563  unsigned DstReg = MI->getOperand(0).getReg();
1564  unsigned SrcReg = MI->getOperand(1).getReg();
1565
1566  if (DstReg == X86::ST0) {
1567    MI->setDesc(TII->get(X86::FpSET_ST0_80));
1568    MI->RemoveOperand(0);
1569    return true;
1570  }
1571  if (DstReg == X86::ST1) {
1572    MI->setDesc(TII->get(X86::FpSET_ST1_80));
1573    MI->RemoveOperand(0);
1574    return true;
1575  }
1576  if (SrcReg == X86::ST0) {
1577    MI->setDesc(TII->get(X86::FpGET_ST0_80));
1578    return true;
1579  }
1580  if (SrcReg == X86::ST1) {
1581    MI->setDesc(TII->get(X86::FpGET_ST1_80));
1582    return true;
1583  }
1584  if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1585    MI->setDesc(TII->get(X86::MOV_Fp8080));
1586    return true;
1587  }
1588  return false;
1589}
1590