X86FloatingPoint.cpp revision ac0b6ae358944ae8b2b5a11dc08f52c3ed89f2da
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "fp"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
47#include <iostream>
48#include <set>
49using namespace llvm;
50
51namespace {
52  Statistic NumFXCH("x86-codegen", "Number of fxch instructions inserted");
53  Statistic NumFP  ("x86-codegen", "Number of floating point instructions");
54
55  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
56    virtual bool runOnMachineFunction(MachineFunction &MF);
57
58    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
59
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<LiveVariables>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64  private:
65    const TargetInstrInfo *TII; // Machine instruction info.
66    LiveVariables     *LV;      // Live variable info for current function...
67    MachineBasicBlock *MBB;     // Current basic block
68    unsigned Stack[8];          // FP<n> Registers in each stack slot...
69    unsigned RegMap[8];         // Track which stack slot contains each register
70    unsigned StackTop;          // The current top of the FP stack.
71
72    void dumpStack() const {
73      std::cerr << "Stack contents:";
74      for (unsigned i = 0; i != StackTop; ++i) {
75        std::cerr << " FP" << Stack[i];
76        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
77      }
78      std::cerr << "\n";
79    }
80  private:
81    // getSlot - Return the stack slot number a particular register number is
82    // in...
83    unsigned getSlot(unsigned RegNo) const {
84      assert(RegNo < 8 && "Regno out of range!");
85      return RegMap[RegNo];
86    }
87
88    // getStackEntry - Return the X86::FP<n> register in register ST(i)
89    unsigned getStackEntry(unsigned STi) const {
90      assert(STi < StackTop && "Access past stack top!");
91      return Stack[StackTop-1-STi];
92    }
93
94    // getSTReg - Return the X86::ST(i) register which contains the specified
95    // FP<RegNo> register
96    unsigned getSTReg(unsigned RegNo) const {
97      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
98    }
99
100    // pushReg - Push the specified FP<n> register onto the stack
101    void pushReg(unsigned Reg) {
102      assert(Reg < 8 && "Register number out of range!");
103      assert(StackTop < 8 && "Stack overflow!");
104      Stack[StackTop] = Reg;
105      RegMap[Reg] = StackTop++;
106    }
107
108    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
109    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
110      if (!isAtTop(RegNo)) {
111        unsigned STReg = getSTReg(RegNo);
112        unsigned RegOnTop = getStackEntry(0);
113
114        // Swap the slots the regs are in
115        std::swap(RegMap[RegNo], RegMap[RegOnTop]);
116
117        // Swap stack slot contents
118        assert(RegMap[RegOnTop] < StackTop);
119        std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
120
121        // Emit an fxch to update the runtime processors version of the state
122        BuildMI(*MBB, I, TII->get(X86::FXCH)).addReg(STReg);
123        NumFXCH++;
124      }
125    }
126
127    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
128      unsigned STReg = getSTReg(RegNo);
129      pushReg(AsReg);   // New register on top of stack
130
131      BuildMI(*MBB, I, TII->get(X86::FLDrr)).addReg(STReg);
132    }
133
134    // popStackAfter - Pop the current value off of the top of the FP stack
135    // after the specified instruction.
136    void popStackAfter(MachineBasicBlock::iterator &I);
137
138    // freeStackSlotAfter - Free the specified register from the register stack,
139    // so that it is no longer in a register.  If the register is currently at
140    // the top of the stack, we just pop the current instruction, otherwise we
141    // store the current top-of-stack into the specified slot, then pop the top
142    // of stack.
143    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
144
145    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
146
147    void handleZeroArgFP(MachineBasicBlock::iterator &I);
148    void handleOneArgFP(MachineBasicBlock::iterator &I);
149    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
150    void handleTwoArgFP(MachineBasicBlock::iterator &I);
151    void handleCompareFP(MachineBasicBlock::iterator &I);
152    void handleCondMovFP(MachineBasicBlock::iterator &I);
153    void handleSpecialFP(MachineBasicBlock::iterator &I);
154  };
155}
156
157FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
158
159/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
160/// register references into FP stack references.
161///
162bool FPS::runOnMachineFunction(MachineFunction &MF) {
163  // We only need to run this pass if there are any FP registers used in this
164  // function.  If it is all integer, there is nothing for us to do!
165  const bool *PhysRegsUsed = MF.getUsedPhysregs();
166  bool FPIsUsed = false;
167
168  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
169  for (unsigned i = 0; i <= 6; ++i)
170    if (PhysRegsUsed[X86::FP0+i]) {
171      FPIsUsed = true;
172      break;
173    }
174
175  // Early exit.
176  if (!FPIsUsed) return false;
177
178  TII = MF.getTarget().getInstrInfo();
179  LV = &getAnalysis<LiveVariables>();
180  StackTop = 0;
181
182  // Process the function in depth first order so that we process at least one
183  // of the predecessors for every reachable block in the function.
184  std::set<MachineBasicBlock*> Processed;
185  MachineBasicBlock *Entry = MF.begin();
186
187  bool Changed = false;
188  for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
189         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
190       I != E; ++I)
191    Changed |= processBasicBlock(MF, **I);
192
193  return Changed;
194}
195
196/// processBasicBlock - Loop over all of the instructions in the basic block,
197/// transforming FP instructions into their stack form.
198///
199bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
200  bool Changed = false;
201  MBB = &BB;
202
203  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
204    MachineInstr *MI = I;
205    unsigned Flags = MI->getInstrDescriptor()->TSFlags;
206    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
207      continue;  // Efficiently ignore non-fp insts!
208
209    MachineInstr *PrevMI = 0;
210    if (I != BB.begin())
211        PrevMI = prior(I);
212
213    ++NumFP;  // Keep track of # of pseudo instrs
214    DEBUG(std::cerr << "\nFPInst:\t"; MI->print(std::cerr, &(MF.getTarget())));
215
216    // Get dead variables list now because the MI pointer may be deleted as part
217    // of processing!
218    SmallVector<unsigned, 8> DeadRegs;
219    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
220      const MachineOperand &MO = MI->getOperand(i);
221      if (MO.isReg() && MO.isDead())
222        DeadRegs.push_back(MO.getReg());
223    }
224
225    switch (Flags & X86II::FPTypeMask) {
226    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
227    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
228    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
229    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
230    case X86II::CompareFP:  handleCompareFP(I); break;
231    case X86II::CondMovFP:  handleCondMovFP(I); break;
232    case X86II::SpecialFP:  handleSpecialFP(I); break;
233    default: assert(0 && "Unknown FP Type!");
234    }
235
236    // Check to see if any of the values defined by this instruction are dead
237    // after definition.  If so, pop them.
238    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
239      unsigned Reg = DeadRegs[i];
240      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
241        DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
242        freeStackSlotAfter(I, Reg-X86::FP0);
243      }
244    }
245
246    // Print out all of the instructions expanded to if -debug
247    DEBUG(
248      MachineBasicBlock::iterator PrevI(PrevMI);
249      if (I == PrevI) {
250        std::cerr << "Just deleted pseudo instruction\n";
251      } else {
252        MachineBasicBlock::iterator Start = I;
253        // Rewind to first instruction newly inserted.
254        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
255        std::cerr << "Inserted instructions:\n\t";
256        Start->print(std::cerr, &MF.getTarget());
257        while (++Start != next(I));
258      }
259      dumpStack();
260    );
261
262    Changed = true;
263  }
264
265  assert(StackTop == 0 && "Stack not empty at end of basic block?");
266  return Changed;
267}
268
269//===----------------------------------------------------------------------===//
270// Efficient Lookup Table Support
271//===----------------------------------------------------------------------===//
272
273namespace {
274  struct TableEntry {
275    unsigned from;
276    unsigned to;
277    bool operator<(const TableEntry &TE) const { return from < TE.from; }
278    friend bool operator<(const TableEntry &TE, unsigned V) {
279      return TE.from < V;
280    }
281    friend bool operator<(unsigned V, const TableEntry &TE) {
282      return V < TE.from;
283    }
284  };
285}
286
287static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
288  for (unsigned i = 0; i != NumEntries-1; ++i)
289    if (!(Table[i] < Table[i+1])) return false;
290  return true;
291}
292
293static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
294  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
295  if (I != Table+N && I->from == Opcode)
296    return I->to;
297  return -1;
298}
299
300#define ARRAY_SIZE(TABLE)  \
301   (sizeof(TABLE)/sizeof(TABLE[0]))
302
303#ifdef NDEBUG
304#define ASSERT_SORTED(TABLE)
305#else
306#define ASSERT_SORTED(TABLE)                                              \
307  { static bool TABLE##Checked = false;                                   \
308    if (!TABLE##Checked) {                                                \
309       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
310              "All lookup tables must be sorted for efficient access!");  \
311       TABLE##Checked = true;                                             \
312    }                                                                     \
313  }
314#endif
315
316//===----------------------------------------------------------------------===//
317// Register File -> Register Stack Mapping Methods
318//===----------------------------------------------------------------------===//
319
320// OpcodeTable - Sorted map of register instructions to their stack version.
321// The first element is an register file pseudo instruction, the second is the
322// concrete X86 instruction which uses the register stack.
323//
324static const TableEntry OpcodeTable[] = {
325  { X86::FpABS     , X86::FABS     },
326  { X86::FpADD32m  , X86::FADD32m  },
327  { X86::FpADD64m  , X86::FADD64m  },
328  { X86::FpCHS     , X86::FCHS     },
329  { X86::FpCMOVB   , X86::FCMOVB   },
330  { X86::FpCMOVBE  , X86::FCMOVBE  },
331  { X86::FpCMOVE   , X86::FCMOVE   },
332  { X86::FpCMOVNB  , X86::FCMOVNB  },
333  { X86::FpCMOVNBE , X86::FCMOVNBE },
334  { X86::FpCMOVNE  , X86::FCMOVNE  },
335  { X86::FpCMOVNP  , X86::FCMOVNP  },
336  { X86::FpCMOVP   , X86::FCMOVP   },
337  { X86::FpCOS     , X86::FCOS     },
338  { X86::FpDIV32m  , X86::FDIV32m  },
339  { X86::FpDIV64m  , X86::FDIV64m  },
340  { X86::FpDIVR32m , X86::FDIVR32m },
341  { X86::FpDIVR64m , X86::FDIVR64m },
342  { X86::FpIADD16m , X86::FIADD16m },
343  { X86::FpIADD32m , X86::FIADD32m },
344  { X86::FpIDIV16m , X86::FIDIV16m },
345  { X86::FpIDIV32m , X86::FIDIV32m },
346  { X86::FpIDIVR16m, X86::FIDIVR16m},
347  { X86::FpIDIVR32m, X86::FIDIVR32m},
348  { X86::FpILD16m  , X86::FILD16m  },
349  { X86::FpILD32m  , X86::FILD32m  },
350  { X86::FpILD64m  , X86::FILD64m  },
351  { X86::FpIMUL16m , X86::FIMUL16m },
352  { X86::FpIMUL32m , X86::FIMUL32m },
353  { X86::FpIST16m  , X86::FIST16m  },
354  { X86::FpIST32m  , X86::FIST32m  },
355  { X86::FpIST64m  , X86::FISTP64m },
356  { X86::FpISTT16m , X86::FISTTP16m},
357  { X86::FpISTT32m , X86::FISTTP32m},
358  { X86::FpISTT64m , X86::FISTTP64m},
359  { X86::FpISUB16m , X86::FISUB16m },
360  { X86::FpISUB32m , X86::FISUB32m },
361  { X86::FpISUBR16m, X86::FISUBR16m},
362  { X86::FpISUBR32m, X86::FISUBR32m},
363  { X86::FpLD0     , X86::FLD0     },
364  { X86::FpLD1     , X86::FLD1     },
365  { X86::FpLD32m   , X86::FLD32m   },
366  { X86::FpLD64m   , X86::FLD64m   },
367  { X86::FpMUL32m  , X86::FMUL32m  },
368  { X86::FpMUL64m  , X86::FMUL64m  },
369  { X86::FpSIN     , X86::FSIN     },
370  { X86::FpSQRT    , X86::FSQRT    },
371  { X86::FpST32m   , X86::FST32m   },
372  { X86::FpST64m   , X86::FST64m   },
373  { X86::FpSUB32m  , X86::FSUB32m  },
374  { X86::FpSUB64m  , X86::FSUB64m  },
375  { X86::FpSUBR32m , X86::FSUBR32m },
376  { X86::FpSUBR64m , X86::FSUBR64m },
377  { X86::FpTST     , X86::FTST     },
378  { X86::FpUCOMIr  , X86::FUCOMIr  },
379  { X86::FpUCOMr   , X86::FUCOMr   },
380};
381
382static unsigned getConcreteOpcode(unsigned Opcode) {
383  ASSERT_SORTED(OpcodeTable);
384  int Opc = Lookup(OpcodeTable, ARRAY_SIZE(OpcodeTable), Opcode);
385  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
386  return Opc;
387}
388
389//===----------------------------------------------------------------------===//
390// Helper Methods
391//===----------------------------------------------------------------------===//
392
393// PopTable - Sorted map of instructions to their popping version.  The first
394// element is an instruction, the second is the version which pops.
395//
396static const TableEntry PopTable[] = {
397  { X86::FADDrST0 , X86::FADDPrST0  },
398
399  { X86::FDIVRrST0, X86::FDIVRPrST0 },
400  { X86::FDIVrST0 , X86::FDIVPrST0  },
401
402  { X86::FIST16m  , X86::FISTP16m   },
403  { X86::FIST32m  , X86::FISTP32m   },
404
405  { X86::FMULrST0 , X86::FMULPrST0  },
406
407  { X86::FST32m   , X86::FSTP32m    },
408  { X86::FST64m   , X86::FSTP64m    },
409  { X86::FSTrr    , X86::FSTPrr     },
410
411  { X86::FSUBRrST0, X86::FSUBRPrST0 },
412  { X86::FSUBrST0 , X86::FSUBPrST0  },
413
414  { X86::FUCOMIr  , X86::FUCOMIPr   },
415
416  { X86::FUCOMPr  , X86::FUCOMPPr   },
417  { X86::FUCOMr   , X86::FUCOMPr    },
418};
419
420/// popStackAfter - Pop the current value off of the top of the FP stack after
421/// the specified instruction.  This attempts to be sneaky and combine the pop
422/// into the instruction itself if possible.  The iterator is left pointing to
423/// the last instruction, be it a new pop instruction inserted, or the old
424/// instruction if it was modified in place.
425///
426void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
427  ASSERT_SORTED(PopTable);
428  assert(StackTop > 0 && "Cannot pop empty stack!");
429  RegMap[Stack[--StackTop]] = ~0;     // Update state
430
431  // Check to see if there is a popping version of this instruction...
432  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), I->getOpcode());
433  if (Opcode != -1) {
434    I->setInstrDescriptor(TII->get(Opcode));
435    if (Opcode == X86::FUCOMPPr)
436      I->RemoveOperand(0);
437  } else {    // Insert an explicit pop
438    I = BuildMI(*MBB, ++I, TII->get(X86::FSTPrr)).addReg(X86::ST0);
439  }
440}
441
442/// freeStackSlotAfter - Free the specified register from the register stack, so
443/// that it is no longer in a register.  If the register is currently at the top
444/// of the stack, we just pop the current instruction, otherwise we store the
445/// current top-of-stack into the specified slot, then pop the top of stack.
446void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
447  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
448    popStackAfter(I);
449    return;
450  }
451
452  // Otherwise, store the top of stack into the dead slot, killing the operand
453  // without having to add in an explicit xchg then pop.
454  //
455  unsigned STReg    = getSTReg(FPRegNo);
456  unsigned OldSlot  = getSlot(FPRegNo);
457  unsigned TopReg   = Stack[StackTop-1];
458  Stack[OldSlot]    = TopReg;
459  RegMap[TopReg]    = OldSlot;
460  RegMap[FPRegNo]   = ~0;
461  Stack[--StackTop] = ~0;
462  I = BuildMI(*MBB, ++I, TII->get(X86::FSTPrr)).addReg(STReg);
463}
464
465
466static unsigned getFPReg(const MachineOperand &MO) {
467  assert(MO.isRegister() && "Expected an FP register!");
468  unsigned Reg = MO.getReg();
469  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
470  return Reg - X86::FP0;
471}
472
473
474//===----------------------------------------------------------------------===//
475// Instruction transformation implementation
476//===----------------------------------------------------------------------===//
477
478/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
479///
480void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
481  MachineInstr *MI = I;
482  unsigned DestReg = getFPReg(MI->getOperand(0));
483
484  // Change from the pseudo instruction to the concrete instruction.
485  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
486  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
487
488  // Result gets pushed on the stack.
489  pushReg(DestReg);
490}
491
492/// handleOneArgFP - fst <mem>, ST(0)
493///
494void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
495  MachineInstr *MI = I;
496  unsigned NumOps = MI->getInstrDescriptor()->numOperands;
497  assert((NumOps == 5 || NumOps == 1) &&
498         "Can only handle fst* & ftst instructions!");
499
500  // Is this the last use of the source register?
501  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
502  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
503
504  // FISTP64m is strange because there isn't a non-popping versions.
505  // If we have one _and_ we don't want to pop the operand, duplicate the value
506  // on the stack instead of moving it.  This ensure that popping the value is
507  // always ok.
508  // Ditto FISTTP16m, FISTTP32m, FISTTP64m.
509  //
510  if (!KillsSrc &&
511      (MI->getOpcode() == X86::FpIST64m ||
512       MI->getOpcode() == X86::FpISTT16m ||
513       MI->getOpcode() == X86::FpISTT32m ||
514       MI->getOpcode() == X86::FpISTT64m)) {
515    duplicateToTop(Reg, 7 /*temp register*/, I);
516  } else {
517    moveToTop(Reg, I);            // Move to the top of the stack...
518  }
519
520  // Convert from the pseudo instruction to the concrete instruction.
521  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
522  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
523
524  if (MI->getOpcode() == X86::FISTP64m ||
525      MI->getOpcode() == X86::FISTTP16m ||
526      MI->getOpcode() == X86::FISTTP32m ||
527      MI->getOpcode() == X86::FISTTP64m) {
528    assert(StackTop > 0 && "Stack empty??");
529    --StackTop;
530  } else if (KillsSrc) { // Last use of operand?
531    popStackAfter(I);
532  }
533}
534
535
536/// handleOneArgFPRW: Handle instructions that read from the top of stack and
537/// replace the value with a newly computed value.  These instructions may have
538/// non-fp operands after their FP operands.
539///
540///  Examples:
541///     R1 = fchs R2
542///     R1 = fadd R2, [mem]
543///
544void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
545  MachineInstr *MI = I;
546  unsigned NumOps = MI->getInstrDescriptor()->numOperands;
547  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
548
549  // Is this the last use of the source register?
550  unsigned Reg = getFPReg(MI->getOperand(1));
551  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
552
553  if (KillsSrc) {
554    // If this is the last use of the source register, just make sure it's on
555    // the top of the stack.
556    moveToTop(Reg, I);
557    assert(StackTop > 0 && "Stack cannot be empty!");
558    --StackTop;
559    pushReg(getFPReg(MI->getOperand(0)));
560  } else {
561    // If this is not the last use of the source register, _copy_ it to the top
562    // of the stack.
563    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
564  }
565
566  // Change from the pseudo instruction to the concrete instruction.
567  MI->RemoveOperand(1);   // Drop the source operand.
568  MI->RemoveOperand(0);   // Drop the destination operand.
569  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
570}
571
572
573//===----------------------------------------------------------------------===//
574// Define tables of various ways to map pseudo instructions
575//
576
577// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
578static const TableEntry ForwardST0Table[] = {
579  { X86::FpADD  , X86::FADDST0r },
580  { X86::FpDIV  , X86::FDIVST0r },
581  { X86::FpMUL  , X86::FMULST0r },
582  { X86::FpSUB  , X86::FSUBST0r },
583};
584
585// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
586static const TableEntry ReverseST0Table[] = {
587  { X86::FpADD  , X86::FADDST0r  },   // commutative
588  { X86::FpDIV  , X86::FDIVRST0r },
589  { X86::FpMUL  , X86::FMULST0r  },   // commutative
590  { X86::FpSUB  , X86::FSUBRST0r },
591};
592
593// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
594static const TableEntry ForwardSTiTable[] = {
595  { X86::FpADD  , X86::FADDrST0  },   // commutative
596  { X86::FpDIV  , X86::FDIVRrST0 },
597  { X86::FpMUL  , X86::FMULrST0  },   // commutative
598  { X86::FpSUB  , X86::FSUBRrST0 },
599};
600
601// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
602static const TableEntry ReverseSTiTable[] = {
603  { X86::FpADD  , X86::FADDrST0 },
604  { X86::FpDIV  , X86::FDIVrST0 },
605  { X86::FpMUL  , X86::FMULrST0 },
606  { X86::FpSUB  , X86::FSUBrST0 },
607};
608
609
610/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
611/// instructions which need to be simplified and possibly transformed.
612///
613/// Result: ST(0) = fsub  ST(0), ST(i)
614///         ST(i) = fsub  ST(0), ST(i)
615///         ST(0) = fsubr ST(0), ST(i)
616///         ST(i) = fsubr ST(0), ST(i)
617///
618void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
619  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
620  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
621  MachineInstr *MI = I;
622
623  unsigned NumOperands = MI->getInstrDescriptor()->numOperands;
624  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
625  unsigned Dest = getFPReg(MI->getOperand(0));
626  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
627  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
628  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
629  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
630
631  unsigned TOS = getStackEntry(0);
632
633  // One of our operands must be on the top of the stack.  If neither is yet, we
634  // need to move one.
635  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
636    // We can choose to move either operand to the top of the stack.  If one of
637    // the operands is killed by this instruction, we want that one so that we
638    // can update right on top of the old version.
639    if (KillsOp0) {
640      moveToTop(Op0, I);         // Move dead operand to TOS.
641      TOS = Op0;
642    } else if (KillsOp1) {
643      moveToTop(Op1, I);
644      TOS = Op1;
645    } else {
646      // All of the operands are live after this instruction executes, so we
647      // cannot update on top of any operand.  Because of this, we must
648      // duplicate one of the stack elements to the top.  It doesn't matter
649      // which one we pick.
650      //
651      duplicateToTop(Op0, Dest, I);
652      Op0 = TOS = Dest;
653      KillsOp0 = true;
654    }
655  } else if (!KillsOp0 && !KillsOp1) {
656    // If we DO have one of our operands at the top of the stack, but we don't
657    // have a dead operand, we must duplicate one of the operands to a new slot
658    // on the stack.
659    duplicateToTop(Op0, Dest, I);
660    Op0 = TOS = Dest;
661    KillsOp0 = true;
662  }
663
664  // Now we know that one of our operands is on the top of the stack, and at
665  // least one of our operands is killed by this instruction.
666  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
667         "Stack conditions not set up right!");
668
669  // We decide which form to use based on what is on the top of the stack, and
670  // which operand is killed by this instruction.
671  const TableEntry *InstTable;
672  bool isForward = TOS == Op0;
673  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
674  if (updateST0) {
675    if (isForward)
676      InstTable = ForwardST0Table;
677    else
678      InstTable = ReverseST0Table;
679  } else {
680    if (isForward)
681      InstTable = ForwardSTiTable;
682    else
683      InstTable = ReverseSTiTable;
684  }
685
686  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
687  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
688
689  // NotTOS - The register which is not on the top of stack...
690  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
691
692  // Replace the old instruction with a new instruction
693  MBB->remove(I++);
694  I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
695
696  // If both operands are killed, pop one off of the stack in addition to
697  // overwriting the other one.
698  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
699    assert(!updateST0 && "Should have updated other operand!");
700    popStackAfter(I);   // Pop the top of stack
701  }
702
703  // Update stack information so that we know the destination register is now on
704  // the stack.
705  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
706  assert(UpdatedSlot < StackTop && Dest < 7);
707  Stack[UpdatedSlot]   = Dest;
708  RegMap[Dest]         = UpdatedSlot;
709  delete MI;   // Remove the old instruction
710}
711
712/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
713/// register arguments and no explicit destinations.
714///
715void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
716  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
717  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
718  MachineInstr *MI = I;
719
720  unsigned NumOperands = MI->getInstrDescriptor()->numOperands;
721  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
722  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
723  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
724  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
725  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
726
727  // Make sure the first operand is on the top of stack, the other one can be
728  // anywhere.
729  moveToTop(Op0, I);
730
731  // Change from the pseudo instruction to the concrete instruction.
732  MI->getOperand(0).setReg(getSTReg(Op1));
733  MI->RemoveOperand(1);
734  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
735
736  // If any of the operands are killed by this instruction, free them.
737  if (KillsOp0) freeStackSlotAfter(I, Op0);
738  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
739}
740
741/// handleCondMovFP - Handle two address conditional move instructions.  These
742/// instructions move a st(i) register to st(0) iff a condition is true.  These
743/// instructions require that the first operand is at the top of the stack, but
744/// otherwise don't modify the stack at all.
745void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
746  MachineInstr *MI = I;
747
748  unsigned Op0 = getFPReg(MI->getOperand(0));
749  unsigned Op1 = getFPReg(MI->getOperand(2));
750  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
751
752  // The first operand *must* be on the top of the stack.
753  moveToTop(Op0, I);
754
755  // Change the second operand to the stack register that the operand is in.
756  // Change from the pseudo instruction to the concrete instruction.
757  MI->RemoveOperand(0);
758  MI->RemoveOperand(1);
759  MI->getOperand(0).setReg(getSTReg(Op1));
760  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
761
762  // If we kill the second operand, make sure to pop it from the stack.
763  if (Op0 != Op1 && KillsOp1) {
764    // Get this value off of the register stack.
765    freeStackSlotAfter(I, Op1);
766  }
767}
768
769
770/// handleSpecialFP - Handle special instructions which behave unlike other
771/// floating point instructions.  This is primarily intended for use by pseudo
772/// instructions.
773///
774void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
775  MachineInstr *MI = I;
776  switch (MI->getOpcode()) {
777  default: assert(0 && "Unknown SpecialFP instruction!");
778  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
779    assert(StackTop == 0 && "Stack should be empty after a call!");
780    pushReg(getFPReg(MI->getOperand(0)));
781    break;
782  case X86::FpSETRESULT:
783    assert(StackTop == 1 && "Stack should have one element on it to return!");
784    --StackTop;   // "Forget" we have something on the top of stack!
785    break;
786  case X86::FpMOV: {
787    unsigned SrcReg = getFPReg(MI->getOperand(1));
788    unsigned DestReg = getFPReg(MI->getOperand(0));
789
790    if (LV->KillsRegister(MI, X86::FP0+SrcReg)) {
791      // If the input operand is killed, we can just change the owner of the
792      // incoming stack slot into the result.
793      unsigned Slot = getSlot(SrcReg);
794      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
795      Stack[Slot] = DestReg;
796      RegMap[DestReg] = Slot;
797
798    } else {
799      // For FMOV we just duplicate the specified value to a new stack slot.
800      // This could be made better, but would require substantial changes.
801      duplicateToTop(SrcReg, DestReg, I);
802    }
803    break;
804  }
805  }
806
807  I = MBB->erase(I);  // Remove the pseudo instruction
808  --I;
809}
810