X86FloatingPoint.cpp revision bbeeb2a61ea19fbb5449260165b56c40fdc4860b
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
48using namespace llvm;
49
50STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP  , "Number of floating point instructions");
52
53namespace {
54  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55    static char ID;
56    FPS() : MachineFunctionPass(&ID) {}
57
58    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
59      AU.setPreservesAll();
60      MachineFunctionPass::getAnalysisUsage(AU);
61    }
62
63    virtual bool runOnMachineFunction(MachineFunction &MF);
64
65    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
66
67  private:
68    const TargetInstrInfo *TII; // Machine instruction info.
69    MachineBasicBlock *MBB;     // Current basic block
70    unsigned Stack[8];          // FP<n> Registers in each stack slot...
71    unsigned RegMap[8];         // Track which stack slot contains each register
72    unsigned StackTop;          // The current top of the FP stack.
73
74    void dumpStack() const {
75      cerr << "Stack contents:";
76      for (unsigned i = 0; i != StackTop; ++i) {
77        cerr << " FP" << Stack[i];
78        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
79      }
80      cerr << "\n";
81    }
82  private:
83    /// isStackEmpty - Return true if the FP stack is empty.
84    bool isStackEmpty() const {
85      return StackTop == 0;
86    }
87
88    // getSlot - Return the stack slot number a particular register number is
89    // in.
90    unsigned getSlot(unsigned RegNo) const {
91      assert(RegNo < 8 && "Regno out of range!");
92      return RegMap[RegNo];
93    }
94
95    // getStackEntry - Return the X86::FP<n> register in register ST(i).
96    unsigned getStackEntry(unsigned STi) const {
97      assert(STi < StackTop && "Access past stack top!");
98      return Stack[StackTop-1-STi];
99    }
100
101    // getSTReg - Return the X86::ST(i) register which contains the specified
102    // FP<RegNo> register.
103    unsigned getSTReg(unsigned RegNo) const {
104      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
105    }
106
107    // pushReg - Push the specified FP<n> register onto the stack.
108    void pushReg(unsigned Reg) {
109      assert(Reg < 8 && "Register number out of range!");
110      assert(StackTop < 8 && "Stack overflow!");
111      Stack[StackTop] = Reg;
112      RegMap[Reg] = StackTop++;
113    }
114
115    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
116    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
117      if (isAtTop(RegNo)) return;
118
119      unsigned STReg = getSTReg(RegNo);
120      unsigned RegOnTop = getStackEntry(0);
121
122      // Swap the slots the regs are in.
123      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
124
125      // Swap stack slot contents.
126      assert(RegMap[RegOnTop] < StackTop);
127      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
128
129      // Emit an fxch to update the runtime processors version of the state.
130      BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
131      NumFXCH++;
132    }
133
134    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
135      unsigned STReg = getSTReg(RegNo);
136      pushReg(AsReg);   // New register on top of stack
137
138      BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
139    }
140
141    // popStackAfter - Pop the current value off of the top of the FP stack
142    // after the specified instruction.
143    void popStackAfter(MachineBasicBlock::iterator &I);
144
145    // freeStackSlotAfter - Free the specified register from the register stack,
146    // so that it is no longer in a register.  If the register is currently at
147    // the top of the stack, we just pop the current instruction, otherwise we
148    // store the current top-of-stack into the specified slot, then pop the top
149    // of stack.
150    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
151
152    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
153
154    void handleZeroArgFP(MachineBasicBlock::iterator &I);
155    void handleOneArgFP(MachineBasicBlock::iterator &I);
156    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
157    void handleTwoArgFP(MachineBasicBlock::iterator &I);
158    void handleCompareFP(MachineBasicBlock::iterator &I);
159    void handleCondMovFP(MachineBasicBlock::iterator &I);
160    void handleSpecialFP(MachineBasicBlock::iterator &I);
161  };
162  char FPS::ID = 0;
163}
164
165FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
166
167/// getFPReg - Return the X86::FPx register number for the specified operand.
168/// For example, this returns 3 for X86::FP3.
169static unsigned getFPReg(const MachineOperand &MO) {
170  assert(MO.isRegister() && "Expected an FP register!");
171  unsigned Reg = MO.getReg();
172  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
173  return Reg - X86::FP0;
174}
175
176
177/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
178/// register references into FP stack references.
179///
180bool FPS::runOnMachineFunction(MachineFunction &MF) {
181  // We only need to run this pass if there are any FP registers used in this
182  // function.  If it is all integer, there is nothing for us to do!
183  bool FPIsUsed = false;
184
185  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
186  for (unsigned i = 0; i <= 6; ++i)
187    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
188      FPIsUsed = true;
189      break;
190    }
191
192  // Early exit.
193  if (!FPIsUsed) return false;
194
195  TII = MF.getTarget().getInstrInfo();
196  StackTop = 0;
197
198  // Process the function in depth first order so that we process at least one
199  // of the predecessors for every reachable block in the function.
200  SmallPtrSet<MachineBasicBlock*, 8> Processed;
201  MachineBasicBlock *Entry = MF.begin();
202
203  bool Changed = false;
204  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
205         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
206       I != E; ++I)
207    Changed |= processBasicBlock(MF, **I);
208
209  return Changed;
210}
211
212/// processBasicBlock - Loop over all of the instructions in the basic block,
213/// transforming FP instructions into their stack form.
214///
215bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
216  bool Changed = false;
217  MBB = &BB;
218
219  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
220    MachineInstr *MI = I;
221    unsigned Flags = MI->getDesc().TSFlags;
222
223    unsigned FPInstClass = Flags & X86II::FPTypeMask;
224    if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
225      FPInstClass = X86II::SpecialFP;
226
227    if (FPInstClass == X86II::NotFP)
228      continue;  // Efficiently ignore non-fp insts!
229
230    MachineInstr *PrevMI = 0;
231    if (I != BB.begin())
232      PrevMI = prior(I);
233
234    ++NumFP;  // Keep track of # of pseudo instrs
235    DOUT << "\nFPInst:\t" << *MI;
236
237    // Get dead variables list now because the MI pointer may be deleted as part
238    // of processing!
239    SmallVector<unsigned, 8> DeadRegs;
240    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
241      const MachineOperand &MO = MI->getOperand(i);
242      if (MO.isRegister() && MO.isDead())
243        DeadRegs.push_back(MO.getReg());
244    }
245
246    switch (FPInstClass) {
247    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
248    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
249    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
250    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
251    case X86II::CompareFP:  handleCompareFP(I); break;
252    case X86II::CondMovFP:  handleCondMovFP(I); break;
253    case X86II::SpecialFP:  handleSpecialFP(I); break;
254    default: assert(0 && "Unknown FP Type!");
255    }
256
257    // Check to see if any of the values defined by this instruction are dead
258    // after definition.  If so, pop them.
259    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
260      unsigned Reg = DeadRegs[i];
261      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
262        DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
263        freeStackSlotAfter(I, Reg-X86::FP0);
264      }
265    }
266
267    // Print out all of the instructions expanded to if -debug
268    DEBUG(
269      MachineBasicBlock::iterator PrevI(PrevMI);
270      if (I == PrevI) {
271        cerr << "Just deleted pseudo instruction\n";
272      } else {
273        MachineBasicBlock::iterator Start = I;
274        // Rewind to first instruction newly inserted.
275        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
276        cerr << "Inserted instructions:\n\t";
277        Start->print(*cerr.stream(), &MF.getTarget());
278        while (++Start != next(I)) {}
279      }
280      dumpStack();
281    );
282
283    Changed = true;
284  }
285
286  assert(isStackEmpty() && "Stack not empty at end of basic block?");
287  return Changed;
288}
289
290//===----------------------------------------------------------------------===//
291// Efficient Lookup Table Support
292//===----------------------------------------------------------------------===//
293
294namespace {
295  struct TableEntry {
296    unsigned from;
297    unsigned to;
298    bool operator<(const TableEntry &TE) const { return from < TE.from; }
299    friend bool operator<(const TableEntry &TE, unsigned V) {
300      return TE.from < V;
301    }
302    friend bool operator<(unsigned V, const TableEntry &TE) {
303      return V < TE.from;
304    }
305  };
306}
307
308#ifndef NDEBUG
309static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
310  for (unsigned i = 0; i != NumEntries-1; ++i)
311    if (!(Table[i] < Table[i+1])) return false;
312  return true;
313}
314#endif
315
316static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
317  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
318  if (I != Table+N && I->from == Opcode)
319    return I->to;
320  return -1;
321}
322
323#ifdef NDEBUG
324#define ASSERT_SORTED(TABLE)
325#else
326#define ASSERT_SORTED(TABLE)                                              \
327  { static bool TABLE##Checked = false;                                   \
328    if (!TABLE##Checked) {                                                \
329       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
330              "All lookup tables must be sorted for efficient access!");  \
331       TABLE##Checked = true;                                             \
332    }                                                                     \
333  }
334#endif
335
336//===----------------------------------------------------------------------===//
337// Register File -> Register Stack Mapping Methods
338//===----------------------------------------------------------------------===//
339
340// OpcodeTable - Sorted map of register instructions to their stack version.
341// The first element is an register file pseudo instruction, the second is the
342// concrete X86 instruction which uses the register stack.
343//
344static const TableEntry OpcodeTable[] = {
345  { X86::ABS_Fp32     , X86::ABS_F     },
346  { X86::ABS_Fp64     , X86::ABS_F     },
347  { X86::ABS_Fp80     , X86::ABS_F     },
348  { X86::ADD_Fp32m    , X86::ADD_F32m  },
349  { X86::ADD_Fp64m    , X86::ADD_F64m  },
350  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
351  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
352  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
353  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
354  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
355  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
356  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
357  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
358  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
359  { X86::CHS_Fp32     , X86::CHS_F     },
360  { X86::CHS_Fp64     , X86::CHS_F     },
361  { X86::CHS_Fp80     , X86::CHS_F     },
362  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
363  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
364  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
365  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
366  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
367  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
368  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
369  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
370  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
371  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
372  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
373  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
374  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
375  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
376  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
377  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
378  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
379  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
380  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
381  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
382  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
383  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
384  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
385  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
386  { X86::COS_Fp32     , X86::COS_F     },
387  { X86::COS_Fp64     , X86::COS_F     },
388  { X86::COS_Fp80     , X86::COS_F     },
389  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
390  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
391  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
392  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
393  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
394  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
395  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
396  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
397  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
398  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
399  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
400  { X86::DIV_Fp32m    , X86::DIV_F32m  },
401  { X86::DIV_Fp64m    , X86::DIV_F64m  },
402  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
403  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
404  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
405  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
406  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
407  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
408  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
409  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
410  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
411  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
412  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
413  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
414  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
415  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
416  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
417  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
418  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
419  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
420  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
421  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
422  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
423  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
424  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
425  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
426  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
427  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
428  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
429  { X86::IST_Fp16m32  , X86::IST_F16m  },
430  { X86::IST_Fp16m64  , X86::IST_F16m  },
431  { X86::IST_Fp16m80  , X86::IST_F16m  },
432  { X86::IST_Fp32m32  , X86::IST_F32m  },
433  { X86::IST_Fp32m64  , X86::IST_F32m  },
434  { X86::IST_Fp32m80  , X86::IST_F32m  },
435  { X86::IST_Fp64m32  , X86::IST_FP64m },
436  { X86::IST_Fp64m64  , X86::IST_FP64m },
437  { X86::IST_Fp64m80  , X86::IST_FP64m },
438  { X86::LD_Fp032     , X86::LD_F0     },
439  { X86::LD_Fp064     , X86::LD_F0     },
440  { X86::LD_Fp080     , X86::LD_F0     },
441  { X86::LD_Fp132     , X86::LD_F1     },
442  { X86::LD_Fp164     , X86::LD_F1     },
443  { X86::LD_Fp180     , X86::LD_F1     },
444  { X86::LD_Fp32m     , X86::LD_F32m   },
445  { X86::LD_Fp32m64   , X86::LD_F32m   },
446  { X86::LD_Fp32m80   , X86::LD_F32m   },
447  { X86::LD_Fp64m     , X86::LD_F64m   },
448  { X86::LD_Fp64m80   , X86::LD_F64m   },
449  { X86::LD_Fp80m     , X86::LD_F80m   },
450  { X86::MUL_Fp32m    , X86::MUL_F32m  },
451  { X86::MUL_Fp64m    , X86::MUL_F64m  },
452  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
453  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
454  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
455  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
456  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
457  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
458  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
459  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
460  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
461  { X86::SIN_Fp32     , X86::SIN_F     },
462  { X86::SIN_Fp64     , X86::SIN_F     },
463  { X86::SIN_Fp80     , X86::SIN_F     },
464  { X86::SQRT_Fp32    , X86::SQRT_F    },
465  { X86::SQRT_Fp64    , X86::SQRT_F    },
466  { X86::SQRT_Fp80    , X86::SQRT_F    },
467  { X86::ST_Fp32m     , X86::ST_F32m   },
468  { X86::ST_Fp64m     , X86::ST_F64m   },
469  { X86::ST_Fp64m32   , X86::ST_F32m   },
470  { X86::ST_Fp80m32   , X86::ST_F32m   },
471  { X86::ST_Fp80m64   , X86::ST_F64m   },
472  { X86::ST_FpP80m    , X86::ST_FP80m  },
473  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
474  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
475  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
476  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
477  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
478  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
479  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
480  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
481  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
482  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
483  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
484  { X86::SUB_Fp32m    , X86::SUB_F32m  },
485  { X86::SUB_Fp64m    , X86::SUB_F64m  },
486  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
487  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
488  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
489  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
490  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
491  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
492  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
493  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
494  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
495  { X86::TST_Fp32     , X86::TST_F     },
496  { X86::TST_Fp64     , X86::TST_F     },
497  { X86::TST_Fp80     , X86::TST_F     },
498  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
499  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
500  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
501  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
502  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
503  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
504};
505
506static unsigned getConcreteOpcode(unsigned Opcode) {
507  ASSERT_SORTED(OpcodeTable);
508  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
509  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
510  return Opc;
511}
512
513//===----------------------------------------------------------------------===//
514// Helper Methods
515//===----------------------------------------------------------------------===//
516
517// PopTable - Sorted map of instructions to their popping version.  The first
518// element is an instruction, the second is the version which pops.
519//
520static const TableEntry PopTable[] = {
521  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
522
523  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
524  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
525
526  { X86::IST_F16m  , X86::IST_FP16m   },
527  { X86::IST_F32m  , X86::IST_FP32m   },
528
529  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
530
531  { X86::ST_F32m   , X86::ST_FP32m    },
532  { X86::ST_F64m   , X86::ST_FP64m    },
533  { X86::ST_Frr    , X86::ST_FPrr     },
534
535  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
536  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
537
538  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
539
540  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
541  { X86::UCOM_Fr   , X86::UCOM_FPr    },
542};
543
544/// popStackAfter - Pop the current value off of the top of the FP stack after
545/// the specified instruction.  This attempts to be sneaky and combine the pop
546/// into the instruction itself if possible.  The iterator is left pointing to
547/// the last instruction, be it a new pop instruction inserted, or the old
548/// instruction if it was modified in place.
549///
550void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
551  ASSERT_SORTED(PopTable);
552  assert(StackTop > 0 && "Cannot pop empty stack!");
553  RegMap[Stack[--StackTop]] = ~0;     // Update state
554
555  // Check to see if there is a popping version of this instruction...
556  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
557  if (Opcode != -1) {
558    I->setDesc(TII->get(Opcode));
559    if (Opcode == X86::UCOM_FPPr)
560      I->RemoveOperand(0);
561  } else {    // Insert an explicit pop
562    I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
563  }
564}
565
566/// freeStackSlotAfter - Free the specified register from the register stack, so
567/// that it is no longer in a register.  If the register is currently at the top
568/// of the stack, we just pop the current instruction, otherwise we store the
569/// current top-of-stack into the specified slot, then pop the top of stack.
570void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
571  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
572    popStackAfter(I);
573    return;
574  }
575
576  // Otherwise, store the top of stack into the dead slot, killing the operand
577  // without having to add in an explicit xchg then pop.
578  //
579  unsigned STReg    = getSTReg(FPRegNo);
580  unsigned OldSlot  = getSlot(FPRegNo);
581  unsigned TopReg   = Stack[StackTop-1];
582  Stack[OldSlot]    = TopReg;
583  RegMap[TopReg]    = OldSlot;
584  RegMap[FPRegNo]   = ~0;
585  Stack[--StackTop] = ~0;
586  I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
587}
588
589
590//===----------------------------------------------------------------------===//
591// Instruction transformation implementation
592//===----------------------------------------------------------------------===//
593
594/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
595///
596void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
597  MachineInstr *MI = I;
598  unsigned DestReg = getFPReg(MI->getOperand(0));
599
600  // Change from the pseudo instruction to the concrete instruction.
601  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
602  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
603
604  // Result gets pushed on the stack.
605  pushReg(DestReg);
606}
607
608/// handleOneArgFP - fst <mem>, ST(0)
609///
610void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
611  MachineInstr *MI = I;
612  unsigned NumOps = MI->getDesc().getNumOperands();
613  assert((NumOps == 5 || NumOps == 1) &&
614         "Can only handle fst* & ftst instructions!");
615
616  // Is this the last use of the source register?
617  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
618  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
619
620  // FISTP64m is strange because there isn't a non-popping versions.
621  // If we have one _and_ we don't want to pop the operand, duplicate the value
622  // on the stack instead of moving it.  This ensure that popping the value is
623  // always ok.
624  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
625  //
626  if (!KillsSrc &&
627      (MI->getOpcode() == X86::IST_Fp64m32 ||
628       MI->getOpcode() == X86::ISTT_Fp16m32 ||
629       MI->getOpcode() == X86::ISTT_Fp32m32 ||
630       MI->getOpcode() == X86::ISTT_Fp64m32 ||
631       MI->getOpcode() == X86::IST_Fp64m64 ||
632       MI->getOpcode() == X86::ISTT_Fp16m64 ||
633       MI->getOpcode() == X86::ISTT_Fp32m64 ||
634       MI->getOpcode() == X86::ISTT_Fp64m64 ||
635       MI->getOpcode() == X86::IST_Fp64m80 ||
636       MI->getOpcode() == X86::ISTT_Fp16m80 ||
637       MI->getOpcode() == X86::ISTT_Fp32m80 ||
638       MI->getOpcode() == X86::ISTT_Fp64m80 ||
639       MI->getOpcode() == X86::ST_FpP80m)) {
640    duplicateToTop(Reg, 7 /*temp register*/, I);
641  } else {
642    moveToTop(Reg, I);            // Move to the top of the stack...
643  }
644
645  // Convert from the pseudo instruction to the concrete instruction.
646  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
647  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
648
649  if (MI->getOpcode() == X86::IST_FP64m ||
650      MI->getOpcode() == X86::ISTT_FP16m ||
651      MI->getOpcode() == X86::ISTT_FP32m ||
652      MI->getOpcode() == X86::ISTT_FP64m ||
653      MI->getOpcode() == X86::ST_FP80m) {
654    assert(StackTop > 0 && "Stack empty??");
655    --StackTop;
656  } else if (KillsSrc) { // Last use of operand?
657    popStackAfter(I);
658  }
659}
660
661
662/// handleOneArgFPRW: Handle instructions that read from the top of stack and
663/// replace the value with a newly computed value.  These instructions may have
664/// non-fp operands after their FP operands.
665///
666///  Examples:
667///     R1 = fchs R2
668///     R1 = fadd R2, [mem]
669///
670void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
671  MachineInstr *MI = I;
672#ifndef NDEBUG
673  unsigned NumOps = MI->getDesc().getNumOperands();
674  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
675#endif
676
677  // Is this the last use of the source register?
678  unsigned Reg = getFPReg(MI->getOperand(1));
679  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
680
681  if (KillsSrc) {
682    // If this is the last use of the source register, just make sure it's on
683    // the top of the stack.
684    moveToTop(Reg, I);
685    assert(StackTop > 0 && "Stack cannot be empty!");
686    --StackTop;
687    pushReg(getFPReg(MI->getOperand(0)));
688  } else {
689    // If this is not the last use of the source register, _copy_ it to the top
690    // of the stack.
691    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
692  }
693
694  // Change from the pseudo instruction to the concrete instruction.
695  MI->RemoveOperand(1);   // Drop the source operand.
696  MI->RemoveOperand(0);   // Drop the destination operand.
697  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
698}
699
700
701//===----------------------------------------------------------------------===//
702// Define tables of various ways to map pseudo instructions
703//
704
705// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
706static const TableEntry ForwardST0Table[] = {
707  { X86::ADD_Fp32  , X86::ADD_FST0r },
708  { X86::ADD_Fp64  , X86::ADD_FST0r },
709  { X86::ADD_Fp80  , X86::ADD_FST0r },
710  { X86::DIV_Fp32  , X86::DIV_FST0r },
711  { X86::DIV_Fp64  , X86::DIV_FST0r },
712  { X86::DIV_Fp80  , X86::DIV_FST0r },
713  { X86::MUL_Fp32  , X86::MUL_FST0r },
714  { X86::MUL_Fp64  , X86::MUL_FST0r },
715  { X86::MUL_Fp80  , X86::MUL_FST0r },
716  { X86::SUB_Fp32  , X86::SUB_FST0r },
717  { X86::SUB_Fp64  , X86::SUB_FST0r },
718  { X86::SUB_Fp80  , X86::SUB_FST0r },
719};
720
721// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
722static const TableEntry ReverseST0Table[] = {
723  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
724  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
725  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
726  { X86::DIV_Fp32  , X86::DIVR_FST0r },
727  { X86::DIV_Fp64  , X86::DIVR_FST0r },
728  { X86::DIV_Fp80  , X86::DIVR_FST0r },
729  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
730  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
731  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
732  { X86::SUB_Fp32  , X86::SUBR_FST0r },
733  { X86::SUB_Fp64  , X86::SUBR_FST0r },
734  { X86::SUB_Fp80  , X86::SUBR_FST0r },
735};
736
737// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
738static const TableEntry ForwardSTiTable[] = {
739  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
740  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
741  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
742  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
743  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
744  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
745  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
746  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
747  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
748  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
749  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
750  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
751};
752
753// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
754static const TableEntry ReverseSTiTable[] = {
755  { X86::ADD_Fp32  , X86::ADD_FrST0 },
756  { X86::ADD_Fp64  , X86::ADD_FrST0 },
757  { X86::ADD_Fp80  , X86::ADD_FrST0 },
758  { X86::DIV_Fp32  , X86::DIV_FrST0 },
759  { X86::DIV_Fp64  , X86::DIV_FrST0 },
760  { X86::DIV_Fp80  , X86::DIV_FrST0 },
761  { X86::MUL_Fp32  , X86::MUL_FrST0 },
762  { X86::MUL_Fp64  , X86::MUL_FrST0 },
763  { X86::MUL_Fp80  , X86::MUL_FrST0 },
764  { X86::SUB_Fp32  , X86::SUB_FrST0 },
765  { X86::SUB_Fp64  , X86::SUB_FrST0 },
766  { X86::SUB_Fp80  , X86::SUB_FrST0 },
767};
768
769
770/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
771/// instructions which need to be simplified and possibly transformed.
772///
773/// Result: ST(0) = fsub  ST(0), ST(i)
774///         ST(i) = fsub  ST(0), ST(i)
775///         ST(0) = fsubr ST(0), ST(i)
776///         ST(i) = fsubr ST(0), ST(i)
777///
778void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
779  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
780  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
781  MachineInstr *MI = I;
782
783  unsigned NumOperands = MI->getDesc().getNumOperands();
784  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
785  unsigned Dest = getFPReg(MI->getOperand(0));
786  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
787  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
788  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
789  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
790
791  unsigned TOS = getStackEntry(0);
792
793  // One of our operands must be on the top of the stack.  If neither is yet, we
794  // need to move one.
795  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
796    // We can choose to move either operand to the top of the stack.  If one of
797    // the operands is killed by this instruction, we want that one so that we
798    // can update right on top of the old version.
799    if (KillsOp0) {
800      moveToTop(Op0, I);         // Move dead operand to TOS.
801      TOS = Op0;
802    } else if (KillsOp1) {
803      moveToTop(Op1, I);
804      TOS = Op1;
805    } else {
806      // All of the operands are live after this instruction executes, so we
807      // cannot update on top of any operand.  Because of this, we must
808      // duplicate one of the stack elements to the top.  It doesn't matter
809      // which one we pick.
810      //
811      duplicateToTop(Op0, Dest, I);
812      Op0 = TOS = Dest;
813      KillsOp0 = true;
814    }
815  } else if (!KillsOp0 && !KillsOp1) {
816    // If we DO have one of our operands at the top of the stack, but we don't
817    // have a dead operand, we must duplicate one of the operands to a new slot
818    // on the stack.
819    duplicateToTop(Op0, Dest, I);
820    Op0 = TOS = Dest;
821    KillsOp0 = true;
822  }
823
824  // Now we know that one of our operands is on the top of the stack, and at
825  // least one of our operands is killed by this instruction.
826  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
827         "Stack conditions not set up right!");
828
829  // We decide which form to use based on what is on the top of the stack, and
830  // which operand is killed by this instruction.
831  const TableEntry *InstTable;
832  bool isForward = TOS == Op0;
833  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
834  if (updateST0) {
835    if (isForward)
836      InstTable = ForwardST0Table;
837    else
838      InstTable = ReverseST0Table;
839  } else {
840    if (isForward)
841      InstTable = ForwardSTiTable;
842    else
843      InstTable = ReverseSTiTable;
844  }
845
846  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
847                      MI->getOpcode());
848  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
849
850  // NotTOS - The register which is not on the top of stack...
851  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
852
853  // Replace the old instruction with a new instruction
854  MBB->remove(I++);
855  I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
856
857  // If both operands are killed, pop one off of the stack in addition to
858  // overwriting the other one.
859  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
860    assert(!updateST0 && "Should have updated other operand!");
861    popStackAfter(I);   // Pop the top of stack
862  }
863
864  // Update stack information so that we know the destination register is now on
865  // the stack.
866  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
867  assert(UpdatedSlot < StackTop && Dest < 7);
868  Stack[UpdatedSlot]   = Dest;
869  RegMap[Dest]         = UpdatedSlot;
870  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
871}
872
873/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
874/// register arguments and no explicit destinations.
875///
876void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
877  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
878  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
879  MachineInstr *MI = I;
880
881  unsigned NumOperands = MI->getDesc().getNumOperands();
882  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
883  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
884  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
885  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
886  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
887
888  // Make sure the first operand is on the top of stack, the other one can be
889  // anywhere.
890  moveToTop(Op0, I);
891
892  // Change from the pseudo instruction to the concrete instruction.
893  MI->getOperand(0).setReg(getSTReg(Op1));
894  MI->RemoveOperand(1);
895  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
896
897  // If any of the operands are killed by this instruction, free them.
898  if (KillsOp0) freeStackSlotAfter(I, Op0);
899  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
900}
901
902/// handleCondMovFP - Handle two address conditional move instructions.  These
903/// instructions move a st(i) register to st(0) iff a condition is true.  These
904/// instructions require that the first operand is at the top of the stack, but
905/// otherwise don't modify the stack at all.
906void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
907  MachineInstr *MI = I;
908
909  unsigned Op0 = getFPReg(MI->getOperand(0));
910  unsigned Op1 = getFPReg(MI->getOperand(2));
911  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
912
913  // The first operand *must* be on the top of the stack.
914  moveToTop(Op0, I);
915
916  // Change the second operand to the stack register that the operand is in.
917  // Change from the pseudo instruction to the concrete instruction.
918  MI->RemoveOperand(0);
919  MI->RemoveOperand(1);
920  MI->getOperand(0).setReg(getSTReg(Op1));
921  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
922
923  // If we kill the second operand, make sure to pop it from the stack.
924  if (Op0 != Op1 && KillsOp1) {
925    // Get this value off of the register stack.
926    freeStackSlotAfter(I, Op1);
927  }
928}
929
930
931/// handleSpecialFP - Handle special instructions which behave unlike other
932/// floating point instructions.  This is primarily intended for use by pseudo
933/// instructions.
934///
935void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
936  MachineInstr *MI = I;
937  switch (MI->getOpcode()) {
938  default: assert(0 && "Unknown SpecialFP instruction!");
939  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
940  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
941  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
942    assert(StackTop == 0 && "Stack should be empty after a call!");
943    pushReg(getFPReg(MI->getOperand(0)));
944    break;
945  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
946  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
947  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
948    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
949    // The pattern we expect is:
950    //  CALL
951    //  FP1 = FpGET_ST0
952    //  FP4 = FpGET_ST1
953    //
954    // At this point, we've pushed FP1 on the top of stack, so it should be
955    // present if it isn't dead.  If it was dead, we already emitted a pop to
956    // remove it from the stack and StackTop = 0.
957
958    // Push FP4 as top of stack next.
959    pushReg(getFPReg(MI->getOperand(0)));
960
961    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
962    // dead.  In this case, the ST(1) value is the only thing that is live, so
963    // it should be on the TOS (after the pop that was emitted) and is.  Just
964    // continue in this case.
965    if (StackTop == 1)
966      break;
967
968    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
969    // elements so that our accounting is correct.
970    unsigned RegOnTop = getStackEntry(0);
971    unsigned RegNo = getStackEntry(1);
972
973    // Swap the slots the regs are in.
974    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
975
976    // Swap stack slot contents.
977    assert(RegMap[RegOnTop] < StackTop);
978    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
979    break;
980  }
981  case X86::FpSET_ST0_32:
982  case X86::FpSET_ST0_64:
983  case X86::FpSET_ST0_80:
984    assert(StackTop == 1 && "Stack should have one element on it to return!");
985    --StackTop;   // "Forget" we have something on the top of stack!
986    break;
987  case X86::MOV_Fp3232:
988  case X86::MOV_Fp3264:
989  case X86::MOV_Fp6432:
990  case X86::MOV_Fp6464:
991  case X86::MOV_Fp3280:
992  case X86::MOV_Fp6480:
993  case X86::MOV_Fp8032:
994  case X86::MOV_Fp8064:
995  case X86::MOV_Fp8080: {
996    unsigned SrcReg = getFPReg(MI->getOperand(1));
997    unsigned DestReg = getFPReg(MI->getOperand(0));
998
999    if (MI->killsRegister(X86::FP0+SrcReg)) {
1000      // If the input operand is killed, we can just change the owner of the
1001      // incoming stack slot into the result.
1002      unsigned Slot = getSlot(SrcReg);
1003      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1004      Stack[Slot] = DestReg;
1005      RegMap[DestReg] = Slot;
1006
1007    } else {
1008      // For FMOV we just duplicate the specified value to a new stack slot.
1009      // This could be made better, but would require substantial changes.
1010      duplicateToTop(SrcReg, DestReg, I);
1011    }
1012    }
1013    break;
1014  case TargetInstrInfo::INLINEASM: {
1015    // The inline asm MachineInstr currently only *uses* FP registers for the
1016    // 'f' constraint.  These should be turned into the current ST(x) register
1017    // in the machine instr.  Also, any kills should be explicitly popped after
1018    // the inline asm.
1019    unsigned Kills[7];
1020    unsigned NumKills = 0;
1021    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1022      MachineOperand &Op = MI->getOperand(i);
1023      if (!Op.isRegister() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1024        continue;
1025      assert(Op.isUse() && "Only handle inline asm uses right now");
1026
1027      unsigned FPReg = getFPReg(Op);
1028      Op.setReg(getSTReg(FPReg));
1029
1030      // If we kill this operand, make sure to pop it from the stack after the
1031      // asm.  We just remember it for now, and pop them all off at the end in
1032      // a batch.
1033      if (Op.isKill())
1034        Kills[NumKills++] = FPReg;
1035    }
1036
1037    // If this asm kills any FP registers (is the last use of them) we must
1038    // explicitly emit pop instructions for them.  Do this now after the asm has
1039    // executed so that the ST(x) numbers are not off (which would happen if we
1040    // did this inline with operand rewriting).
1041    //
1042    // Note: this might be a non-optimal pop sequence.  We might be able to do
1043    // better by trying to pop in stack order or something.
1044    MachineBasicBlock::iterator InsertPt = MI;
1045    while (NumKills)
1046      freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1047
1048    // Don't delete the inline asm!
1049    return;
1050  }
1051
1052  case X86::RET:
1053  case X86::RETI:
1054    // If RET has an FP register use operand, pass the first one in ST(0) and
1055    // the second one in ST(1).
1056    if (isStackEmpty()) return;  // Quick check to see if any are possible.
1057
1058    // Find the register operands.
1059    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1060
1061    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1062      MachineOperand &Op = MI->getOperand(i);
1063      if (!Op.isRegister() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1064        continue;
1065      // FP Register uses must be kills unless there are two uses of the same
1066      // register, in which case only one will be a kill.
1067      assert(Op.isUse() &&
1068             (Op.isKill() ||                        // Marked kill.
1069              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1070              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1071             "Ret only defs operands, and values aren't live beyond it");
1072
1073      if (FirstFPRegOp == ~0U)
1074        FirstFPRegOp = getFPReg(Op);
1075      else {
1076        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1077        SecondFPRegOp = getFPReg(Op);
1078      }
1079
1080      // Remove the operand so that later passes don't see it.
1081      MI->RemoveOperand(i);
1082      --i, --e;
1083    }
1084
1085    // There are only four possibilities here:
1086    // 1) we are returning a single FP value.  In this case, it has to be in
1087    //    ST(0) already, so just declare success by removing the value from the
1088    //    FP Stack.
1089    if (SecondFPRegOp == ~0U) {
1090      // Assert that the top of stack contains the right FP register.
1091      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1092             "Top of stack not the right register for RET!");
1093
1094      // Ok, everything is good, mark the value as not being on the stack
1095      // anymore so that our assertion about the stack being empty at end of
1096      // block doesn't fire.
1097      StackTop = 0;
1098      return;
1099    }
1100
1101    // Otherwise, we are returning two values:
1102    // 2) If returning the same value for both, we only have one thing in the FP
1103    //    stack.  Consider:  RET FP1, FP1
1104    if (StackTop == 1) {
1105      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1106             "Stack misconfiguration for RET!");
1107
1108      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1109      // register to hold it.
1110      unsigned NewReg = (FirstFPRegOp+1)%7;
1111      duplicateToTop(FirstFPRegOp, NewReg, MI);
1112      FirstFPRegOp = NewReg;
1113    }
1114
1115    /// Okay we know we have two different FPx operands now:
1116    assert(StackTop == 2 && "Must have two values live!");
1117
1118    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1119    ///    in ST(1).  In this case, emit an fxch.
1120    if (getStackEntry(0) == SecondFPRegOp) {
1121      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1122      moveToTop(FirstFPRegOp, MI);
1123    }
1124
1125    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1126    /// ST(1).  Just remove both from our understanding of the stack and return.
1127    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1128    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1129    StackTop = 0;
1130    return;
1131  }
1132
1133  I = MBB->erase(I);  // Remove the pseudo instruction
1134  --I;
1135}
1136