X86FloatingPoint.cpp revision e5f6204cd5d2306379bf8954e280ad35619a38b5
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code.  In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges.  Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet.  The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/LiveVariables.h"
37#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/DepthFirstIterator.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
47#include <set>
48using namespace llvm;
49
50STATISTIC(NumFXCH, "Number of fxch instructions inserted");
51STATISTIC(NumFP  , "Number of floating point instructions");
52
53namespace {
54  struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
55    static char ID;
56    FPS() : MachineFunctionPass((intptr_t)&ID) {}
57
58    virtual bool runOnMachineFunction(MachineFunction &MF);
59
60    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
61
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.addRequired<LiveVariables>();
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66  private:
67    const TargetInstrInfo *TII; // Machine instruction info.
68    LiveVariables     *LV;      // Live variable info for current function...
69    MachineBasicBlock *MBB;     // Current basic block
70    unsigned Stack[8];          // FP<n> Registers in each stack slot...
71    unsigned RegMap[8];         // Track which stack slot contains each register
72    unsigned StackTop;          // The current top of the FP stack.
73
74    void dumpStack() const {
75      cerr << "Stack contents:";
76      for (unsigned i = 0; i != StackTop; ++i) {
77        cerr << " FP" << Stack[i];
78        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
79      }
80      cerr << "\n";
81    }
82  private:
83    // getSlot - Return the stack slot number a particular register number is
84    // in...
85    unsigned getSlot(unsigned RegNo) const {
86      assert(RegNo < 8 && "Regno out of range!");
87      return RegMap[RegNo];
88    }
89
90    // getStackEntry - Return the X86::FP<n> register in register ST(i)
91    unsigned getStackEntry(unsigned STi) const {
92      assert(STi < StackTop && "Access past stack top!");
93      return Stack[StackTop-1-STi];
94    }
95
96    // getSTReg - Return the X86::ST(i) register which contains the specified
97    // FP<RegNo> register
98    unsigned getSTReg(unsigned RegNo) const {
99      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
100    }
101
102    // pushReg - Push the specified FP<n> register onto the stack
103    void pushReg(unsigned Reg) {
104      assert(Reg < 8 && "Register number out of range!");
105      assert(StackTop < 8 && "Stack overflow!");
106      Stack[StackTop] = Reg;
107      RegMap[Reg] = StackTop++;
108    }
109
110    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
111    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
112      if (!isAtTop(RegNo)) {
113        unsigned STReg = getSTReg(RegNo);
114        unsigned RegOnTop = getStackEntry(0);
115
116        // Swap the slots the regs are in
117        std::swap(RegMap[RegNo], RegMap[RegOnTop]);
118
119        // Swap stack slot contents
120        assert(RegMap[RegOnTop] < StackTop);
121        std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
122
123        // Emit an fxch to update the runtime processors version of the state
124        BuildMI(*MBB, I, TII->get(X86::XCH_F)).addReg(STReg);
125        NumFXCH++;
126      }
127    }
128
129    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
130      unsigned STReg = getSTReg(RegNo);
131      pushReg(AsReg);   // New register on top of stack
132
133      BuildMI(*MBB, I, TII->get(X86::LD_Frr)).addReg(STReg);
134    }
135
136    // popStackAfter - Pop the current value off of the top of the FP stack
137    // after the specified instruction.
138    void popStackAfter(MachineBasicBlock::iterator &I);
139
140    // freeStackSlotAfter - Free the specified register from the register stack,
141    // so that it is no longer in a register.  If the register is currently at
142    // the top of the stack, we just pop the current instruction, otherwise we
143    // store the current top-of-stack into the specified slot, then pop the top
144    // of stack.
145    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
146
147    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
148
149    void handleZeroArgFP(MachineBasicBlock::iterator &I);
150    void handleOneArgFP(MachineBasicBlock::iterator &I);
151    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
152    void handleTwoArgFP(MachineBasicBlock::iterator &I);
153    void handleCompareFP(MachineBasicBlock::iterator &I);
154    void handleCondMovFP(MachineBasicBlock::iterator &I);
155    void handleSpecialFP(MachineBasicBlock::iterator &I);
156  };
157  char FPS::ID = 0;
158}
159
160FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
161
162/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
163/// register references into FP stack references.
164///
165bool FPS::runOnMachineFunction(MachineFunction &MF) {
166  // We only need to run this pass if there are any FP registers used in this
167  // function.  If it is all integer, there is nothing for us to do!
168  bool FPIsUsed = false;
169
170  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
171  for (unsigned i = 0; i <= 6; ++i)
172    if (MF.isPhysRegUsed(X86::FP0+i)) {
173      FPIsUsed = true;
174      break;
175    }
176
177  // Early exit.
178  if (!FPIsUsed) return false;
179
180  TII = MF.getTarget().getInstrInfo();
181  LV = &getAnalysis<LiveVariables>();
182  StackTop = 0;
183
184  // Process the function in depth first order so that we process at least one
185  // of the predecessors for every reachable block in the function.
186  std::set<MachineBasicBlock*> Processed;
187  MachineBasicBlock *Entry = MF.begin();
188
189  bool Changed = false;
190  for (df_ext_iterator<MachineBasicBlock*, std::set<MachineBasicBlock*> >
191         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
192       I != E; ++I)
193    Changed |= processBasicBlock(MF, **I);
194
195  return Changed;
196}
197
198/// processBasicBlock - Loop over all of the instructions in the basic block,
199/// transforming FP instructions into their stack form.
200///
201bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
202  bool Changed = false;
203  MBB = &BB;
204
205  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
206    MachineInstr *MI = I;
207    unsigned Flags = MI->getInstrDescriptor()->TSFlags;
208    if ((Flags & X86II::FPTypeMask) == X86II::NotFP)
209      continue;  // Efficiently ignore non-fp insts!
210
211    MachineInstr *PrevMI = 0;
212    if (I != BB.begin())
213        PrevMI = prior(I);
214
215    ++NumFP;  // Keep track of # of pseudo instrs
216    DOUT << "\nFPInst:\t" << *MI;
217
218    // Get dead variables list now because the MI pointer may be deleted as part
219    // of processing!
220    SmallVector<unsigned, 8> DeadRegs;
221    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
222      const MachineOperand &MO = MI->getOperand(i);
223      if (MO.isRegister() && MO.isDead())
224        DeadRegs.push_back(MO.getReg());
225    }
226
227    switch (Flags & X86II::FPTypeMask) {
228    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
229    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
230    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
231    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
232    case X86II::CompareFP:  handleCompareFP(I); break;
233    case X86II::CondMovFP:  handleCondMovFP(I); break;
234    case X86II::SpecialFP:  handleSpecialFP(I); break;
235    default: assert(0 && "Unknown FP Type!");
236    }
237
238    // Check to see if any of the values defined by this instruction are dead
239    // after definition.  If so, pop them.
240    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
241      unsigned Reg = DeadRegs[i];
242      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
243        DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
244        freeStackSlotAfter(I, Reg-X86::FP0);
245      }
246    }
247
248    // Print out all of the instructions expanded to if -debug
249    DEBUG(
250      MachineBasicBlock::iterator PrevI(PrevMI);
251      if (I == PrevI) {
252        cerr << "Just deleted pseudo instruction\n";
253      } else {
254        MachineBasicBlock::iterator Start = I;
255        // Rewind to first instruction newly inserted.
256        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
257        cerr << "Inserted instructions:\n\t";
258        Start->print(*cerr.stream(), &MF.getTarget());
259        while (++Start != next(I)) {}
260      }
261      dumpStack();
262    );
263
264    Changed = true;
265  }
266
267  assert(StackTop == 0 && "Stack not empty at end of basic block?");
268  return Changed;
269}
270
271//===----------------------------------------------------------------------===//
272// Efficient Lookup Table Support
273//===----------------------------------------------------------------------===//
274
275namespace {
276  struct TableEntry {
277    unsigned from;
278    unsigned to;
279    bool operator<(const TableEntry &TE) const { return from < TE.from; }
280    friend bool operator<(const TableEntry &TE, unsigned V) {
281      return TE.from < V;
282    }
283    friend bool operator<(unsigned V, const TableEntry &TE) {
284      return V < TE.from;
285    }
286  };
287}
288
289static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
290  for (unsigned i = 0; i != NumEntries-1; ++i)
291    if (!(Table[i] < Table[i+1])) return false;
292  return true;
293}
294
295static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
296  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
297  if (I != Table+N && I->from == Opcode)
298    return I->to;
299  return -1;
300}
301
302#ifdef NDEBUG
303#define ASSERT_SORTED(TABLE)
304#else
305#define ASSERT_SORTED(TABLE)                                              \
306  { static bool TABLE##Checked = false;                                   \
307    if (!TABLE##Checked) {                                                \
308       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
309              "All lookup tables must be sorted for efficient access!");  \
310       TABLE##Checked = true;                                             \
311    }                                                                     \
312  }
313#endif
314
315//===----------------------------------------------------------------------===//
316// Register File -> Register Stack Mapping Methods
317//===----------------------------------------------------------------------===//
318
319// OpcodeTable - Sorted map of register instructions to their stack version.
320// The first element is an register file pseudo instruction, the second is the
321// concrete X86 instruction which uses the register stack.
322//
323static const TableEntry OpcodeTable[] = {
324  { X86::ABS_Fp32     , X86::ABS_F     },
325  { X86::ABS_Fp64     , X86::ABS_F     },
326  { X86::ABS_Fp80     , X86::ABS_F     },
327  { X86::ADD_Fp32m    , X86::ADD_F32m  },
328  { X86::ADD_Fp64m    , X86::ADD_F64m  },
329  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
330  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
331  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
332  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
333  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
334  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
335  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
336  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
337  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
338  { X86::CHS_Fp32     , X86::CHS_F     },
339  { X86::CHS_Fp64     , X86::CHS_F     },
340  { X86::CHS_Fp80     , X86::CHS_F     },
341  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
342  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
343  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
344  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
345  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
346  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
347  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
348  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
349  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
350  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
351  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
352  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
353  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
354  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
355  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
356  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
357  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
358  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
359  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
360  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
361  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
362  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
363  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
364  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
365  { X86::COS_Fp32     , X86::COS_F     },
366  { X86::COS_Fp64     , X86::COS_F     },
367  { X86::COS_Fp80     , X86::COS_F     },
368  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
369  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
370  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
371  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
372  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
373  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
374  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
375  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
376  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
377  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
378  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
379  { X86::DIV_Fp32m    , X86::DIV_F32m  },
380  { X86::DIV_Fp64m    , X86::DIV_F64m  },
381  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
382  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
383  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
384  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
385  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
386  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
387  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
388  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
389  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
390  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
391  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
392  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
393  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
394  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
395  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
396  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
397  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
398  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
399  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
400  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
401  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
402  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
403  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
404  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
405  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
406  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
407  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
408  { X86::IST_Fp16m32  , X86::IST_F16m  },
409  { X86::IST_Fp16m64  , X86::IST_F16m  },
410  { X86::IST_Fp16m80  , X86::IST_F16m  },
411  { X86::IST_Fp32m32  , X86::IST_F32m  },
412  { X86::IST_Fp32m64  , X86::IST_F32m  },
413  { X86::IST_Fp32m80  , X86::IST_F32m  },
414  { X86::IST_Fp64m32  , X86::IST_FP64m },
415  { X86::IST_Fp64m64  , X86::IST_FP64m },
416  { X86::IST_Fp64m80  , X86::IST_FP64m },
417  { X86::LD_Fp032     , X86::LD_F0     },
418  { X86::LD_Fp064     , X86::LD_F0     },
419  { X86::LD_Fp080     , X86::LD_F0     },
420  { X86::LD_Fp132     , X86::LD_F1     },
421  { X86::LD_Fp164     , X86::LD_F1     },
422  { X86::LD_Fp180     , X86::LD_F1     },
423  { X86::LD_Fp32m     , X86::LD_F32m   },
424  { X86::LD_Fp32m64   , X86::LD_F32m   },
425  { X86::LD_Fp32m80   , X86::LD_F32m   },
426  { X86::LD_Fp64m     , X86::LD_F64m   },
427  { X86::LD_Fp64m80   , X86::LD_F64m   },
428  { X86::LD_Fp80m     , X86::LD_F80m   },
429  { X86::MUL_Fp32m    , X86::MUL_F32m  },
430  { X86::MUL_Fp64m    , X86::MUL_F64m  },
431  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
432  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
433  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
434  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
435  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
436  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
437  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
438  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
439  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
440  { X86::SIN_Fp32     , X86::SIN_F     },
441  { X86::SIN_Fp64     , X86::SIN_F     },
442  { X86::SIN_Fp80     , X86::SIN_F     },
443  { X86::SQRT_Fp32    , X86::SQRT_F    },
444  { X86::SQRT_Fp64    , X86::SQRT_F    },
445  { X86::SQRT_Fp80    , X86::SQRT_F    },
446  { X86::ST_Fp32m     , X86::ST_F32m   },
447  { X86::ST_Fp64m     , X86::ST_F64m   },
448  { X86::ST_Fp64m32   , X86::ST_F32m   },
449  { X86::ST_Fp80m32   , X86::ST_F32m   },
450  { X86::ST_Fp80m64   , X86::ST_F64m   },
451  { X86::ST_FpP80m    , X86::ST_FP80m  },
452  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
453  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
454  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
455  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
456  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
457  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
458  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
459  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
460  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
461  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
462  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
463  { X86::SUB_Fp32m    , X86::SUB_F32m  },
464  { X86::SUB_Fp64m    , X86::SUB_F64m  },
465  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
466  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
467  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
468  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
469  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
470  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
471  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
472  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
473  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
474  { X86::TST_Fp32     , X86::TST_F     },
475  { X86::TST_Fp64     , X86::TST_F     },
476  { X86::TST_Fp80     , X86::TST_F     },
477  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
478  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
479  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
480  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
481  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
482  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
483};
484
485static unsigned getConcreteOpcode(unsigned Opcode) {
486  ASSERT_SORTED(OpcodeTable);
487  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
488  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
489  return Opc;
490}
491
492//===----------------------------------------------------------------------===//
493// Helper Methods
494//===----------------------------------------------------------------------===//
495
496// PopTable - Sorted map of instructions to their popping version.  The first
497// element is an instruction, the second is the version which pops.
498//
499static const TableEntry PopTable[] = {
500  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
501
502  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
503  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
504
505  { X86::IST_F16m  , X86::IST_FP16m   },
506  { X86::IST_F32m  , X86::IST_FP32m   },
507
508  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
509
510  { X86::ST_F32m   , X86::ST_FP32m    },
511  { X86::ST_F64m   , X86::ST_FP64m    },
512  { X86::ST_Frr    , X86::ST_FPrr     },
513
514  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
515  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
516
517  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
518
519  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
520  { X86::UCOM_Fr   , X86::UCOM_FPr    },
521};
522
523/// popStackAfter - Pop the current value off of the top of the FP stack after
524/// the specified instruction.  This attempts to be sneaky and combine the pop
525/// into the instruction itself if possible.  The iterator is left pointing to
526/// the last instruction, be it a new pop instruction inserted, or the old
527/// instruction if it was modified in place.
528///
529void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
530  ASSERT_SORTED(PopTable);
531  assert(StackTop > 0 && "Cannot pop empty stack!");
532  RegMap[Stack[--StackTop]] = ~0;     // Update state
533
534  // Check to see if there is a popping version of this instruction...
535  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
536  if (Opcode != -1) {
537    I->setInstrDescriptor(TII->get(Opcode));
538    if (Opcode == X86::UCOM_FPPr)
539      I->RemoveOperand(0);
540  } else {    // Insert an explicit pop
541    I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
542  }
543}
544
545/// freeStackSlotAfter - Free the specified register from the register stack, so
546/// that it is no longer in a register.  If the register is currently at the top
547/// of the stack, we just pop the current instruction, otherwise we store the
548/// current top-of-stack into the specified slot, then pop the top of stack.
549void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
550  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
551    popStackAfter(I);
552    return;
553  }
554
555  // Otherwise, store the top of stack into the dead slot, killing the operand
556  // without having to add in an explicit xchg then pop.
557  //
558  unsigned STReg    = getSTReg(FPRegNo);
559  unsigned OldSlot  = getSlot(FPRegNo);
560  unsigned TopReg   = Stack[StackTop-1];
561  Stack[OldSlot]    = TopReg;
562  RegMap[TopReg]    = OldSlot;
563  RegMap[FPRegNo]   = ~0;
564  Stack[--StackTop] = ~0;
565  I = BuildMI(*MBB, ++I, TII->get(X86::ST_FPrr)).addReg(STReg);
566}
567
568
569static unsigned getFPReg(const MachineOperand &MO) {
570  assert(MO.isRegister() && "Expected an FP register!");
571  unsigned Reg = MO.getReg();
572  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
573  return Reg - X86::FP0;
574}
575
576
577//===----------------------------------------------------------------------===//
578// Instruction transformation implementation
579//===----------------------------------------------------------------------===//
580
581/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
582///
583void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
584  MachineInstr *MI = I;
585  unsigned DestReg = getFPReg(MI->getOperand(0));
586
587  // Change from the pseudo instruction to the concrete instruction.
588  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
589  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
590
591  // Result gets pushed on the stack.
592  pushReg(DestReg);
593}
594
595/// handleOneArgFP - fst <mem>, ST(0)
596///
597void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
598  MachineInstr *MI = I;
599  unsigned NumOps = MI->getInstrDescriptor()->numOperands;
600  assert((NumOps == 5 || NumOps == 1) &&
601         "Can only handle fst* & ftst instructions!");
602
603  // Is this the last use of the source register?
604  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
605  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
606
607  // FISTP64m is strange because there isn't a non-popping versions.
608  // If we have one _and_ we don't want to pop the operand, duplicate the value
609  // on the stack instead of moving it.  This ensure that popping the value is
610  // always ok.
611  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
612  //
613  if (!KillsSrc &&
614      (MI->getOpcode() == X86::IST_Fp64m32 ||
615       MI->getOpcode() == X86::ISTT_Fp16m32 ||
616       MI->getOpcode() == X86::ISTT_Fp32m32 ||
617       MI->getOpcode() == X86::ISTT_Fp64m32 ||
618       MI->getOpcode() == X86::IST_Fp64m64 ||
619       MI->getOpcode() == X86::ISTT_Fp16m64 ||
620       MI->getOpcode() == X86::ISTT_Fp32m64 ||
621       MI->getOpcode() == X86::ISTT_Fp64m64 ||
622       MI->getOpcode() == X86::IST_Fp64m80 ||
623       MI->getOpcode() == X86::ISTT_Fp16m80 ||
624       MI->getOpcode() == X86::ISTT_Fp32m80 ||
625       MI->getOpcode() == X86::ISTT_Fp64m80 ||
626       MI->getOpcode() == X86::ST_FpP80m)) {
627    duplicateToTop(Reg, 7 /*temp register*/, I);
628  } else {
629    moveToTop(Reg, I);            // Move to the top of the stack...
630  }
631
632  // Convert from the pseudo instruction to the concrete instruction.
633  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
634  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
635
636  if (MI->getOpcode() == X86::IST_FP64m ||
637      MI->getOpcode() == X86::ISTT_FP16m ||
638      MI->getOpcode() == X86::ISTT_FP32m ||
639      MI->getOpcode() == X86::ISTT_FP64m ||
640      MI->getOpcode() == X86::ST_FP80m) {
641    assert(StackTop > 0 && "Stack empty??");
642    --StackTop;
643  } else if (KillsSrc) { // Last use of operand?
644    popStackAfter(I);
645  }
646}
647
648
649/// handleOneArgFPRW: Handle instructions that read from the top of stack and
650/// replace the value with a newly computed value.  These instructions may have
651/// non-fp operands after their FP operands.
652///
653///  Examples:
654///     R1 = fchs R2
655///     R1 = fadd R2, [mem]
656///
657void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
658  MachineInstr *MI = I;
659  unsigned NumOps = MI->getInstrDescriptor()->numOperands;
660  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
661
662  // Is this the last use of the source register?
663  unsigned Reg = getFPReg(MI->getOperand(1));
664  bool KillsSrc = LV->KillsRegister(MI, X86::FP0+Reg);
665
666  if (KillsSrc) {
667    // If this is the last use of the source register, just make sure it's on
668    // the top of the stack.
669    moveToTop(Reg, I);
670    assert(StackTop > 0 && "Stack cannot be empty!");
671    --StackTop;
672    pushReg(getFPReg(MI->getOperand(0)));
673  } else {
674    // If this is not the last use of the source register, _copy_ it to the top
675    // of the stack.
676    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
677  }
678
679  // Change from the pseudo instruction to the concrete instruction.
680  MI->RemoveOperand(1);   // Drop the source operand.
681  MI->RemoveOperand(0);   // Drop the destination operand.
682  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
683}
684
685
686//===----------------------------------------------------------------------===//
687// Define tables of various ways to map pseudo instructions
688//
689
690// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
691static const TableEntry ForwardST0Table[] = {
692  { X86::ADD_Fp32  , X86::ADD_FST0r },
693  { X86::ADD_Fp64  , X86::ADD_FST0r },
694  { X86::ADD_Fp80  , X86::ADD_FST0r },
695  { X86::DIV_Fp32  , X86::DIV_FST0r },
696  { X86::DIV_Fp64  , X86::DIV_FST0r },
697  { X86::DIV_Fp80  , X86::DIV_FST0r },
698  { X86::MUL_Fp32  , X86::MUL_FST0r },
699  { X86::MUL_Fp64  , X86::MUL_FST0r },
700  { X86::MUL_Fp80  , X86::MUL_FST0r },
701  { X86::SUB_Fp32  , X86::SUB_FST0r },
702  { X86::SUB_Fp64  , X86::SUB_FST0r },
703  { X86::SUB_Fp80  , X86::SUB_FST0r },
704};
705
706// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
707static const TableEntry ReverseST0Table[] = {
708  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
709  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
710  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
711  { X86::DIV_Fp32  , X86::DIVR_FST0r },
712  { X86::DIV_Fp64  , X86::DIVR_FST0r },
713  { X86::DIV_Fp80  , X86::DIVR_FST0r },
714  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
715  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
716  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
717  { X86::SUB_Fp32  , X86::SUBR_FST0r },
718  { X86::SUB_Fp64  , X86::SUBR_FST0r },
719  { X86::SUB_Fp80  , X86::SUBR_FST0r },
720};
721
722// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
723static const TableEntry ForwardSTiTable[] = {
724  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
725  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
726  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
727  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
728  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
729  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
730  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
731  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
732  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
733  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
734  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
735  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
736};
737
738// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
739static const TableEntry ReverseSTiTable[] = {
740  { X86::ADD_Fp32  , X86::ADD_FrST0 },
741  { X86::ADD_Fp64  , X86::ADD_FrST0 },
742  { X86::ADD_Fp80  , X86::ADD_FrST0 },
743  { X86::DIV_Fp32  , X86::DIV_FrST0 },
744  { X86::DIV_Fp64  , X86::DIV_FrST0 },
745  { X86::DIV_Fp80  , X86::DIV_FrST0 },
746  { X86::MUL_Fp32  , X86::MUL_FrST0 },
747  { X86::MUL_Fp64  , X86::MUL_FrST0 },
748  { X86::MUL_Fp80  , X86::MUL_FrST0 },
749  { X86::SUB_Fp32  , X86::SUB_FrST0 },
750  { X86::SUB_Fp64  , X86::SUB_FrST0 },
751  { X86::SUB_Fp80  , X86::SUB_FrST0 },
752};
753
754
755/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
756/// instructions which need to be simplified and possibly transformed.
757///
758/// Result: ST(0) = fsub  ST(0), ST(i)
759///         ST(i) = fsub  ST(0), ST(i)
760///         ST(0) = fsubr ST(0), ST(i)
761///         ST(i) = fsubr ST(0), ST(i)
762///
763void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
764  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
765  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
766  MachineInstr *MI = I;
767
768  unsigned NumOperands = MI->getInstrDescriptor()->numOperands;
769  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
770  unsigned Dest = getFPReg(MI->getOperand(0));
771  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
772  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
773  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
774  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
775
776  unsigned TOS = getStackEntry(0);
777
778  // One of our operands must be on the top of the stack.  If neither is yet, we
779  // need to move one.
780  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
781    // We can choose to move either operand to the top of the stack.  If one of
782    // the operands is killed by this instruction, we want that one so that we
783    // can update right on top of the old version.
784    if (KillsOp0) {
785      moveToTop(Op0, I);         // Move dead operand to TOS.
786      TOS = Op0;
787    } else if (KillsOp1) {
788      moveToTop(Op1, I);
789      TOS = Op1;
790    } else {
791      // All of the operands are live after this instruction executes, so we
792      // cannot update on top of any operand.  Because of this, we must
793      // duplicate one of the stack elements to the top.  It doesn't matter
794      // which one we pick.
795      //
796      duplicateToTop(Op0, Dest, I);
797      Op0 = TOS = Dest;
798      KillsOp0 = true;
799    }
800  } else if (!KillsOp0 && !KillsOp1) {
801    // If we DO have one of our operands at the top of the stack, but we don't
802    // have a dead operand, we must duplicate one of the operands to a new slot
803    // on the stack.
804    duplicateToTop(Op0, Dest, I);
805    Op0 = TOS = Dest;
806    KillsOp0 = true;
807  }
808
809  // Now we know that one of our operands is on the top of the stack, and at
810  // least one of our operands is killed by this instruction.
811  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
812         "Stack conditions not set up right!");
813
814  // We decide which form to use based on what is on the top of the stack, and
815  // which operand is killed by this instruction.
816  const TableEntry *InstTable;
817  bool isForward = TOS == Op0;
818  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
819  if (updateST0) {
820    if (isForward)
821      InstTable = ForwardST0Table;
822    else
823      InstTable = ReverseST0Table;
824  } else {
825    if (isForward)
826      InstTable = ForwardSTiTable;
827    else
828      InstTable = ReverseSTiTable;
829  }
830
831  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
832                      MI->getOpcode());
833  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
834
835  // NotTOS - The register which is not on the top of stack...
836  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
837
838  // Replace the old instruction with a new instruction
839  MBB->remove(I++);
840  I = BuildMI(*MBB, I, TII->get(Opcode)).addReg(getSTReg(NotTOS));
841
842  // If both operands are killed, pop one off of the stack in addition to
843  // overwriting the other one.
844  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
845    assert(!updateST0 && "Should have updated other operand!");
846    popStackAfter(I);   // Pop the top of stack
847  }
848
849  // Update stack information so that we know the destination register is now on
850  // the stack.
851  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
852  assert(UpdatedSlot < StackTop && Dest < 7);
853  Stack[UpdatedSlot]   = Dest;
854  RegMap[Dest]         = UpdatedSlot;
855  delete MI;   // Remove the old instruction
856}
857
858/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
859/// register arguments and no explicit destinations.
860///
861void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
862  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
863  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
864  MachineInstr *MI = I;
865
866  unsigned NumOperands = MI->getInstrDescriptor()->numOperands;
867  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
868  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
869  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
870  bool KillsOp0 = LV->KillsRegister(MI, X86::FP0+Op0);
871  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
872
873  // Make sure the first operand is on the top of stack, the other one can be
874  // anywhere.
875  moveToTop(Op0, I);
876
877  // Change from the pseudo instruction to the concrete instruction.
878  MI->getOperand(0).setReg(getSTReg(Op1));
879  MI->RemoveOperand(1);
880  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
881
882  // If any of the operands are killed by this instruction, free them.
883  if (KillsOp0) freeStackSlotAfter(I, Op0);
884  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
885}
886
887/// handleCondMovFP - Handle two address conditional move instructions.  These
888/// instructions move a st(i) register to st(0) iff a condition is true.  These
889/// instructions require that the first operand is at the top of the stack, but
890/// otherwise don't modify the stack at all.
891void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
892  MachineInstr *MI = I;
893
894  unsigned Op0 = getFPReg(MI->getOperand(0));
895  unsigned Op1 = getFPReg(MI->getOperand(2));
896  bool KillsOp1 = LV->KillsRegister(MI, X86::FP0+Op1);
897
898  // The first operand *must* be on the top of the stack.
899  moveToTop(Op0, I);
900
901  // Change the second operand to the stack register that the operand is in.
902  // Change from the pseudo instruction to the concrete instruction.
903  MI->RemoveOperand(0);
904  MI->RemoveOperand(1);
905  MI->getOperand(0).setReg(getSTReg(Op1));
906  MI->setInstrDescriptor(TII->get(getConcreteOpcode(MI->getOpcode())));
907
908  // If we kill the second operand, make sure to pop it from the stack.
909  if (Op0 != Op1 && KillsOp1) {
910    // Get this value off of the register stack.
911    freeStackSlotAfter(I, Op1);
912  }
913}
914
915
916/// handleSpecialFP - Handle special instructions which behave unlike other
917/// floating point instructions.  This is primarily intended for use by pseudo
918/// instructions.
919///
920void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
921  MachineInstr *MI = I;
922  switch (MI->getOpcode()) {
923  default: assert(0 && "Unknown SpecialFP instruction!");
924  case X86::FpGETRESULT32:  // Appears immediately after a call returning FP type!
925  case X86::FpGETRESULT64:  // Appears immediately after a call returning FP type!
926  case X86::FpGETRESULT80:
927    assert(StackTop == 0 && "Stack should be empty after a call!");
928    pushReg(getFPReg(MI->getOperand(0)));
929    break;
930  case X86::FpSETRESULT32:
931  case X86::FpSETRESULT64:
932  case X86::FpSETRESULT80:
933    assert(StackTop == 1 && "Stack should have one element on it to return!");
934    --StackTop;   // "Forget" we have something on the top of stack!
935    break;
936  case X86::MOV_Fp3232:
937  case X86::MOV_Fp3264:
938  case X86::MOV_Fp6432:
939  case X86::MOV_Fp6464:
940  case X86::MOV_Fp3280:
941  case X86::MOV_Fp6480:
942  case X86::MOV_Fp8032:
943  case X86::MOV_Fp8064:
944  case X86::MOV_Fp8080: {
945    unsigned SrcReg = getFPReg(MI->getOperand(1));
946    unsigned DestReg = getFPReg(MI->getOperand(0));
947
948    if (LV->KillsRegister(MI, X86::FP0+SrcReg)) {
949      // If the input operand is killed, we can just change the owner of the
950      // incoming stack slot into the result.
951      unsigned Slot = getSlot(SrcReg);
952      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
953      Stack[Slot] = DestReg;
954      RegMap[DestReg] = Slot;
955
956    } else {
957      // For FMOV we just duplicate the specified value to a new stack slot.
958      // This could be made better, but would require substantial changes.
959      duplicateToTop(SrcReg, DestReg, I);
960    }
961    break;
962  }
963  }
964
965  I = MBB->erase(I);  // Remove the pseudo instruction
966  --I;
967}
968