X86FloatingPoint.cpp revision e928ec9480072ed1298fba2fbd8faa0e89253bf1
1//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// pseudo registers into register stack instructions.  This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
20//
21// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
23//
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "x86-codegen"
27#include "X86.h"
28#include "X86InstrInfo.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetMachine.h"
44#include <algorithm>
45using namespace llvm;
46
47STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48STATISTIC(NumFP  , "Number of floating point instructions");
49
50namespace {
51  struct FPS : public MachineFunctionPass {
52    static char ID;
53    FPS() : MachineFunctionPass(&ID) {}
54
55    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
56      AU.setPreservesCFG();
57      AU.addPreservedID(MachineLoopInfoID);
58      AU.addPreservedID(MachineDominatorsID);
59      MachineFunctionPass::getAnalysisUsage(AU);
60    }
61
62    virtual bool runOnMachineFunction(MachineFunction &MF);
63
64    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
65
66  private:
67    const TargetInstrInfo *TII; // Machine instruction info.
68
69    // Two CFG edges are related if they leave the same block, or enter the same
70    // block. The transitive closure of an edge under this relation is a
71    // LiveBundle. It represents a set of CFG edges where the live FP stack
72    // registers must be allocated identically in the x87 stack.
73    //
74    // A LiveBundle is usually all the edges leaving a block, or all the edges
75    // entering a block, but it can contain more edges if critical edges are
76    // present.
77    //
78    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
79    // but the exact mapping of FP registers to stack slots is fixed later.
80    struct LiveBundle {
81      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
82      unsigned Mask;
83
84      // Number of pre-assigned live registers in FixStack. This is 0 when the
85      // stack order has not yet been fixed.
86      unsigned FixCount;
87
88      // Assigned stack order for live-in registers.
89      // FixStack[i] == getStackEntry(i) for all i < FixCount.
90      unsigned char FixStack[8];
91
92      LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
93
94      // Have the live registers been assigned a stack order yet?
95      bool isFixed() const { return !Mask || FixCount; }
96    };
97
98    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
99    // with no live FP registers.
100    SmallVector<LiveBundle, 8> LiveBundles;
101
102    // Map each MBB in the current function to an (ingoing, outgoing) index into
103    // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
104    // and are not actually stored in the map.
105    DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
106
107    // Return a bitmask of FP registers in block's live-in list.
108    unsigned calcLiveInMask(MachineBasicBlock *MBB) {
109      unsigned Mask = 0;
110      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
111           E = MBB->livein_end(); I != E; ++I) {
112        unsigned Reg = *I - X86::FP0;
113        if (Reg < 8)
114          Mask |= 1 << Reg;
115      }
116      return Mask;
117    }
118
119    // Partition all the CFG edges into LiveBundles.
120    void bundleCFG(MachineFunction &MF);
121
122    MachineBasicBlock *MBB;     // Current basic block
123    unsigned Stack[8];          // FP<n> Registers in each stack slot...
124    unsigned RegMap[8];         // Track which stack slot contains each register
125    unsigned StackTop;          // The current top of the FP stack.
126
127    // Set up our stack model to match the incoming registers to MBB.
128    void setupBlockStack();
129
130    // Shuffle live registers to match the expectations of successor blocks.
131    void finishBlockStack();
132
133    void dumpStack() const {
134      dbgs() << "Stack contents:";
135      for (unsigned i = 0; i != StackTop; ++i) {
136        dbgs() << " FP" << Stack[i];
137        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
138      }
139      dbgs() << "\n";
140    }
141
142    /// isStackEmpty - Return true if the FP stack is empty.
143    bool isStackEmpty() const {
144      return StackTop == 0;
145    }
146
147    // getSlot - Return the stack slot number a particular register number is
148    // in.
149    unsigned getSlot(unsigned RegNo) const {
150      assert(RegNo < 8 && "Regno out of range!");
151      return RegMap[RegNo];
152    }
153
154    // isLive - Is RegNo currently live in the stack?
155    bool isLive(unsigned RegNo) const {
156      unsigned Slot = getSlot(RegNo);
157      return Slot < StackTop && Stack[Slot] == RegNo;
158    }
159
160    // getStackEntry - Return the X86::FP<n> register in register ST(i).
161    unsigned getStackEntry(unsigned STi) const {
162      assert(STi < StackTop && "Access past stack top!");
163      return Stack[StackTop-1-STi];
164    }
165
166    // getSTReg - Return the X86::ST(i) register which contains the specified
167    // FP<RegNo> register.
168    unsigned getSTReg(unsigned RegNo) const {
169      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
170    }
171
172    // pushReg - Push the specified FP<n> register onto the stack.
173    void pushReg(unsigned Reg) {
174      assert(Reg < 8 && "Register number out of range!");
175      assert(StackTop < 8 && "Stack overflow!");
176      Stack[StackTop] = Reg;
177      RegMap[Reg] = StackTop++;
178    }
179
180    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
181    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
182      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
183      if (isAtTop(RegNo)) return;
184
185      unsigned STReg = getSTReg(RegNo);
186      unsigned RegOnTop = getStackEntry(0);
187
188      // Swap the slots the regs are in.
189      std::swap(RegMap[RegNo], RegMap[RegOnTop]);
190
191      // Swap stack slot contents.
192      assert(RegMap[RegOnTop] < StackTop);
193      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
194
195      // Emit an fxch to update the runtime processors version of the state.
196      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
197      ++NumFXCH;
198    }
199
200    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
201      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
202      unsigned STReg = getSTReg(RegNo);
203      pushReg(AsReg);   // New register on top of stack
204
205      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
206    }
207
208    // popStackAfter - Pop the current value off of the top of the FP stack
209    // after the specified instruction.
210    void popStackAfter(MachineBasicBlock::iterator &I);
211
212    // freeStackSlotAfter - Free the specified register from the register stack,
213    // so that it is no longer in a register.  If the register is currently at
214    // the top of the stack, we just pop the current instruction, otherwise we
215    // store the current top-of-stack into the specified slot, then pop the top
216    // of stack.
217    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
218
219    // freeStackSlotBefore - Just the pop, no folding. Return the inserted
220    // instruction.
221    MachineBasicBlock::iterator
222    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
223
224    // Adjust the live registers to be the set in Mask.
225    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
226
227    // Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
228    //st(0), FP reg FixStack[1] is st(1) etc.
229    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
230                         MachineBasicBlock::iterator I);
231
232    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
233
234    void handleZeroArgFP(MachineBasicBlock::iterator &I);
235    void handleOneArgFP(MachineBasicBlock::iterator &I);
236    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
237    void handleTwoArgFP(MachineBasicBlock::iterator &I);
238    void handleCompareFP(MachineBasicBlock::iterator &I);
239    void handleCondMovFP(MachineBasicBlock::iterator &I);
240    void handleSpecialFP(MachineBasicBlock::iterator &I);
241
242    bool translateCopy(MachineInstr*);
243  };
244  char FPS::ID = 0;
245}
246
247FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
248
249/// getFPReg - Return the X86::FPx register number for the specified operand.
250/// For example, this returns 3 for X86::FP3.
251static unsigned getFPReg(const MachineOperand &MO) {
252  assert(MO.isReg() && "Expected an FP register!");
253  unsigned Reg = MO.getReg();
254  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
255  return Reg - X86::FP0;
256}
257
258/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
259/// register references into FP stack references.
260///
261bool FPS::runOnMachineFunction(MachineFunction &MF) {
262  // We only need to run this pass if there are any FP registers used in this
263  // function.  If it is all integer, there is nothing for us to do!
264  bool FPIsUsed = false;
265
266  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
267  for (unsigned i = 0; i <= 6; ++i)
268    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
269      FPIsUsed = true;
270      break;
271    }
272
273  // Early exit.
274  if (!FPIsUsed) return false;
275
276  TII = MF.getTarget().getInstrInfo();
277
278  // Prepare cross-MBB liveness.
279  bundleCFG(MF);
280
281  StackTop = 0;
282
283  // Process the function in depth first order so that we process at least one
284  // of the predecessors for every reachable block in the function.
285  SmallPtrSet<MachineBasicBlock*, 8> Processed;
286  MachineBasicBlock *Entry = MF.begin();
287
288  bool Changed = false;
289  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
290         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
291       I != E; ++I)
292    Changed |= processBasicBlock(MF, **I);
293
294  // Process any unreachable blocks in arbitrary order now.
295  if (MF.size() != Processed.size())
296    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
297      if (Processed.insert(BB))
298        Changed |= processBasicBlock(MF, *BB);
299
300  BlockBundle.clear();
301  LiveBundles.clear();
302
303  return Changed;
304}
305
306/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
307/// live-out sets for the FP registers. Consistent means that the set of
308/// registers live-out from a block is identical to the live-in set of all
309/// successors. This is not enforced by the normal live-in lists since
310/// registers may be implicitly defined, or not used by all successors.
311void FPS::bundleCFG(MachineFunction &MF) {
312  assert(LiveBundles.empty() && "Stale data in LiveBundles");
313  assert(BlockBundle.empty() && "Stale data in BlockBundle");
314  SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
315
316  // LiveBundle[0] is the empty live-in set.
317  LiveBundles.resize(1);
318
319  // First gather the actual live-in masks for all MBBs.
320  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
321    MachineBasicBlock *MBB = I;
322    const unsigned Mask = calcLiveInMask(MBB);
323    if (!Mask)
324      continue;
325    // Ingoing bundle index.
326    unsigned &Idx = BlockBundle[MBB].first;
327    // Already assigned an ingoing bundle?
328    if (Idx)
329      continue;
330    // Allocate a new LiveBundle struct for this block's live-ins.
331    const unsigned BundleIdx = Idx = LiveBundles.size();
332    DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
333                 << MBB->getNumber());
334    LiveBundles.push_back(Mask);
335    LiveBundle &Bundle = LiveBundles.back();
336
337    // Make sure all predecessors have the same live-out set.
338    PropUp.insert(MBB);
339
340    // Keep pushing liveness up and down the CFG until convergence.
341    // Only critical edges cause iteration here, but when they do, multiple
342    // blocks can be assigned to the same LiveBundle index.
343    do {
344      // Assign BundleIdx as liveout from predecessors in PropUp.
345      for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
346           E = PropUp.end(); I != E; ++I) {
347        MachineBasicBlock *MBB = *I;
348        for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
349             LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
350          MachineBasicBlock *PredMBB = *LinkI;
351          // PredMBB's liveout bundle should be set to LIIdx.
352          unsigned &Idx = BlockBundle[PredMBB].second;
353          if (Idx) {
354            assert(Idx == BundleIdx && "Inconsistent CFG");
355            continue;
356          }
357          Idx = BundleIdx;
358          DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
359          // Propagate to siblings.
360          if (PredMBB->succ_size() > 1)
361            PropDown.insert(PredMBB);
362        }
363      }
364      PropUp.clear();
365
366      // Assign BundleIdx as livein to successors in PropDown.
367      for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
368           E = PropDown.end(); I != E; ++I) {
369        MachineBasicBlock *MBB = *I;
370        for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
371             LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
372          MachineBasicBlock *SuccMBB = *LinkI;
373          // LinkMBB's livein bundle should be set to BundleIdx.
374          unsigned &Idx = BlockBundle[SuccMBB].first;
375          if (Idx) {
376            assert(Idx == BundleIdx && "Inconsistent CFG");
377            continue;
378          }
379          Idx = BundleIdx;
380          DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
381          // Propagate to siblings.
382          if (SuccMBB->pred_size() > 1)
383            PropUp.insert(SuccMBB);
384          // Also accumulate the bundle liveness mask from the liveins here.
385          Bundle.Mask |= calcLiveInMask(SuccMBB);
386        }
387      }
388      PropDown.clear();
389    } while (!PropUp.empty());
390    DEBUG({
391      dbgs() << " live:";
392      for (unsigned i = 0; i < 8; ++i)
393        if (Bundle.Mask & (1<<i))
394          dbgs() << " %FP" << i;
395      dbgs() << '\n';
396    });
397  }
398}
399
400/// processBasicBlock - Loop over all of the instructions in the basic block,
401/// transforming FP instructions into their stack form.
402///
403bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
404  bool Changed = false;
405  MBB = &BB;
406
407  setupBlockStack();
408
409  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
410    MachineInstr *MI = I;
411    uint64_t Flags = MI->getDesc().TSFlags;
412
413    unsigned FPInstClass = Flags & X86II::FPTypeMask;
414    if (MI->isInlineAsm())
415      FPInstClass = X86II::SpecialFP;
416
417    if (MI->isCopy() && translateCopy(MI))
418      FPInstClass = X86II::SpecialFP;
419
420    if (FPInstClass == X86II::NotFP)
421      continue;  // Efficiently ignore non-fp insts!
422
423    MachineInstr *PrevMI = 0;
424    if (I != BB.begin())
425      PrevMI = prior(I);
426
427    ++NumFP;  // Keep track of # of pseudo instrs
428    DEBUG(dbgs() << "\nFPInst:\t" << *MI);
429
430    // Get dead variables list now because the MI pointer may be deleted as part
431    // of processing!
432    SmallVector<unsigned, 8> DeadRegs;
433    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
434      const MachineOperand &MO = MI->getOperand(i);
435      if (MO.isReg() && MO.isDead())
436        DeadRegs.push_back(MO.getReg());
437    }
438
439    switch (FPInstClass) {
440    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
441    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
442    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
443    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
444    case X86II::CompareFP:  handleCompareFP(I); break;
445    case X86II::CondMovFP:  handleCondMovFP(I); break;
446    case X86II::SpecialFP:  handleSpecialFP(I); break;
447    default: llvm_unreachable("Unknown FP Type!");
448    }
449
450    // Check to see if any of the values defined by this instruction are dead
451    // after definition.  If so, pop them.
452    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
453      unsigned Reg = DeadRegs[i];
454      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
455        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
456        freeStackSlotAfter(I, Reg-X86::FP0);
457      }
458    }
459
460    // Print out all of the instructions expanded to if -debug
461    DEBUG(
462      MachineBasicBlock::iterator PrevI(PrevMI);
463      if (I == PrevI) {
464        dbgs() << "Just deleted pseudo instruction\n";
465      } else {
466        MachineBasicBlock::iterator Start = I;
467        // Rewind to first instruction newly inserted.
468        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
469        dbgs() << "Inserted instructions:\n\t";
470        Start->print(dbgs(), &MF.getTarget());
471        while (++Start != llvm::next(I)) {}
472      }
473      dumpStack();
474    );
475
476    Changed = true;
477  }
478
479  finishBlockStack();
480
481  return Changed;
482}
483
484/// setupBlockStack - Use the BlockBundle map to set up our model of the stack
485/// to match predecessors' live out stack.
486void FPS::setupBlockStack() {
487  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
488               << " derived from " << MBB->getName() << ".\n");
489  StackTop = 0;
490  const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
491
492  if (!Bundle.Mask) {
493    DEBUG(dbgs() << "Block has no FP live-ins.\n");
494    return;
495  }
496
497  // Depth-first iteration should ensure that we always have an assigned stack.
498  assert(Bundle.isFixed() && "Reached block before any predecessors");
499
500  // Push the fixed live-in registers.
501  for (unsigned i = Bundle.FixCount; i > 0; --i) {
502    MBB->addLiveIn(X86::ST0+i-1);
503    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
504                 << unsigned(Bundle.FixStack[i-1]) << '\n');
505    pushReg(Bundle.FixStack[i-1]);
506  }
507
508  // Kill off unwanted live-ins. This can happen with a critical edge.
509  // FIXME: We could keep these live registers around as zombies. They may need
510  // to be revived at the end of a short block. It might save a few instrs.
511  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
512  DEBUG(MBB->dump());
513}
514
515/// finishBlockStack - Revive live-outs that are implicitly defined out of
516/// MBB. Shuffle live registers to match the expected fixed stack of any
517/// predecessors, and ensure that all predecessors are expecting the same
518/// stack.
519void FPS::finishBlockStack() {
520  // The RET handling below takes care of return blocks for us.
521  if (MBB->succ_empty())
522    return;
523
524  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
525               << " derived from " << MBB->getName() << ".\n");
526
527  unsigned BundleIdx = BlockBundle.lookup(MBB).second;
528  LiveBundle &Bundle = LiveBundles[BundleIdx];
529
530  // We may need to kill and define some registers to match successors.
531  // FIXME: This can probably be combined with the shuffle below.
532  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
533  adjustLiveRegs(Bundle.Mask, Term);
534
535  if (!Bundle.Mask) {
536    DEBUG(dbgs() << "No live-outs.\n");
537    return;
538  }
539
540  // Has the stack order been fixed yet?
541  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
542  if (Bundle.isFixed()) {
543    DEBUG(dbgs() << "Shuffling stack to match.\n");
544    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
545  } else {
546    // Not fixed yet, we get to choose.
547    DEBUG(dbgs() << "Fixing stack order now.\n");
548    Bundle.FixCount = StackTop;
549    for (unsigned i = 0; i < StackTop; ++i)
550      Bundle.FixStack[i] = getStackEntry(i);
551  }
552}
553
554
555//===----------------------------------------------------------------------===//
556// Efficient Lookup Table Support
557//===----------------------------------------------------------------------===//
558
559namespace {
560  struct TableEntry {
561    unsigned from;
562    unsigned to;
563    bool operator<(const TableEntry &TE) const { return from < TE.from; }
564    friend bool operator<(const TableEntry &TE, unsigned V) {
565      return TE.from < V;
566    }
567    friend bool operator<(unsigned V, const TableEntry &TE) {
568      return V < TE.from;
569    }
570  };
571}
572
573#ifndef NDEBUG
574static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
575  for (unsigned i = 0; i != NumEntries-1; ++i)
576    if (!(Table[i] < Table[i+1])) return false;
577  return true;
578}
579#endif
580
581static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
582  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
583  if (I != Table+N && I->from == Opcode)
584    return I->to;
585  return -1;
586}
587
588#ifdef NDEBUG
589#define ASSERT_SORTED(TABLE)
590#else
591#define ASSERT_SORTED(TABLE)                                              \
592  { static bool TABLE##Checked = false;                                   \
593    if (!TABLE##Checked) {                                                \
594       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
595              "All lookup tables must be sorted for efficient access!");  \
596       TABLE##Checked = true;                                             \
597    }                                                                     \
598  }
599#endif
600
601//===----------------------------------------------------------------------===//
602// Register File -> Register Stack Mapping Methods
603//===----------------------------------------------------------------------===//
604
605// OpcodeTable - Sorted map of register instructions to their stack version.
606// The first element is an register file pseudo instruction, the second is the
607// concrete X86 instruction which uses the register stack.
608//
609static const TableEntry OpcodeTable[] = {
610  { X86::ABS_Fp32     , X86::ABS_F     },
611  { X86::ABS_Fp64     , X86::ABS_F     },
612  { X86::ABS_Fp80     , X86::ABS_F     },
613  { X86::ADD_Fp32m    , X86::ADD_F32m  },
614  { X86::ADD_Fp64m    , X86::ADD_F64m  },
615  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
616  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
617  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
618  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
619  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
620  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
621  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
622  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
623  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
624  { X86::CHS_Fp32     , X86::CHS_F     },
625  { X86::CHS_Fp64     , X86::CHS_F     },
626  { X86::CHS_Fp80     , X86::CHS_F     },
627  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
628  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
629  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
630  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
631  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
632  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
633  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
634  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
635  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
636  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
637  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
638  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
639  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
640  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
641  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
642  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
643  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
644  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
645  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
646  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
647  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
648  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
649  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
650  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
651  { X86::COS_Fp32     , X86::COS_F     },
652  { X86::COS_Fp64     , X86::COS_F     },
653  { X86::COS_Fp80     , X86::COS_F     },
654  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
655  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
656  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
657  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
658  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
659  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
660  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
661  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
662  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
663  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
664  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
665  { X86::DIV_Fp32m    , X86::DIV_F32m  },
666  { X86::DIV_Fp64m    , X86::DIV_F64m  },
667  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
668  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
669  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
670  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
671  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
672  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
673  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
674  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
675  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
676  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
677  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
678  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
679  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
680  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
681  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
682  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
683  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
684  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
685  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
686  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
687  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
688  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
689  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
690  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
691  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
692  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
693  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
694  { X86::IST_Fp16m32  , X86::IST_F16m  },
695  { X86::IST_Fp16m64  , X86::IST_F16m  },
696  { X86::IST_Fp16m80  , X86::IST_F16m  },
697  { X86::IST_Fp32m32  , X86::IST_F32m  },
698  { X86::IST_Fp32m64  , X86::IST_F32m  },
699  { X86::IST_Fp32m80  , X86::IST_F32m  },
700  { X86::IST_Fp64m32  , X86::IST_FP64m },
701  { X86::IST_Fp64m64  , X86::IST_FP64m },
702  { X86::IST_Fp64m80  , X86::IST_FP64m },
703  { X86::LD_Fp032     , X86::LD_F0     },
704  { X86::LD_Fp064     , X86::LD_F0     },
705  { X86::LD_Fp080     , X86::LD_F0     },
706  { X86::LD_Fp132     , X86::LD_F1     },
707  { X86::LD_Fp164     , X86::LD_F1     },
708  { X86::LD_Fp180     , X86::LD_F1     },
709  { X86::LD_Fp32m     , X86::LD_F32m   },
710  { X86::LD_Fp32m64   , X86::LD_F32m   },
711  { X86::LD_Fp32m80   , X86::LD_F32m   },
712  { X86::LD_Fp64m     , X86::LD_F64m   },
713  { X86::LD_Fp64m80   , X86::LD_F64m   },
714  { X86::LD_Fp80m     , X86::LD_F80m   },
715  { X86::MUL_Fp32m    , X86::MUL_F32m  },
716  { X86::MUL_Fp64m    , X86::MUL_F64m  },
717  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
718  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
719  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
720  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
721  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
722  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
723  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
724  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
725  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
726  { X86::SIN_Fp32     , X86::SIN_F     },
727  { X86::SIN_Fp64     , X86::SIN_F     },
728  { X86::SIN_Fp80     , X86::SIN_F     },
729  { X86::SQRT_Fp32    , X86::SQRT_F    },
730  { X86::SQRT_Fp64    , X86::SQRT_F    },
731  { X86::SQRT_Fp80    , X86::SQRT_F    },
732  { X86::ST_Fp32m     , X86::ST_F32m   },
733  { X86::ST_Fp64m     , X86::ST_F64m   },
734  { X86::ST_Fp64m32   , X86::ST_F32m   },
735  { X86::ST_Fp80m32   , X86::ST_F32m   },
736  { X86::ST_Fp80m64   , X86::ST_F64m   },
737  { X86::ST_FpP80m    , X86::ST_FP80m  },
738  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
739  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
740  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
741  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
742  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
743  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
744  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
745  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
746  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
747  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
748  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
749  { X86::SUB_Fp32m    , X86::SUB_F32m  },
750  { X86::SUB_Fp64m    , X86::SUB_F64m  },
751  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
752  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
753  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
754  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
755  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
756  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
757  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
758  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
759  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
760  { X86::TST_Fp32     , X86::TST_F     },
761  { X86::TST_Fp64     , X86::TST_F     },
762  { X86::TST_Fp80     , X86::TST_F     },
763  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
764  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
765  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
766  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
767  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
768  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
769};
770
771static unsigned getConcreteOpcode(unsigned Opcode) {
772  ASSERT_SORTED(OpcodeTable);
773  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
774  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
775  return Opc;
776}
777
778//===----------------------------------------------------------------------===//
779// Helper Methods
780//===----------------------------------------------------------------------===//
781
782// PopTable - Sorted map of instructions to their popping version.  The first
783// element is an instruction, the second is the version which pops.
784//
785static const TableEntry PopTable[] = {
786  { X86::ADD_FrST0 , X86::ADD_FPrST0  },
787
788  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
789  { X86::DIV_FrST0 , X86::DIV_FPrST0  },
790
791  { X86::IST_F16m  , X86::IST_FP16m   },
792  { X86::IST_F32m  , X86::IST_FP32m   },
793
794  { X86::MUL_FrST0 , X86::MUL_FPrST0  },
795
796  { X86::ST_F32m   , X86::ST_FP32m    },
797  { X86::ST_F64m   , X86::ST_FP64m    },
798  { X86::ST_Frr    , X86::ST_FPrr     },
799
800  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
801  { X86::SUB_FrST0 , X86::SUB_FPrST0  },
802
803  { X86::UCOM_FIr  , X86::UCOM_FIPr   },
804
805  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
806  { X86::UCOM_Fr   , X86::UCOM_FPr    },
807};
808
809/// popStackAfter - Pop the current value off of the top of the FP stack after
810/// the specified instruction.  This attempts to be sneaky and combine the pop
811/// into the instruction itself if possible.  The iterator is left pointing to
812/// the last instruction, be it a new pop instruction inserted, or the old
813/// instruction if it was modified in place.
814///
815void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
816  MachineInstr* MI = I;
817  DebugLoc dl = MI->getDebugLoc();
818  ASSERT_SORTED(PopTable);
819  assert(StackTop > 0 && "Cannot pop empty stack!");
820  RegMap[Stack[--StackTop]] = ~0;     // Update state
821
822  // Check to see if there is a popping version of this instruction...
823  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
824  if (Opcode != -1) {
825    I->setDesc(TII->get(Opcode));
826    if (Opcode == X86::UCOM_FPPr)
827      I->RemoveOperand(0);
828  } else {    // Insert an explicit pop
829    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
830  }
831}
832
833/// freeStackSlotAfter - Free the specified register from the register stack, so
834/// that it is no longer in a register.  If the register is currently at the top
835/// of the stack, we just pop the current instruction, otherwise we store the
836/// current top-of-stack into the specified slot, then pop the top of stack.
837void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
838  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
839    popStackAfter(I);
840    return;
841  }
842
843  // Otherwise, store the top of stack into the dead slot, killing the operand
844  // without having to add in an explicit xchg then pop.
845  //
846  I = freeStackSlotBefore(++I, FPRegNo);
847}
848
849/// freeStackSlotBefore - Free the specified register without trying any
850/// folding.
851MachineBasicBlock::iterator
852FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
853  unsigned STReg    = getSTReg(FPRegNo);
854  unsigned OldSlot  = getSlot(FPRegNo);
855  unsigned TopReg   = Stack[StackTop-1];
856  Stack[OldSlot]    = TopReg;
857  RegMap[TopReg]    = OldSlot;
858  RegMap[FPRegNo]   = ~0;
859  Stack[--StackTop] = ~0;
860  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
861}
862
863/// adjustLiveRegs - Kill and revive registers such that exactly the FP
864/// registers with a bit in Mask are live.
865void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
866  unsigned Defs = Mask;
867  unsigned Kills = 0;
868  for (unsigned i = 0; i < StackTop; ++i) {
869    unsigned RegNo = Stack[i];
870    if (!(Defs & (1 << RegNo)))
871      // This register is live, but we don't want it.
872      Kills |= (1 << RegNo);
873    else
874      // We don't need to imp-def this live register.
875      Defs &= ~(1 << RegNo);
876  }
877  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
878
879  // Produce implicit-defs for free by using killed registers.
880  while (Kills && Defs) {
881    unsigned KReg = CountTrailingZeros_32(Kills);
882    unsigned DReg = CountTrailingZeros_32(Defs);
883    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
884    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
885    std::swap(RegMap[KReg], RegMap[DReg]);
886    Kills &= ~(1 << KReg);
887    Defs &= ~(1 << DReg);
888  }
889
890  // Kill registers by popping.
891  if (Kills && I != MBB->begin()) {
892    MachineBasicBlock::iterator I2 = llvm::prior(I);
893    for (;;) {
894      unsigned KReg = getStackEntry(0);
895      if (!(Kills & (1 << KReg)))
896        break;
897      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
898      popStackAfter(I2);
899      Kills &= ~(1 << KReg);
900    }
901  }
902
903  // Manually kill the rest.
904  while (Kills) {
905    unsigned KReg = CountTrailingZeros_32(Kills);
906    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
907    freeStackSlotBefore(I, KReg);
908    Kills &= ~(1 << KReg);
909  }
910
911  // Load zeros for all the imp-defs.
912  while(Defs) {
913    unsigned DReg = CountTrailingZeros_32(Defs);
914    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
915    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
916    pushReg(DReg);
917    Defs &= ~(1 << DReg);
918  }
919
920  // Now we should have the correct registers live.
921  DEBUG(dumpStack());
922  assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
923}
924
925/// shuffleStackTop - emit fxch instructions before I to shuffle the top
926/// FixCount entries into the order given by FixStack.
927/// FIXME: Is there a better algorithm than insertion sort?
928void FPS::shuffleStackTop(const unsigned char *FixStack,
929                          unsigned FixCount,
930                          MachineBasicBlock::iterator I) {
931  // Move items into place, starting from the desired stack bottom.
932  while (FixCount--) {
933    // Old register at position FixCount.
934    unsigned OldReg = getStackEntry(FixCount);
935    // Desired register at position FixCount.
936    unsigned Reg = FixStack[FixCount];
937    if (Reg == OldReg)
938      continue;
939    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
940    moveToTop(Reg, I);
941    moveToTop(OldReg, I);
942  }
943  DEBUG(dumpStack());
944}
945
946
947//===----------------------------------------------------------------------===//
948// Instruction transformation implementation
949//===----------------------------------------------------------------------===//
950
951/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
952///
953void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
954  MachineInstr *MI = I;
955  unsigned DestReg = getFPReg(MI->getOperand(0));
956
957  // Change from the pseudo instruction to the concrete instruction.
958  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
959  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
960
961  // Result gets pushed on the stack.
962  pushReg(DestReg);
963}
964
965/// handleOneArgFP - fst <mem>, ST(0)
966///
967void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
968  MachineInstr *MI = I;
969  unsigned NumOps = MI->getDesc().getNumOperands();
970  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
971         "Can only handle fst* & ftst instructions!");
972
973  // Is this the last use of the source register?
974  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
975  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
976
977  // FISTP64m is strange because there isn't a non-popping versions.
978  // If we have one _and_ we don't want to pop the operand, duplicate the value
979  // on the stack instead of moving it.  This ensure that popping the value is
980  // always ok.
981  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
982  //
983  if (!KillsSrc &&
984      (MI->getOpcode() == X86::IST_Fp64m32 ||
985       MI->getOpcode() == X86::ISTT_Fp16m32 ||
986       MI->getOpcode() == X86::ISTT_Fp32m32 ||
987       MI->getOpcode() == X86::ISTT_Fp64m32 ||
988       MI->getOpcode() == X86::IST_Fp64m64 ||
989       MI->getOpcode() == X86::ISTT_Fp16m64 ||
990       MI->getOpcode() == X86::ISTT_Fp32m64 ||
991       MI->getOpcode() == X86::ISTT_Fp64m64 ||
992       MI->getOpcode() == X86::IST_Fp64m80 ||
993       MI->getOpcode() == X86::ISTT_Fp16m80 ||
994       MI->getOpcode() == X86::ISTT_Fp32m80 ||
995       MI->getOpcode() == X86::ISTT_Fp64m80 ||
996       MI->getOpcode() == X86::ST_FpP80m)) {
997    duplicateToTop(Reg, 7 /*temp register*/, I);
998  } else {
999    moveToTop(Reg, I);            // Move to the top of the stack...
1000  }
1001
1002  // Convert from the pseudo instruction to the concrete instruction.
1003  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1004  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1005
1006  if (MI->getOpcode() == X86::IST_FP64m ||
1007      MI->getOpcode() == X86::ISTT_FP16m ||
1008      MI->getOpcode() == X86::ISTT_FP32m ||
1009      MI->getOpcode() == X86::ISTT_FP64m ||
1010      MI->getOpcode() == X86::ST_FP80m) {
1011    assert(StackTop > 0 && "Stack empty??");
1012    --StackTop;
1013  } else if (KillsSrc) { // Last use of operand?
1014    popStackAfter(I);
1015  }
1016}
1017
1018
1019/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1020/// replace the value with a newly computed value.  These instructions may have
1021/// non-fp operands after their FP operands.
1022///
1023///  Examples:
1024///     R1 = fchs R2
1025///     R1 = fadd R2, [mem]
1026///
1027void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1028  MachineInstr *MI = I;
1029#ifndef NDEBUG
1030  unsigned NumOps = MI->getDesc().getNumOperands();
1031  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1032#endif
1033
1034  // Is this the last use of the source register?
1035  unsigned Reg = getFPReg(MI->getOperand(1));
1036  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1037
1038  if (KillsSrc) {
1039    // If this is the last use of the source register, just make sure it's on
1040    // the top of the stack.
1041    moveToTop(Reg, I);
1042    assert(StackTop > 0 && "Stack cannot be empty!");
1043    --StackTop;
1044    pushReg(getFPReg(MI->getOperand(0)));
1045  } else {
1046    // If this is not the last use of the source register, _copy_ it to the top
1047    // of the stack.
1048    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1049  }
1050
1051  // Change from the pseudo instruction to the concrete instruction.
1052  MI->RemoveOperand(1);   // Drop the source operand.
1053  MI->RemoveOperand(0);   // Drop the destination operand.
1054  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1055}
1056
1057
1058//===----------------------------------------------------------------------===//
1059// Define tables of various ways to map pseudo instructions
1060//
1061
1062// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1063static const TableEntry ForwardST0Table[] = {
1064  { X86::ADD_Fp32  , X86::ADD_FST0r },
1065  { X86::ADD_Fp64  , X86::ADD_FST0r },
1066  { X86::ADD_Fp80  , X86::ADD_FST0r },
1067  { X86::DIV_Fp32  , X86::DIV_FST0r },
1068  { X86::DIV_Fp64  , X86::DIV_FST0r },
1069  { X86::DIV_Fp80  , X86::DIV_FST0r },
1070  { X86::MUL_Fp32  , X86::MUL_FST0r },
1071  { X86::MUL_Fp64  , X86::MUL_FST0r },
1072  { X86::MUL_Fp80  , X86::MUL_FST0r },
1073  { X86::SUB_Fp32  , X86::SUB_FST0r },
1074  { X86::SUB_Fp64  , X86::SUB_FST0r },
1075  { X86::SUB_Fp80  , X86::SUB_FST0r },
1076};
1077
1078// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1079static const TableEntry ReverseST0Table[] = {
1080  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1081  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1082  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1083  { X86::DIV_Fp32  , X86::DIVR_FST0r },
1084  { X86::DIV_Fp64  , X86::DIVR_FST0r },
1085  { X86::DIV_Fp80  , X86::DIVR_FST0r },
1086  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1087  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1088  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1089  { X86::SUB_Fp32  , X86::SUBR_FST0r },
1090  { X86::SUB_Fp64  , X86::SUBR_FST0r },
1091  { X86::SUB_Fp80  , X86::SUBR_FST0r },
1092};
1093
1094// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1095static const TableEntry ForwardSTiTable[] = {
1096  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1097  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1098  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1099  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1100  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1101  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1102  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1103  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1104  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1105  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1106  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1107  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1108};
1109
1110// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1111static const TableEntry ReverseSTiTable[] = {
1112  { X86::ADD_Fp32  , X86::ADD_FrST0 },
1113  { X86::ADD_Fp64  , X86::ADD_FrST0 },
1114  { X86::ADD_Fp80  , X86::ADD_FrST0 },
1115  { X86::DIV_Fp32  , X86::DIV_FrST0 },
1116  { X86::DIV_Fp64  , X86::DIV_FrST0 },
1117  { X86::DIV_Fp80  , X86::DIV_FrST0 },
1118  { X86::MUL_Fp32  , X86::MUL_FrST0 },
1119  { X86::MUL_Fp64  , X86::MUL_FrST0 },
1120  { X86::MUL_Fp80  , X86::MUL_FrST0 },
1121  { X86::SUB_Fp32  , X86::SUB_FrST0 },
1122  { X86::SUB_Fp64  , X86::SUB_FrST0 },
1123  { X86::SUB_Fp80  , X86::SUB_FrST0 },
1124};
1125
1126
1127/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1128/// instructions which need to be simplified and possibly transformed.
1129///
1130/// Result: ST(0) = fsub  ST(0), ST(i)
1131///         ST(i) = fsub  ST(0), ST(i)
1132///         ST(0) = fsubr ST(0), ST(i)
1133///         ST(i) = fsubr ST(0), ST(i)
1134///
1135void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1136  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1137  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1138  MachineInstr *MI = I;
1139
1140  unsigned NumOperands = MI->getDesc().getNumOperands();
1141  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1142  unsigned Dest = getFPReg(MI->getOperand(0));
1143  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1144  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1145  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1146  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1147  DebugLoc dl = MI->getDebugLoc();
1148
1149  unsigned TOS = getStackEntry(0);
1150
1151  // One of our operands must be on the top of the stack.  If neither is yet, we
1152  // need to move one.
1153  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1154    // We can choose to move either operand to the top of the stack.  If one of
1155    // the operands is killed by this instruction, we want that one so that we
1156    // can update right on top of the old version.
1157    if (KillsOp0) {
1158      moveToTop(Op0, I);         // Move dead operand to TOS.
1159      TOS = Op0;
1160    } else if (KillsOp1) {
1161      moveToTop(Op1, I);
1162      TOS = Op1;
1163    } else {
1164      // All of the operands are live after this instruction executes, so we
1165      // cannot update on top of any operand.  Because of this, we must
1166      // duplicate one of the stack elements to the top.  It doesn't matter
1167      // which one we pick.
1168      //
1169      duplicateToTop(Op0, Dest, I);
1170      Op0 = TOS = Dest;
1171      KillsOp0 = true;
1172    }
1173  } else if (!KillsOp0 && !KillsOp1) {
1174    // If we DO have one of our operands at the top of the stack, but we don't
1175    // have a dead operand, we must duplicate one of the operands to a new slot
1176    // on the stack.
1177    duplicateToTop(Op0, Dest, I);
1178    Op0 = TOS = Dest;
1179    KillsOp0 = true;
1180  }
1181
1182  // Now we know that one of our operands is on the top of the stack, and at
1183  // least one of our operands is killed by this instruction.
1184  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1185         "Stack conditions not set up right!");
1186
1187  // We decide which form to use based on what is on the top of the stack, and
1188  // which operand is killed by this instruction.
1189  const TableEntry *InstTable;
1190  bool isForward = TOS == Op0;
1191  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1192  if (updateST0) {
1193    if (isForward)
1194      InstTable = ForwardST0Table;
1195    else
1196      InstTable = ReverseST0Table;
1197  } else {
1198    if (isForward)
1199      InstTable = ForwardSTiTable;
1200    else
1201      InstTable = ReverseSTiTable;
1202  }
1203
1204  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1205                      MI->getOpcode());
1206  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1207
1208  // NotTOS - The register which is not on the top of stack...
1209  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1210
1211  // Replace the old instruction with a new instruction
1212  MBB->remove(I++);
1213  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1214
1215  // If both operands are killed, pop one off of the stack in addition to
1216  // overwriting the other one.
1217  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1218    assert(!updateST0 && "Should have updated other operand!");
1219    popStackAfter(I);   // Pop the top of stack
1220  }
1221
1222  // Update stack information so that we know the destination register is now on
1223  // the stack.
1224  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1225  assert(UpdatedSlot < StackTop && Dest < 7);
1226  Stack[UpdatedSlot]   = Dest;
1227  RegMap[Dest]         = UpdatedSlot;
1228  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1229}
1230
1231/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1232/// register arguments and no explicit destinations.
1233///
1234void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1235  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1236  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1237  MachineInstr *MI = I;
1238
1239  unsigned NumOperands = MI->getDesc().getNumOperands();
1240  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1241  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1242  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1243  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1244  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1245
1246  // Make sure the first operand is on the top of stack, the other one can be
1247  // anywhere.
1248  moveToTop(Op0, I);
1249
1250  // Change from the pseudo instruction to the concrete instruction.
1251  MI->getOperand(0).setReg(getSTReg(Op1));
1252  MI->RemoveOperand(1);
1253  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1254
1255  // If any of the operands are killed by this instruction, free them.
1256  if (KillsOp0) freeStackSlotAfter(I, Op0);
1257  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1258}
1259
1260/// handleCondMovFP - Handle two address conditional move instructions.  These
1261/// instructions move a st(i) register to st(0) iff a condition is true.  These
1262/// instructions require that the first operand is at the top of the stack, but
1263/// otherwise don't modify the stack at all.
1264void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1265  MachineInstr *MI = I;
1266
1267  unsigned Op0 = getFPReg(MI->getOperand(0));
1268  unsigned Op1 = getFPReg(MI->getOperand(2));
1269  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1270
1271  // The first operand *must* be on the top of the stack.
1272  moveToTop(Op0, I);
1273
1274  // Change the second operand to the stack register that the operand is in.
1275  // Change from the pseudo instruction to the concrete instruction.
1276  MI->RemoveOperand(0);
1277  MI->RemoveOperand(1);
1278  MI->getOperand(0).setReg(getSTReg(Op1));
1279  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1280
1281  // If we kill the second operand, make sure to pop it from the stack.
1282  if (Op0 != Op1 && KillsOp1) {
1283    // Get this value off of the register stack.
1284    freeStackSlotAfter(I, Op1);
1285  }
1286}
1287
1288
1289/// handleSpecialFP - Handle special instructions which behave unlike other
1290/// floating point instructions.  This is primarily intended for use by pseudo
1291/// instructions.
1292///
1293void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1294  MachineInstr *MI = I;
1295  DebugLoc dl = MI->getDebugLoc();
1296  switch (MI->getOpcode()) {
1297  default: llvm_unreachable("Unknown SpecialFP instruction!");
1298  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1299  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1300  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
1301    assert(StackTop == 0 && "Stack should be empty after a call!");
1302    pushReg(getFPReg(MI->getOperand(0)));
1303    break;
1304  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1305  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1306  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1307    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1308    // The pattern we expect is:
1309    //  CALL
1310    //  FP1 = FpGET_ST0
1311    //  FP4 = FpGET_ST1
1312    //
1313    // At this point, we've pushed FP1 on the top of stack, so it should be
1314    // present if it isn't dead.  If it was dead, we already emitted a pop to
1315    // remove it from the stack and StackTop = 0.
1316
1317    // Push FP4 as top of stack next.
1318    pushReg(getFPReg(MI->getOperand(0)));
1319
1320    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1321    // dead.  In this case, the ST(1) value is the only thing that is live, so
1322    // it should be on the TOS (after the pop that was emitted) and is.  Just
1323    // continue in this case.
1324    if (StackTop == 1)
1325      break;
1326
1327    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1328    // elements so that our accounting is correct.
1329    unsigned RegOnTop = getStackEntry(0);
1330    unsigned RegNo = getStackEntry(1);
1331
1332    // Swap the slots the regs are in.
1333    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1334
1335    // Swap stack slot contents.
1336    assert(RegMap[RegOnTop] < StackTop);
1337    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1338    break;
1339  }
1340  case X86::FpSET_ST0_32:
1341  case X86::FpSET_ST0_64:
1342  case X86::FpSET_ST0_80: {
1343    // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1344    // arguments that use an st constraint. We expect a sequence of
1345    // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
1346    unsigned Op0 = getFPReg(MI->getOperand(0));
1347
1348    if (!MI->killsRegister(X86::FP0 + Op0)) {
1349      // Duplicate Op0 into a temporary on the stack top.
1350      // This actually assumes that FP7 is dead.
1351      duplicateToTop(Op0, 7, I);
1352    } else {
1353      // Op0 is killed, so just swap it into position.
1354      moveToTop(Op0, I);
1355    }
1356    --StackTop;   // "Forget" we have something on the top of stack!
1357    break;
1358  }
1359  case X86::FpSET_ST1_32:
1360  case X86::FpSET_ST1_64:
1361  case X86::FpSET_ST1_80: {
1362    // Set up st(1) for inline asm. We are assuming that st(0) has already been
1363    // set up by FpSET_ST0, and our StackTop is off by one because of it.
1364    unsigned Op0 = getFPReg(MI->getOperand(0));
1365    // Restore the actual StackTop from before Fp_SET_ST0.
1366    // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1367    // are not enforcing the constraint.
1368    ++StackTop;
1369    unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1370    if (!MI->killsRegister(X86::FP0 + Op0)) {
1371      // Assume FP6 is not live, use it as a scratch register.
1372      duplicateToTop(Op0, 6, I);
1373      moveToTop(RegOnTop, I);
1374    } else if (getSTReg(Op0) != X86::ST1) {
1375      // We have the wrong value at st(1). Shuffle! Untested!
1376      moveToTop(getStackEntry(1), I);
1377      moveToTop(Op0, I);
1378      moveToTop(RegOnTop, I);
1379    }
1380    assert(StackTop >= 2 && "Too few live registers");
1381    StackTop -= 2; // "Forget" both st(0) and st(1).
1382    break;
1383  }
1384  case X86::MOV_Fp3232:
1385  case X86::MOV_Fp3264:
1386  case X86::MOV_Fp6432:
1387  case X86::MOV_Fp6464:
1388  case X86::MOV_Fp3280:
1389  case X86::MOV_Fp6480:
1390  case X86::MOV_Fp8032:
1391  case X86::MOV_Fp8064:
1392  case X86::MOV_Fp8080: {
1393    const MachineOperand &MO1 = MI->getOperand(1);
1394    unsigned SrcReg = getFPReg(MO1);
1395
1396    const MachineOperand &MO0 = MI->getOperand(0);
1397    unsigned DestReg = getFPReg(MO0);
1398    if (MI->killsRegister(X86::FP0+SrcReg)) {
1399      // If the input operand is killed, we can just change the owner of the
1400      // incoming stack slot into the result.
1401      unsigned Slot = getSlot(SrcReg);
1402      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1403      Stack[Slot] = DestReg;
1404      RegMap[DestReg] = Slot;
1405
1406    } else {
1407      // For FMOV we just duplicate the specified value to a new stack slot.
1408      // This could be made better, but would require substantial changes.
1409      duplicateToTop(SrcReg, DestReg, I);
1410    }
1411    }
1412    break;
1413  case TargetOpcode::INLINEASM: {
1414    // The inline asm MachineInstr currently only *uses* FP registers for the
1415    // 'f' constraint.  These should be turned into the current ST(x) register
1416    // in the machine instr.  Also, any kills should be explicitly popped after
1417    // the inline asm.
1418    unsigned Kills = 0;
1419    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1420      MachineOperand &Op = MI->getOperand(i);
1421      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1422        continue;
1423      assert(Op.isUse() && "Only handle inline asm uses right now");
1424
1425      unsigned FPReg = getFPReg(Op);
1426      Op.setReg(getSTReg(FPReg));
1427
1428      // If we kill this operand, make sure to pop it from the stack after the
1429      // asm.  We just remember it for now, and pop them all off at the end in
1430      // a batch.
1431      if (Op.isKill())
1432        Kills |= 1U << FPReg;
1433    }
1434
1435    // If this asm kills any FP registers (is the last use of them) we must
1436    // explicitly emit pop instructions for them.  Do this now after the asm has
1437    // executed so that the ST(x) numbers are not off (which would happen if we
1438    // did this inline with operand rewriting).
1439    //
1440    // Note: this might be a non-optimal pop sequence.  We might be able to do
1441    // better by trying to pop in stack order or something.
1442    MachineBasicBlock::iterator InsertPt = MI;
1443    while (Kills) {
1444      unsigned FPReg = CountTrailingZeros_32(Kills);
1445      freeStackSlotAfter(InsertPt, FPReg);
1446      Kills &= ~(1U << FPReg);
1447    }
1448    // Don't delete the inline asm!
1449    return;
1450  }
1451
1452  case X86::RET:
1453  case X86::RETI:
1454    // If RET has an FP register use operand, pass the first one in ST(0) and
1455    // the second one in ST(1).
1456
1457    // Find the register operands.
1458    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1459    unsigned LiveMask = 0;
1460
1461    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1462      MachineOperand &Op = MI->getOperand(i);
1463      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1464        continue;
1465      // FP Register uses must be kills unless there are two uses of the same
1466      // register, in which case only one will be a kill.
1467      assert(Op.isUse() &&
1468             (Op.isKill() ||                        // Marked kill.
1469              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1470              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1471             "Ret only defs operands, and values aren't live beyond it");
1472
1473      if (FirstFPRegOp == ~0U)
1474        FirstFPRegOp = getFPReg(Op);
1475      else {
1476        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1477        SecondFPRegOp = getFPReg(Op);
1478      }
1479      LiveMask |= (1 << getFPReg(Op));
1480
1481      // Remove the operand so that later passes don't see it.
1482      MI->RemoveOperand(i);
1483      --i, --e;
1484    }
1485
1486    // We may have been carrying spurious live-ins, so make sure only the returned
1487    // registers are left live.
1488    adjustLiveRegs(LiveMask, MI);
1489    if (!LiveMask) return;  // Quick check to see if any are possible.
1490
1491    // There are only four possibilities here:
1492    // 1) we are returning a single FP value.  In this case, it has to be in
1493    //    ST(0) already, so just declare success by removing the value from the
1494    //    FP Stack.
1495    if (SecondFPRegOp == ~0U) {
1496      // Assert that the top of stack contains the right FP register.
1497      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1498             "Top of stack not the right register for RET!");
1499
1500      // Ok, everything is good, mark the value as not being on the stack
1501      // anymore so that our assertion about the stack being empty at end of
1502      // block doesn't fire.
1503      StackTop = 0;
1504      return;
1505    }
1506
1507    // Otherwise, we are returning two values:
1508    // 2) If returning the same value for both, we only have one thing in the FP
1509    //    stack.  Consider:  RET FP1, FP1
1510    if (StackTop == 1) {
1511      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1512             "Stack misconfiguration for RET!");
1513
1514      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1515      // register to hold it.
1516      unsigned NewReg = (FirstFPRegOp+1)%7;
1517      duplicateToTop(FirstFPRegOp, NewReg, MI);
1518      FirstFPRegOp = NewReg;
1519    }
1520
1521    /// Okay we know we have two different FPx operands now:
1522    assert(StackTop == 2 && "Must have two values live!");
1523
1524    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1525    ///    in ST(1).  In this case, emit an fxch.
1526    if (getStackEntry(0) == SecondFPRegOp) {
1527      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1528      moveToTop(FirstFPRegOp, MI);
1529    }
1530
1531    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1532    /// ST(1).  Just remove both from our understanding of the stack and return.
1533    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1534    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1535    StackTop = 0;
1536    return;
1537  }
1538
1539  I = MBB->erase(I);  // Remove the pseudo instruction
1540
1541  // We want to leave I pointing to the previous instruction, but what if we
1542  // just erased the first instruction?
1543  if (I == MBB->begin()) {
1544    DEBUG(dbgs() << "Inserting dummy KILL\n");
1545    I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1546  } else
1547    --I;
1548}
1549
1550// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1551bool FPS::translateCopy(MachineInstr *MI) {
1552  unsigned DstReg = MI->getOperand(0).getReg();
1553  unsigned SrcReg = MI->getOperand(1).getReg();
1554
1555  if (DstReg == X86::ST0) {
1556    MI->setDesc(TII->get(X86::FpSET_ST0_80));
1557    MI->RemoveOperand(0);
1558    return true;
1559  }
1560  if (DstReg == X86::ST1) {
1561    MI->setDesc(TII->get(X86::FpSET_ST1_80));
1562    MI->RemoveOperand(0);
1563    return true;
1564  }
1565  if (SrcReg == X86::ST0) {
1566    MI->setDesc(TII->get(X86::FpGET_ST0_80));
1567    return true;
1568  }
1569  if (SrcReg == X86::ST1) {
1570    MI->setDesc(TII->get(X86::FpGET_ST1_80));
1571    return true;
1572  }
1573  if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1574    MI->setDesc(TII->get(X86::MOV_Fp8080));
1575    return true;
1576  }
1577  return false;
1578}
1579