X86FloatingPoint.cpp revision f2e49d4c1a8839f30e8ca9617139d63db173fa80
1//===-- FloatingPoint.cpp - Floating point Reg -> Stack converter ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "fp"
16#include "X86.h"
17#include "X86InstrInfo.h"
18#include "llvm/CodeGen/MachineFunctionPass.h"
19#include "llvm/CodeGen/MachineInstrBuilder.h"
20#include "llvm/CodeGen/LiveVariables.h"
21#include "llvm/CodeGen/Passes.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "Support/Debug.h"
25#include "Support/Statistic.h"
26#include <algorithm>
27#include <iostream>
28using namespace llvm;
29
30namespace {
31  Statistic<> NumFXCH("x86-codegen", "Number of fxch instructions inserted");
32  Statistic<> NumFP  ("x86-codegen", "Number of floating point instructions");
33
34  struct FPS : public MachineFunctionPass {
35    virtual bool runOnMachineFunction(MachineFunction &MF);
36
37    virtual const char *getPassName() const { return "X86 FP Stackifier"; }
38
39    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
40      AU.addRequired<LiveVariables>();
41      MachineFunctionPass::getAnalysisUsage(AU);
42    }
43  private:
44    LiveVariables     *LV;    // Live variable info for current function...
45    MachineBasicBlock *MBB;   // Current basic block
46    unsigned Stack[8];        // FP<n> Registers in each stack slot...
47    unsigned RegMap[8];       // Track which stack slot contains each register
48    unsigned StackTop;        // The current top of the FP stack.
49
50    void dumpStack() const {
51      std::cerr << "Stack contents:";
52      for (unsigned i = 0; i != StackTop; ++i) {
53	std::cerr << " FP" << Stack[i];
54	assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
55      }
56      std::cerr << "\n";
57    }
58  private:
59    // getSlot - Return the stack slot number a particular register number is
60    // in...
61    unsigned getSlot(unsigned RegNo) const {
62      assert(RegNo < 8 && "Regno out of range!");
63      return RegMap[RegNo];
64    }
65
66    // getStackEntry - Return the X86::FP<n> register in register ST(i)
67    unsigned getStackEntry(unsigned STi) const {
68      assert(STi < StackTop && "Access past stack top!");
69      return Stack[StackTop-1-STi];
70    }
71
72    // getSTReg - Return the X86::ST(i) register which contains the specified
73    // FP<RegNo> register
74    unsigned getSTReg(unsigned RegNo) const {
75      return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
76    }
77
78    // pushReg - Push the specifiex FP<n> register onto the stack
79    void pushReg(unsigned Reg) {
80      assert(Reg < 8 && "Register number out of range!");
81      assert(StackTop < 8 && "Stack overflow!");
82      Stack[StackTop] = Reg;
83      RegMap[Reg] = StackTop++;
84    }
85
86    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
87    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator &I) {
88      if (!isAtTop(RegNo)) {
89	unsigned Slot = getSlot(RegNo);
90	unsigned STReg = getSTReg(RegNo);
91	unsigned RegOnTop = getStackEntry(0);
92
93	// Swap the slots the regs are in
94	std::swap(RegMap[RegNo], RegMap[RegOnTop]);
95
96	// Swap stack slot contents
97	assert(RegMap[RegOnTop] < StackTop);
98	std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
99
100	// Emit an fxch to update the runtime processors version of the state
101	MachineInstr *MI = BuildMI(X86::FXCH, 1).addReg(STReg);
102	I = 1+MBB->insert(I, MI);
103	NumFXCH++;
104      }
105    }
106
107    void duplicateToTop(unsigned RegNo, unsigned AsReg,
108			MachineBasicBlock::iterator &I) {
109      unsigned STReg = getSTReg(RegNo);
110      pushReg(AsReg);   // New register on top of stack
111
112      MachineInstr *MI = BuildMI(X86::FLDrr, 1).addReg(STReg);
113      I = 1+MBB->insert(I, MI);
114    }
115
116    // popStackAfter - Pop the current value off of the top of the FP stack
117    // after the specified instruction.
118    void popStackAfter(MachineBasicBlock::iterator &I);
119
120    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
121
122    void handleZeroArgFP(MachineBasicBlock::iterator &I);
123    void handleOneArgFP(MachineBasicBlock::iterator &I);
124    void handleTwoArgFP(MachineBasicBlock::iterator &I);
125    void handleSpecialFP(MachineBasicBlock::iterator &I);
126  };
127}
128
129FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
130
131/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
132/// register references into FP stack references.
133///
134bool FPS::runOnMachineFunction(MachineFunction &MF) {
135  LV = &getAnalysis<LiveVariables>();
136  StackTop = 0;
137
138  bool Changed = false;
139  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
140    Changed |= processBasicBlock(MF, *I);
141  return Changed;
142}
143
144/// processBasicBlock - Loop over all of the instructions in the basic block,
145/// transforming FP instructions into their stack form.
146///
147bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
148  const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
149  bool Changed = false;
150  MBB = &BB;
151
152  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
153    MachineInstr *MI = *I;
154    MachineInstr *PrevMI = I == BB.begin() ? 0 : *(I-1);
155    unsigned Flags = TII.get(MI->getOpcode()).TSFlags;
156
157    if ((Flags & X86II::FPTypeMask) == 0) continue;  // Ignore non-fp insts!
158
159    ++NumFP;  // Keep track of # of pseudo instrs
160    DEBUG(std::cerr << "\nFPInst:\t";
161	  MI->print(std::cerr, MF.getTarget()));
162
163    // Get dead variables list now because the MI pointer may be deleted as part
164    // of processing!
165    LiveVariables::killed_iterator IB = LV->dead_begin(MI);
166    LiveVariables::killed_iterator IE = LV->dead_end(MI);
167
168    DEBUG(const MRegisterInfo *MRI = MF.getTarget().getRegisterInfo();
169	  LiveVariables::killed_iterator I = LV->killed_begin(MI);
170	  LiveVariables::killed_iterator E = LV->killed_end(MI);
171	  if (I != E) {
172	    std::cerr << "Killed Operands:";
173	    for (; I != E; ++I)
174	      std::cerr << " %" << MRI->getName(I->second);
175	    std::cerr << "\n";
176	  });
177
178    switch (Flags & X86II::FPTypeMask) {
179    case X86II::ZeroArgFP: handleZeroArgFP(I); break;
180    case X86II::OneArgFP:  handleOneArgFP(I);  break;
181
182    case X86II::OneArgFPRW:   // ST(0) = fsqrt(ST(0))
183      assert(0 && "FP instr type not handled yet!");
184
185    case X86II::TwoArgFP:  handleTwoArgFP(I);  break;
186    case X86II::SpecialFP: handleSpecialFP(I); break;
187    default: assert(0 && "Unknown FP Type!");
188    }
189
190    // Check to see if any of the values defined by this instruction are dead
191    // after definition.  If so, pop them.
192    for (; IB != IE; ++IB) {
193      unsigned Reg = IB->second;
194      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
195	DEBUG(std::cerr << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
196	++I;                         // Insert fxch AFTER the instruction
197	moveToTop(Reg-X86::FP0, I);  // Insert fxch if necessary
198	--I;                         // Move to fxch or old instruction
199	popStackAfter(I);            // Pop the top of the stack, killing value
200      }
201    }
202
203    // Print out all of the instructions expanded to if -debug
204    DEBUG(if (*I == PrevMI) {
205            std::cerr<< "Just deleted pseudo instruction\n";
206          } else {
207	    MachineBasicBlock::iterator Start = I;
208	    // Rewind to first instruction newly inserted.
209	    while (Start != BB.begin() && *(Start-1) != PrevMI) --Start;
210	    std::cerr << "Inserted instructions:\n\t";
211	    (*Start)->print(std::cerr, MF.getTarget());
212	    while (++Start != I+1);
213	  }
214	  dumpStack();
215	  );
216
217    Changed = true;
218  }
219
220  assert(StackTop == 0 && "Stack not empty at end of basic block?");
221  return Changed;
222}
223
224//===----------------------------------------------------------------------===//
225// Efficient Lookup Table Support
226//===----------------------------------------------------------------------===//
227
228namespace {
229  struct TableEntry {
230    unsigned from;
231    unsigned to;
232    bool operator<(const TableEntry &TE) const { return from < TE.from; }
233    bool operator<(unsigned V) const { return from < V; }
234  };
235}
236
237static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
238  for (unsigned i = 0; i != NumEntries-1; ++i)
239    if (!(Table[i] < Table[i+1])) return false;
240  return true;
241}
242
243static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
244  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
245  if (I != Table+N && I->from == Opcode)
246    return I->to;
247  return -1;
248}
249
250#define ARRAY_SIZE(TABLE)  \
251   (sizeof(TABLE)/sizeof(TABLE[0]))
252
253#ifdef NDEBUG
254#define ASSERT_SORTED(TABLE)
255#else
256#define ASSERT_SORTED(TABLE)                                              \
257  { static bool TABLE##Checked = false;                                   \
258    if (!TABLE##Checked)                                                  \
259       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
260              "All lookup tables must be sorted for efficient access!");  \
261  }
262#endif
263
264
265//===----------------------------------------------------------------------===//
266// Helper Methods
267//===----------------------------------------------------------------------===//
268
269// PopTable - Sorted map of instructions to their popping version.  The first
270// element is an instruction, the second is the version which pops.
271//
272static const TableEntry PopTable[] = {
273  { X86::FADDrST0 , X86::FADDPrST0  },
274
275  { X86::FDIVRrST0, X86::FDIVRPrST0 },
276  { X86::FDIVrST0 , X86::FDIVPrST0  },
277
278  { X86::FISTr16  , X86::FISTPr16   },
279  { X86::FISTr32  , X86::FISTPr32   },
280
281  { X86::FMULrST0 , X86::FMULPrST0  },
282
283  { X86::FSTr32   , X86::FSTPr32    },
284  { X86::FSTr64   , X86::FSTPr64    },
285  { X86::FSTrr    , X86::FSTPrr     },
286
287  { X86::FSUBRrST0, X86::FSUBRPrST0 },
288  { X86::FSUBrST0 , X86::FSUBPrST0  },
289
290  { X86::FUCOMPr  , X86::FUCOMPPr   },
291  { X86::FUCOMr   , X86::FUCOMPr    },
292};
293
294/// popStackAfter - Pop the current value off of the top of the FP stack after
295/// the specified instruction.  This attempts to be sneaky and combine the pop
296/// into the instruction itself if possible.  The iterator is left pointing to
297/// the last instruction, be it a new pop instruction inserted, or the old
298/// instruction if it was modified in place.
299///
300void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
301  ASSERT_SORTED(PopTable);
302  assert(StackTop > 0 && "Cannot pop empty stack!");
303  RegMap[Stack[--StackTop]] = ~0;     // Update state
304
305  // Check to see if there is a popping version of this instruction...
306  int Opcode = Lookup(PopTable, ARRAY_SIZE(PopTable), (*I)->getOpcode());
307  if (Opcode != -1) {
308    (*I)->setOpcode(Opcode);
309    if (Opcode == X86::FUCOMPPr)
310      (*I)->RemoveOperand(0);
311
312  } else {    // Insert an explicit pop
313    MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(X86::ST0);
314    I = MBB->insert(I+1, MI);
315  }
316}
317
318static unsigned getFPReg(const MachineOperand &MO) {
319  assert(MO.isPhysicalRegister() && "Expected an FP register!");
320  unsigned Reg = MO.getReg();
321  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
322  return Reg - X86::FP0;
323}
324
325
326//===----------------------------------------------------------------------===//
327// Instruction transformation implementation
328//===----------------------------------------------------------------------===//
329
330/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
331//
332void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
333  MachineInstr *MI = *I;
334  unsigned DestReg = getFPReg(MI->getOperand(0));
335  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
336
337  // Result gets pushed on the stack...
338  pushReg(DestReg);
339}
340
341/// handleOneArgFP - fst ST(0), <mem>
342//
343void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
344  MachineInstr *MI = *I;
345  assert(MI->getNumOperands() == 5 && "Can only handle fst* instructions!");
346
347  unsigned Reg = getFPReg(MI->getOperand(4));
348  bool KillsSrc = false;
349  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
350	 E = LV->killed_end(MI); KI != E; ++KI)
351    KillsSrc |= KI->second == X86::FP0+Reg;
352
353  // FSTPr80 and FISTPr64 are strange because there are no non-popping versions.
354  // If we have one _and_ we don't want to pop the operand, duplicate the value
355  // on the stack instead of moving it.  This ensure that popping the value is
356  // always ok.
357  //
358  if ((MI->getOpcode() == X86::FSTPr80 ||
359       MI->getOpcode() == X86::FISTPr64) && !KillsSrc) {
360    duplicateToTop(Reg, 7 /*temp register*/, I);
361  } else {
362    moveToTop(Reg, I);            // Move to the top of the stack...
363  }
364  MI->RemoveOperand(4);           // Remove explicit ST(0) operand
365
366  if (MI->getOpcode() == X86::FSTPr80 || MI->getOpcode() == X86::FISTPr64) {
367    assert(StackTop > 0 && "Stack empty??");
368    --StackTop;
369  } else if (KillsSrc) { // Last use of operand?
370    popStackAfter(I);
371  }
372}
373
374//===----------------------------------------------------------------------===//
375// Define tables of various ways to map pseudo instructions
376//
377
378// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
379static const TableEntry ForwardST0Table[] = {
380  { X86::FpADD,  X86::FADDST0r  },
381  { X86::FpDIV,  X86::FDIVST0r  },
382  { X86::FpMUL,  X86::FMULST0r  },
383  { X86::FpSUB,  X86::FSUBST0r  },
384  { X86::FpUCOM, X86::FUCOMr    },
385};
386
387// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
388static const TableEntry ReverseST0Table[] = {
389  { X86::FpADD,  X86::FADDST0r  },   // commutative
390  { X86::FpDIV,  X86::FDIVRST0r },
391  { X86::FpMUL,  X86::FMULST0r  },   // commutative
392  { X86::FpSUB,  X86::FSUBRST0r },
393  { X86::FpUCOM, ~0             },
394};
395
396// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
397static const TableEntry ForwardSTiTable[] = {
398  { X86::FpADD,  X86::FADDrST0  },   // commutative
399  { X86::FpDIV,  X86::FDIVRrST0 },
400  { X86::FpMUL,  X86::FMULrST0  },   // commutative
401  { X86::FpSUB,  X86::FSUBRrST0 },
402  { X86::FpUCOM, X86::FUCOMr    },
403};
404
405// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
406static const TableEntry ReverseSTiTable[] = {
407  { X86::FpADD,  X86::FADDrST0 },
408  { X86::FpDIV,  X86::FDIVrST0 },
409  { X86::FpMUL,  X86::FMULrST0 },
410  { X86::FpSUB,  X86::FSUBrST0 },
411  { X86::FpUCOM, ~0            },
412};
413
414
415/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
416/// instructions which need to be simplified and possibly transformed.
417///
418/// Result: ST(0) = fsub  ST(0), ST(i)
419///         ST(i) = fsub  ST(0), ST(i)
420///         ST(0) = fsubr ST(0), ST(i)
421///         ST(i) = fsubr ST(0), ST(i)
422///
423/// In addition to three address instructions, this also handles the FpUCOM
424/// instruction which only has two operands, but no destination.  This
425/// instruction is also annoying because there is no "reverse" form of it
426/// available.
427///
428void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
429  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
430  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
431  MachineInstr *MI = *I;
432
433  unsigned NumOperands = MI->getNumOperands();
434  assert(NumOperands == 3 ||
435	 (NumOperands == 2 && MI->getOpcode() == X86::FpUCOM) &&
436	 "Illegal TwoArgFP instruction!");
437  unsigned Dest = getFPReg(MI->getOperand(0));
438  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
439  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
440  bool KillsOp0 = false, KillsOp1 = false;
441
442  for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
443	 E = LV->killed_end(MI); KI != E; ++KI) {
444    KillsOp0 |= (KI->second == X86::FP0+Op0);
445    KillsOp1 |= (KI->second == X86::FP0+Op1);
446  }
447
448  // If this is an FpUCOM instruction, we must make sure the first operand is on
449  // the top of stack, the other one can be anywhere...
450  if (MI->getOpcode() == X86::FpUCOM)
451    moveToTop(Op0, I);
452
453  unsigned TOS = getStackEntry(0);
454
455  // One of our operands must be on the top of the stack.  If neither is yet, we
456  // need to move one.
457  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
458    // We can choose to move either operand to the top of the stack.  If one of
459    // the operands is killed by this instruction, we want that one so that we
460    // can update right on top of the old version.
461    if (KillsOp0) {
462      moveToTop(Op0, I);         // Move dead operand to TOS.
463      TOS = Op0;
464    } else if (KillsOp1) {
465      moveToTop(Op1, I);
466      TOS = Op1;
467    } else {
468      // All of the operands are live after this instruction executes, so we
469      // cannot update on top of any operand.  Because of this, we must
470      // duplicate one of the stack elements to the top.  It doesn't matter
471      // which one we pick.
472      //
473      duplicateToTop(Op0, Dest, I);
474      Op0 = TOS = Dest;
475      KillsOp0 = true;
476    }
477  } else if (!KillsOp0 && !KillsOp1 && MI->getOpcode() != X86::FpUCOM)  {
478    // If we DO have one of our operands at the top of the stack, but we don't
479    // have a dead operand, we must duplicate one of the operands to a new slot
480    // on the stack.
481    duplicateToTop(Op0, Dest, I);
482    Op0 = TOS = Dest;
483    KillsOp0 = true;
484  }
485
486  // Now we know that one of our operands is on the top of the stack, and at
487  // least one of our operands is killed by this instruction.
488  assert((TOS == Op0 || TOS == Op1) &&
489	 (KillsOp0 || KillsOp1 || MI->getOpcode() == X86::FpUCOM) &&
490	 "Stack conditions not set up right!");
491
492  // We decide which form to use based on what is on the top of the stack, and
493  // which operand is killed by this instruction.
494  const TableEntry *InstTable;
495  bool isForward = TOS == Op0;
496  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
497  if (updateST0) {
498    if (isForward)
499      InstTable = ForwardST0Table;
500    else
501      InstTable = ReverseST0Table;
502  } else {
503    if (isForward)
504      InstTable = ForwardSTiTable;
505    else
506      InstTable = ReverseSTiTable;
507  }
508
509  int Opcode = Lookup(InstTable, ARRAY_SIZE(ForwardST0Table), MI->getOpcode());
510  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
511
512  // NotTOS - The register which is not on the top of stack...
513  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
514
515  // Replace the old instruction with a new instruction
516  *I = BuildMI(Opcode, 1).addReg(getSTReg(NotTOS));
517
518  // If both operands are killed, pop one off of the stack in addition to
519  // overwriting the other one.
520  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
521    assert(!updateST0 && "Should have updated other operand!");
522    popStackAfter(I);   // Pop the top of stack
523  }
524
525  // Insert an explicit pop of the "updated" operand for FUCOM
526  if (MI->getOpcode() == X86::FpUCOM) {
527    if (KillsOp0 && !KillsOp1)
528      popStackAfter(I);   // If we kill the first operand, pop it!
529    else if (KillsOp1 && Op0 != Op1) {
530      if (getStackEntry(0) == Op1) {
531	popStackAfter(I);     // If it's right at the top of stack, just pop it
532      } else {
533	// Otherwise, move the top of stack into the dead slot, killing the
534	// operand without having to add in an explicit xchg then pop.
535	//
536	unsigned STReg    = getSTReg(Op1);
537	unsigned OldSlot  = getSlot(Op1);
538	unsigned TopReg   = Stack[StackTop-1];
539	Stack[OldSlot]    = TopReg;
540	RegMap[TopReg]    = OldSlot;
541	RegMap[Op1]       = ~0;
542	Stack[--StackTop] = ~0;
543
544	MachineInstr *MI = BuildMI(X86::FSTPrr, 1).addReg(STReg);
545	I = MBB->insert(I+1, MI);
546      }
547    }
548  }
549
550  // Update stack information so that we know the destination register is now on
551  // the stack.
552  if (MI->getOpcode() != X86::FpUCOM) {
553    unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
554    assert(UpdatedSlot < StackTop && Dest < 7);
555    Stack[UpdatedSlot]   = Dest;
556    RegMap[Dest]         = UpdatedSlot;
557  }
558  delete MI;   // Remove the old instruction
559}
560
561
562/// handleSpecialFP - Handle special instructions which behave unlike other
563/// floating point instructions.  This is primarily intended for use by pseudo
564/// instructions.
565///
566void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
567  MachineInstr *MI = *I;
568  switch (MI->getOpcode()) {
569  default: assert(0 && "Unknown SpecialFP instruction!");
570  case X86::FpGETRESULT:  // Appears immediately after a call returning FP type!
571    assert(StackTop == 0 && "Stack should be empty after a call!");
572    pushReg(getFPReg(MI->getOperand(0)));
573    break;
574  case X86::FpSETRESULT:
575    assert(StackTop == 1 && "Stack should have one element on it to return!");
576    --StackTop;   // "Forget" we have something on the top of stack!
577    break;
578  case X86::FpMOV: {
579    unsigned SrcReg = getFPReg(MI->getOperand(1));
580    unsigned DestReg = getFPReg(MI->getOperand(0));
581    bool KillsSrc = false;
582    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
583	   E = LV->killed_end(MI); KI != E; ++KI)
584      KillsSrc |= KI->second == X86::FP0+SrcReg;
585
586    if (KillsSrc) {
587      // If the input operand is killed, we can just change the owner of the
588      // incoming stack slot into the result.
589      unsigned Slot = getSlot(SrcReg);
590      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
591      Stack[Slot] = DestReg;
592      RegMap[DestReg] = Slot;
593
594    } else {
595      // For FMOV we just duplicate the specified value to a new stack slot.
596      // This could be made better, but would require substantial changes.
597      duplicateToTop(SrcReg, DestReg, I);
598    }
599    break;
600  }
601  }
602
603  I = MBB->erase(I)-1;  // Remove the pseudo instruction
604}
605
606namespace {
607  struct FPK : public MachineFunctionPass {
608    virtual const char *getPassName() const { return "X86 FP Killer"; }
609    virtual bool runOnMachineFunction(MachineFunction &MF);
610      virtual void getAnalysisUsage(AnalysisUsage &AU) const {
611          AU.addPreserved<LiveVariables>();
612          AU.addRequired<LiveVariables>();
613          AU.addPreservedID(PHIEliminationID);
614          AU.addRequiredID(PHIEliminationID);
615          MachineFunctionPass::getAnalysisUsage(AU);
616      }
617  };
618}
619
620FunctionPass *llvm::createX86FloatingPointKillerPass() { return new FPK(); }
621
622bool FPK::runOnMachineFunction(MachineFunction &MF) {
623  const TargetInstrInfo& tii = MF.getTarget().getInstrInfo();;
624  LiveVariables &LV = getAnalysis<LiveVariables>();
625
626  for (MachineFunction::iterator
627           mbbi = MF.begin(), mbbe = MF.end(); mbbi != mbbe; ++mbbi) {
628    MachineBasicBlock& mbb = *mbbi;
629    MachineBasicBlock::reverse_iterator mii = mbb.rbegin();
630    // rewind to the last non terminating instruction
631    while (mii != mbb.rend() && tii.isTerminatorInstr((*mii)->getOpcode()))
632      ++mii;
633
634    // add implicit def for all virtual floating point registers so that
635    // they are spilled at the end of each basic block, since our
636    // register stackifier doesn't handle them otherwise.
637    MachineInstr* instr = BuildMI(X86::IMPLICIT_DEF, 7)
638        .addReg(X86::FP6, MOTy::Def)
639        .addReg(X86::FP5, MOTy::Def)
640        .addReg(X86::FP4, MOTy::Def)
641        .addReg(X86::FP3, MOTy::Def)
642        .addReg(X86::FP2, MOTy::Def)
643        .addReg(X86::FP1, MOTy::Def)
644        .addReg(X86::FP0, MOTy::Def);
645
646    mbb.insert(mii.base(), instr);
647
648    for (unsigned i = 0; i < instr->getNumOperands(); ++i) {
649      LV.HandlePhysRegDef(instr->getOperand(i).getAllocatedRegNum(), instr);
650
651      // force live variables to compute that these registers are dead
652      LV.HandlePhysRegDef(instr->getOperand(i).getAllocatedRegNum(), 0);
653    }
654  }
655  return true;
656}
657