X86RegisterInfo.cpp revision 015f228861ef9b337366f92f637d4e8d624bb006
1//===-- X86RegisterInfo.cpp - X86 Register Information --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetRegisterInfo class.
11// This file is responsible for the frame pointer elimination optimization
12// on X86.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86RegisterInfo.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/Target/TargetFrameLowering.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/ADT/BitVector.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/CommandLine.h"
41
42#define GET_REGINFO_TARGET_DESC
43#include "X86GenRegisterInfo.inc"
44
45using namespace llvm;
46
47cl::opt<bool>
48ForceStackAlign("force-align-stack",
49                 cl::desc("Force align the stack to the minimum alignment"
50                           " needed for the function."),
51                 cl::init(false), cl::Hidden);
52
53X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
54                                 const TargetInstrInfo &tii)
55  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit()
56                         ? X86::RIP : X86::EIP,
57                       X86_MC::getDwarfRegFlavour(tm.getTargetTriple(), false),
58                       X86_MC::getDwarfRegFlavour(tm.getTargetTriple(), true)),
59                       TM(tm), TII(tii) {
60  X86_MC::InitLLVM2SEHRegisterMapping(this);
61
62  // Cache some information.
63  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
64  Is64Bit = Subtarget->is64Bit();
65  IsWin64 = Subtarget->isTargetWin64();
66
67  if (Is64Bit) {
68    SlotSize = 8;
69    StackPtr = X86::RSP;
70    FramePtr = X86::RBP;
71  } else {
72    SlotSize = 4;
73    StackPtr = X86::ESP;
74    FramePtr = X86::EBP;
75  }
76}
77
78/// getCompactUnwindRegNum - This function maps the register to the number for
79/// compact unwind encoding. Return -1 if the register isn't valid.
80int X86RegisterInfo::getCompactUnwindRegNum(unsigned RegNum, bool isEH) const {
81  switch (getLLVMRegNum(RegNum, isEH)) {
82  case X86::EBX: case X86::RBX: return 1;
83  case X86::ECX: case X86::R12: return 2;
84  case X86::EDX: case X86::R13: return 3;
85  case X86::EDI: case X86::R14: return 4;
86  case X86::ESI: case X86::R15: return 5;
87  case X86::EBP: case X86::RBP: return 6;
88  }
89
90  return -1;
91}
92
93int
94X86RegisterInfo::getSEHRegNum(unsigned i) const {
95  int reg = X86_MC::getX86RegNum(i);
96  switch (i) {
97  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
98  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
99  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
100  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
101  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
102  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
103  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
104  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
105  case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
106  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
107  case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11:
108  case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
109    reg += 8;
110  }
111  return reg;
112}
113
114const TargetRegisterClass *
115X86RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
116                                       unsigned Idx) const {
117  // The sub_8bit sub-register index is more constrained in 32-bit mode.
118  // It behaves just like the sub_8bit_hi index.
119  if (!Is64Bit && Idx == X86::sub_8bit)
120    Idx = X86::sub_8bit_hi;
121
122  // Forward to TableGen's default version.
123  return X86GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
124}
125
126const TargetRegisterClass *
127X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
128                                          const TargetRegisterClass *B,
129                                          unsigned SubIdx) const {
130  // The sub_8bit sub-register index is more constrained in 32-bit mode.
131  if (!Is64Bit && SubIdx == X86::sub_8bit) {
132    A = X86GenRegisterInfo::getSubClassWithSubReg(A, X86::sub_8bit_hi);
133    if (!A)
134      return 0;
135  }
136  return X86GenRegisterInfo::getMatchingSuperRegClass(A, B, SubIdx);
137}
138
139const TargetRegisterClass*
140X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC) const{
141  // Don't allow super-classes of GR8_NOREX.  This class is only used after
142  // extrating sub_8bit_hi sub-registers.  The H sub-registers cannot be copied
143  // to the full GR8 register class in 64-bit mode, so we cannot allow the
144  // reigster class inflation.
145  //
146  // The GR8_NOREX class is always used in a way that won't be constrained to a
147  // sub-class, so sub-classes like GR8_ABCD_L are allowed to expand to the
148  // full GR8 class.
149  if (RC == X86::GR8_NOREXRegisterClass)
150    return RC;
151
152  const TargetRegisterClass *Super = RC;
153  TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
154  do {
155    switch (Super->getID()) {
156    case X86::GR8RegClassID:
157    case X86::GR16RegClassID:
158    case X86::GR32RegClassID:
159    case X86::GR64RegClassID:
160    case X86::FR32RegClassID:
161    case X86::FR64RegClassID:
162    case X86::RFP32RegClassID:
163    case X86::RFP64RegClassID:
164    case X86::RFP80RegClassID:
165    case X86::VR128RegClassID:
166    case X86::VR256RegClassID:
167      // Don't return a super-class that would shrink the spill size.
168      // That can happen with the vector and float classes.
169      if (Super->getSize() == RC->getSize())
170        return Super;
171    }
172    Super = *I++;
173  } while (Super);
174  return RC;
175}
176
177const TargetRegisterClass *
178X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
179  switch (Kind) {
180  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
181  case 0: // Normal GPRs.
182    if (TM.getSubtarget<X86Subtarget>().is64Bit())
183      return &X86::GR64RegClass;
184    return &X86::GR32RegClass;
185  case 1: // Normal GPRs except the stack pointer (for encoding reasons).
186    if (TM.getSubtarget<X86Subtarget>().is64Bit())
187      return &X86::GR64_NOSPRegClass;
188    return &X86::GR32_NOSPRegClass;
189  case 2: // Available for tailcall (not callee-saved GPRs).
190    if (TM.getSubtarget<X86Subtarget>().isTargetWin64())
191      return &X86::GR64_TCW64RegClass;
192    if (TM.getSubtarget<X86Subtarget>().is64Bit())
193      return &X86::GR64_TCRegClass;
194    return &X86::GR32_TCRegClass;
195  }
196}
197
198const TargetRegisterClass *
199X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
200  if (RC == &X86::CCRRegClass) {
201    if (Is64Bit)
202      return &X86::GR64RegClass;
203    else
204      return &X86::GR32RegClass;
205  }
206  return RC;
207}
208
209unsigned
210X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
211                                     MachineFunction &MF) const {
212  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
213
214  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
215  switch (RC->getID()) {
216  default:
217    return 0;
218  case X86::GR32RegClassID:
219    return 4 - FPDiff;
220  case X86::GR64RegClassID:
221    return 12 - FPDiff;
222  case X86::VR128RegClassID:
223    return TM.getSubtarget<X86Subtarget>().is64Bit() ? 10 : 4;
224  case X86::VR64RegClassID:
225    return 4;
226  }
227}
228
229const uint16_t *
230X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
231  bool callsEHReturn = false;
232  bool ghcCall = false;
233
234  if (MF) {
235    callsEHReturn = MF->getMMI().callsEHReturn();
236    const Function *F = MF->getFunction();
237    ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false);
238  }
239
240  if (ghcCall)
241    return CSR_Ghc_SaveList;
242  if (Is64Bit) {
243    if (IsWin64)
244      return CSR_Win64_SaveList;
245    if (callsEHReturn)
246      return CSR_64EHRet_SaveList;
247    return CSR_64_SaveList;
248  }
249  if (callsEHReturn)
250    return CSR_32EHRet_SaveList;
251  return CSR_32_SaveList;
252}
253
254const uint32_t*
255X86RegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
256  if (CC == CallingConv::GHC)
257    return CSR_Ghc_RegMask;
258  if (!Is64Bit)
259    return CSR_32_RegMask;
260  if (IsWin64)
261    return CSR_Win64_RegMask;
262  return CSR_64_RegMask;
263}
264
265BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
266  BitVector Reserved(getNumRegs());
267  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
268
269  // Set the stack-pointer register and its aliases as reserved.
270  Reserved.set(X86::RSP);
271  Reserved.set(X86::ESP);
272  Reserved.set(X86::SP);
273  Reserved.set(X86::SPL);
274
275  // Set the instruction pointer register and its aliases as reserved.
276  Reserved.set(X86::RIP);
277  Reserved.set(X86::EIP);
278  Reserved.set(X86::IP);
279
280  // Set the frame-pointer register and its aliases as reserved if needed.
281  if (TFI->hasFP(MF)) {
282    Reserved.set(X86::RBP);
283    Reserved.set(X86::EBP);
284    Reserved.set(X86::BP);
285    Reserved.set(X86::BPL);
286  }
287
288  // Mark the segment registers as reserved.
289  Reserved.set(X86::CS);
290  Reserved.set(X86::SS);
291  Reserved.set(X86::DS);
292  Reserved.set(X86::ES);
293  Reserved.set(X86::FS);
294  Reserved.set(X86::GS);
295
296  // Reserve the registers that only exist in 64-bit mode.
297  if (!Is64Bit) {
298    // These 8-bit registers are part of the x86-64 extension even though their
299    // super-registers are old 32-bits.
300    Reserved.set(X86::SIL);
301    Reserved.set(X86::DIL);
302    Reserved.set(X86::BPL);
303    Reserved.set(X86::SPL);
304
305    for (unsigned n = 0; n != 8; ++n) {
306      // R8, R9, ...
307      const unsigned GPR64[] = {
308        X86::R8,  X86::R9,  X86::R10, X86::R11,
309        X86::R12, X86::R13, X86::R14, X86::R15
310      };
311      for (const unsigned *AI = getOverlaps(GPR64[n]); unsigned Reg = *AI; ++AI)
312        Reserved.set(Reg);
313
314      // XMM8, XMM9, ...
315      assert(X86::XMM15 == X86::XMM8+7);
316      for (const unsigned *AI = getOverlaps(X86::XMM8 + n); unsigned Reg = *AI;
317           ++AI)
318        Reserved.set(Reg);
319    }
320  }
321
322  return Reserved;
323}
324
325//===----------------------------------------------------------------------===//
326// Stack Frame Processing methods
327//===----------------------------------------------------------------------===//
328
329bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
330  const MachineFrameInfo *MFI = MF.getFrameInfo();
331  return (MF.getTarget().Options.RealignStack &&
332          !MFI->hasVarSizedObjects());
333}
334
335bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
336  const MachineFrameInfo *MFI = MF.getFrameInfo();
337  const Function *F = MF.getFunction();
338  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
339  bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
340                               F->hasFnAttr(Attribute::StackAlignment));
341
342  // FIXME: Currently we don't support stack realignment for functions with
343  //        variable-sized allocas.
344  // FIXME: It's more complicated than this...
345  if (0 && requiresRealignment && MFI->hasVarSizedObjects())
346    report_fatal_error(
347      "Stack realignment in presence of dynamic allocas is not supported");
348
349  // If we've requested that we force align the stack do so now.
350  if (ForceStackAlign)
351    return canRealignStack(MF);
352
353  return requiresRealignment && canRealignStack(MF);
354}
355
356bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
357                                           unsigned Reg, int &FrameIdx) const {
358  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
359
360  if (Reg == FramePtr && TFI->hasFP(MF)) {
361    FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
362    return true;
363  }
364  return false;
365}
366
367static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
368  if (is64Bit) {
369    if (isInt<8>(Imm))
370      return X86::SUB64ri8;
371    return X86::SUB64ri32;
372  } else {
373    if (isInt<8>(Imm))
374      return X86::SUB32ri8;
375    return X86::SUB32ri;
376  }
377}
378
379static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
380  if (is64Bit) {
381    if (isInt<8>(Imm))
382      return X86::ADD64ri8;
383    return X86::ADD64ri32;
384  } else {
385    if (isInt<8>(Imm))
386      return X86::ADD32ri8;
387    return X86::ADD32ri;
388  }
389}
390
391void X86RegisterInfo::
392eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
393                              MachineBasicBlock::iterator I) const {
394  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
395  bool reseveCallFrame = TFI->hasReservedCallFrame(MF);
396  int Opcode = I->getOpcode();
397  bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
398  DebugLoc DL = I->getDebugLoc();
399  uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
400  uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
401  I = MBB.erase(I);
402
403  if (!reseveCallFrame) {
404    // If the stack pointer can be changed after prologue, turn the
405    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
406    // adjcallstackdown instruction into 'add ESP, <amt>'
407    // TODO: consider using push / pop instead of sub + store / add
408    if (Amount == 0)
409      return;
410
411    // We need to keep the stack aligned properly.  To do this, we round the
412    // amount of space needed for the outgoing arguments up to the next
413    // alignment boundary.
414    unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
415    Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
416
417    MachineInstr *New = 0;
418    if (Opcode == TII.getCallFrameSetupOpcode()) {
419      New = BuildMI(MF, DL, TII.get(getSUBriOpcode(Is64Bit, Amount)),
420                    StackPtr)
421        .addReg(StackPtr)
422        .addImm(Amount);
423    } else {
424      assert(Opcode == TII.getCallFrameDestroyOpcode());
425
426      // Factor out the amount the callee already popped.
427      Amount -= CalleeAmt;
428
429      if (Amount) {
430        unsigned Opc = getADDriOpcode(Is64Bit, Amount);
431        New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
432          .addReg(StackPtr).addImm(Amount);
433      }
434    }
435
436    if (New) {
437      // The EFLAGS implicit def is dead.
438      New->getOperand(3).setIsDead();
439
440      // Replace the pseudo instruction with a new instruction.
441      MBB.insert(I, New);
442    }
443
444    return;
445  }
446
447  if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) {
448    // If we are performing frame pointer elimination and if the callee pops
449    // something off the stack pointer, add it back.  We do this until we have
450    // more advanced stack pointer tracking ability.
451    unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt);
452    MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
453      .addReg(StackPtr).addImm(CalleeAmt);
454
455    // The EFLAGS implicit def is dead.
456    New->getOperand(3).setIsDead();
457
458    // We are not tracking the stack pointer adjustment by the callee, so make
459    // sure we restore the stack pointer immediately after the call, there may
460    // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
461    MachineBasicBlock::iterator B = MBB.begin();
462    while (I != B && !llvm::prior(I)->isCall())
463      --I;
464    MBB.insert(I, New);
465  }
466}
467
468void
469X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
470                                     int SPAdj, RegScavenger *RS) const{
471  assert(SPAdj == 0 && "Unexpected");
472
473  unsigned i = 0;
474  MachineInstr &MI = *II;
475  MachineFunction &MF = *MI.getParent()->getParent();
476  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
477
478  while (!MI.getOperand(i).isFI()) {
479    ++i;
480    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
481  }
482
483  int FrameIndex = MI.getOperand(i).getIndex();
484  unsigned BasePtr;
485
486  unsigned Opc = MI.getOpcode();
487  bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm;
488  if (needsStackRealignment(MF))
489    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
490  else if (AfterFPPop)
491    BasePtr = StackPtr;
492  else
493    BasePtr = (TFI->hasFP(MF) ? FramePtr : StackPtr);
494
495  // This must be part of a four operand memory reference.  Replace the
496  // FrameIndex with base register with EBP.  Add an offset to the offset.
497  MI.getOperand(i).ChangeToRegister(BasePtr, false);
498
499  // Now add the frame object offset to the offset from EBP.
500  int FIOffset;
501  if (AfterFPPop) {
502    // Tail call jmp happens after FP is popped.
503    const MachineFrameInfo *MFI = MF.getFrameInfo();
504    FIOffset = MFI->getObjectOffset(FrameIndex) - TFI->getOffsetOfLocalArea();
505  } else
506    FIOffset = TFI->getFrameIndexOffset(MF, FrameIndex);
507
508  if (MI.getOperand(i+3).isImm()) {
509    // Offset is a 32-bit integer.
510    int Imm = (int)(MI.getOperand(i + 3).getImm());
511    int Offset = FIOffset + Imm;
512    assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) &&
513           "Requesting 64-bit offset in 32-bit immediate!");
514    MI.getOperand(i + 3).ChangeToImmediate(Offset);
515  } else {
516    // Offset is symbolic. This is extremely rare.
517    uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset();
518    MI.getOperand(i+3).setOffset(Offset);
519  }
520}
521
522unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
523  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
524  return TFI->hasFP(MF) ? FramePtr : StackPtr;
525}
526
527unsigned X86RegisterInfo::getEHExceptionRegister() const {
528  llvm_unreachable("What is the exception register");
529}
530
531unsigned X86RegisterInfo::getEHHandlerRegister() const {
532  llvm_unreachable("What is the exception handler register");
533}
534
535namespace llvm {
536unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
537  switch (VT.getSimpleVT().SimpleTy) {
538  default: return Reg;
539  case MVT::i8:
540    if (High) {
541      switch (Reg) {
542      default: return getX86SubSuperRegister(Reg, MVT::i64, High);
543      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
544        return X86::AH;
545      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
546        return X86::DH;
547      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
548        return X86::CH;
549      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
550        return X86::BH;
551      }
552    } else {
553      switch (Reg) {
554      default: return 0;
555      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
556        return X86::AL;
557      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
558        return X86::DL;
559      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
560        return X86::CL;
561      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
562        return X86::BL;
563      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
564        return X86::SIL;
565      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
566        return X86::DIL;
567      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
568        return X86::BPL;
569      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
570        return X86::SPL;
571      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
572        return X86::R8B;
573      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
574        return X86::R9B;
575      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
576        return X86::R10B;
577      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
578        return X86::R11B;
579      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
580        return X86::R12B;
581      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
582        return X86::R13B;
583      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
584        return X86::R14B;
585      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
586        return X86::R15B;
587      }
588    }
589  case MVT::i16:
590    switch (Reg) {
591    default: return Reg;
592    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
593      return X86::AX;
594    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
595      return X86::DX;
596    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
597      return X86::CX;
598    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
599      return X86::BX;
600    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
601      return X86::SI;
602    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
603      return X86::DI;
604    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
605      return X86::BP;
606    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
607      return X86::SP;
608    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
609      return X86::R8W;
610    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
611      return X86::R9W;
612    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
613      return X86::R10W;
614    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
615      return X86::R11W;
616    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
617      return X86::R12W;
618    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
619      return X86::R13W;
620    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
621      return X86::R14W;
622    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
623      return X86::R15W;
624    }
625  case MVT::i32:
626    switch (Reg) {
627    default: return Reg;
628    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
629      return X86::EAX;
630    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
631      return X86::EDX;
632    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
633      return X86::ECX;
634    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
635      return X86::EBX;
636    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
637      return X86::ESI;
638    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
639      return X86::EDI;
640    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
641      return X86::EBP;
642    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
643      return X86::ESP;
644    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
645      return X86::R8D;
646    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
647      return X86::R9D;
648    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
649      return X86::R10D;
650    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
651      return X86::R11D;
652    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
653      return X86::R12D;
654    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
655      return X86::R13D;
656    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
657      return X86::R14D;
658    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
659      return X86::R15D;
660    }
661  case MVT::i64:
662    // For 64-bit mode if we've requested a "high" register and the
663    // Q or r constraints we want one of these high registers or
664    // just the register name otherwise.
665    if (High) {
666      switch (Reg) {
667      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
668        return X86::SI;
669      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
670        return X86::DI;
671      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
672        return X86::BP;
673      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
674        return X86::SP;
675      // Fallthrough.
676      }
677    }
678    switch (Reg) {
679    default: return Reg;
680    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
681      return X86::RAX;
682    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
683      return X86::RDX;
684    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
685      return X86::RCX;
686    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
687      return X86::RBX;
688    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
689      return X86::RSI;
690    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
691      return X86::RDI;
692    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
693      return X86::RBP;
694    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
695      return X86::RSP;
696    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
697      return X86::R8;
698    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
699      return X86::R9;
700    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
701      return X86::R10;
702    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
703      return X86::R11;
704    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
705      return X86::R12;
706    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
707      return X86::R13;
708    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
709      return X86::R14;
710    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
711      return X86::R15;
712    }
713  }
714}
715}
716
717namespace {
718  struct MSAH : public MachineFunctionPass {
719    static char ID;
720    MSAH() : MachineFunctionPass(ID) {}
721
722    virtual bool runOnMachineFunction(MachineFunction &MF) {
723      const X86TargetMachine *TM =
724        static_cast<const X86TargetMachine *>(&MF.getTarget());
725      const TargetFrameLowering *TFI = TM->getFrameLowering();
726      MachineRegisterInfo &RI = MF.getRegInfo();
727      X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
728      unsigned StackAlignment = TFI->getStackAlignment();
729
730      // Be over-conservative: scan over all vreg defs and find whether vector
731      // registers are used. If yes, there is a possibility that vector register
732      // will be spilled and thus require dynamic stack realignment.
733      for (unsigned i = 0, e = RI.getNumVirtRegs(); i != e; ++i) {
734        unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
735        if (RI.getRegClass(Reg)->getAlignment() > StackAlignment) {
736          FuncInfo->setForceFramePointer(true);
737          return true;
738        }
739      }
740      // Nothing to do
741      return false;
742    }
743
744    virtual const char *getPassName() const {
745      return "X86 Maximal Stack Alignment Check";
746    }
747
748    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
749      AU.setPreservesCFG();
750      MachineFunctionPass::getAnalysisUsage(AU);
751    }
752  };
753
754  char MSAH::ID = 0;
755}
756
757FunctionPass*
758llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); }
759