X86RegisterInfo.cpp revision 09e460662a8d7328da1b938d5581a6ef3740b51d
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the MRegisterInfo class.  This
11// file is responsible for the frame pointer elimination optimization on X86.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86RegisterInfo.h"
17#include "X86Subtarget.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86TargetMachine.h"
21#include "llvm/Constants.h"
22#include "llvm/Type.h"
23#include "llvm/Function.h"
24#include "llvm/CodeGen/ValueTypes.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineLocation.h"
29#include "llvm/Target/TargetFrameInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/ADT/STLExtras.h"
34#include <iostream>
35
36using namespace llvm;
37
38namespace {
39  cl::opt<bool>
40  NoFusing("disable-spill-fusing",
41           cl::desc("Disable fusing of spill code into instructions"));
42  cl::opt<bool>
43  PrintFailedFusing("print-failed-fuse-candidates",
44                    cl::desc("Print instructions that the allocator wants to"
45                             " fuse, but the X86 backend currently can't"),
46                    cl::Hidden);
47}
48
49X86RegisterInfo::X86RegisterInfo(const TargetInstrInfo &tii)
50  : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP), TII(tii) {}
51
52void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
53                                          MachineBasicBlock::iterator MI,
54                                          unsigned SrcReg, int FrameIdx,
55                                          const TargetRegisterClass *RC) const {
56  unsigned Opc;
57  if (RC == &X86::GR32RegClass) {
58    Opc = X86::MOV32mr;
59  } else if (RC == &X86::GR16RegClass) {
60    Opc = X86::MOV16mr;
61  } else if (RC == &X86::GR8RegClass) {
62    Opc = X86::MOV8mr;
63  } else if (RC == &X86::GR32_RegClass) {
64    Opc = X86::MOV32_mr;
65  } else if (RC == &X86::GR16_RegClass) {
66    Opc = X86::MOV16_mr;
67  } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) {
68    Opc = X86::FpST64m;
69  } else if (RC == &X86::FR32RegClass) {
70    Opc = X86::MOVSSmr;
71  } else if (RC == &X86::FR64RegClass) {
72    Opc = X86::MOVSDmr;
73  } else if (RC == &X86::VR128RegClass) {
74    Opc = X86::MOVAPSmr;
75  } else {
76    assert(0 && "Unknown regclass");
77    abort();
78  }
79  addFrameReference(BuildMI(MBB, MI, Opc, 5), FrameIdx).addReg(SrcReg);
80}
81
82void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
83                                           MachineBasicBlock::iterator MI,
84                                           unsigned DestReg, int FrameIdx,
85                                           const TargetRegisterClass *RC) const{
86  unsigned Opc;
87  if (RC == &X86::GR32RegClass) {
88    Opc = X86::MOV32rm;
89  } else if (RC == &X86::GR16RegClass) {
90    Opc = X86::MOV16rm;
91  } else if (RC == &X86::GR8RegClass) {
92    Opc = X86::MOV8rm;
93  } else if (RC == &X86::GR32_RegClass) {
94    Opc = X86::MOV32_rm;
95  } else if (RC == &X86::GR16_RegClass) {
96    Opc = X86::MOV16_rm;
97  } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) {
98    Opc = X86::FpLD64m;
99  } else if (RC == &X86::FR32RegClass) {
100    Opc = X86::MOVSSrm;
101  } else if (RC == &X86::FR64RegClass) {
102    Opc = X86::MOVSDrm;
103  } else if (RC == &X86::VR128RegClass) {
104    Opc = X86::MOVAPSrm;
105  } else {
106    assert(0 && "Unknown regclass");
107    abort();
108  }
109  addFrameReference(BuildMI(MBB, MI, Opc, 4, DestReg), FrameIdx);
110}
111
112void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
113                                   MachineBasicBlock::iterator MI,
114                                   unsigned DestReg, unsigned SrcReg,
115                                   const TargetRegisterClass *RC) const {
116  unsigned Opc;
117  if (RC == &X86::GR32RegClass) {
118    Opc = X86::MOV32rr;
119  } else if (RC == &X86::GR16RegClass) {
120    Opc = X86::MOV16rr;
121  } else if (RC == &X86::GR8RegClass) {
122    Opc = X86::MOV8rr;
123  } else if (RC == &X86::GR32_RegClass) {
124    Opc = X86::MOV32_rr;
125  } else if (RC == &X86::GR16_RegClass) {
126    Opc = X86::MOV16_rr;
127  } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) {
128    Opc = X86::FpMOV;
129  } else if (RC == &X86::FR32RegClass) {
130    Opc = X86::FsMOVAPSrr;
131  } else if (RC == &X86::FR64RegClass) {
132    Opc = X86::FsMOVAPDrr;
133  } else if (RC == &X86::VR128RegClass) {
134    Opc = X86::MOVAPSrr;
135  } else {
136    assert(0 && "Unknown regclass");
137    abort();
138  }
139  BuildMI(MBB, MI, Opc, 1, DestReg).addReg(SrcReg);
140}
141
142static MachineInstr *FuseTwoAddrInst(unsigned Opcode, unsigned FrameIndex,
143                                     MachineInstr *MI) {
144  unsigned NumOps = MI->getNumOperands()-2;
145  // Create the base instruction with the memory operand as the first part.
146  MachineInstrBuilder MIB = addFrameReference(BuildMI(Opcode, 4+NumOps),
147                                              FrameIndex);
148
149  // Loop over the rest of the ri operands, converting them over.
150  for (unsigned i = 0; i != NumOps; ++i) {
151    if (MI->getOperand(i+2).isReg())
152      MIB = MIB.addReg(MI->getOperand(i+2).getReg());
153    else {
154      assert(MI->getOperand(i+2).isImm() && "Unknown operand type!");
155      MIB = MIB.addImm(MI->getOperand(i+2).getImm());
156    }
157  }
158  return MIB;
159}
160
161static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
162                              unsigned FrameIndex, MachineInstr *MI) {
163  MachineInstrBuilder MIB = BuildMI(Opcode, MI->getNumOperands()+3);
164
165  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
166    MachineOperand &MO = MI->getOperand(i);
167    if (i == OpNo) {
168      assert(MO.isReg() && "Expected to fold into reg operand!");
169      MIB = addFrameReference(MIB, FrameIndex);
170    } else if (MO.isReg())
171      MIB = MIB.addReg(MO.getReg(), MO.isDef());
172    else if (MO.isImm())
173      MIB = MIB.addImm(MO.getImm());
174    else if (MO.isGlobalAddress())
175      MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
176    else if (MO.isJumpTableIndex())
177      MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex());
178    else
179      assert(0 && "Unknown operand for FuseInst!");
180  }
181  return MIB;
182}
183
184static MachineInstr *MakeM0Inst(unsigned Opcode, unsigned FrameIndex,
185                                MachineInstr *MI) {
186  return addFrameReference(BuildMI(Opcode, 5), FrameIndex).addImm(0);
187}
188
189
190//===----------------------------------------------------------------------===//
191// Efficient Lookup Table Support
192//===----------------------------------------------------------------------===//
193
194namespace {
195  /// TableEntry - Maps the 'from' opcode to a fused form of the 'to' opcode.
196  ///
197  struct TableEntry {
198    unsigned from;                      // Original opcode.
199    unsigned to;                        // New opcode.
200
201    // less operators used by STL search.
202    bool operator<(const TableEntry &TE) const { return from < TE.from; }
203    friend bool operator<(const TableEntry &TE, unsigned V) {
204      return TE.from < V;
205    }
206    friend bool operator<(unsigned V, const TableEntry &TE) {
207      return V < TE.from;
208    }
209  };
210}
211
212/// TableIsSorted - Return true if the table is in 'from' opcode order.
213///
214static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
215  for (unsigned i = 1; i != NumEntries; ++i)
216    if (!(Table[i-1] < Table[i])) {
217      std::cerr << "Entries out of order " << Table[i-1].from
218                << " " << Table[i].from << "\n";
219      return false;
220    }
221  return true;
222}
223
224/// TableLookup - Return the table entry matching the specified opcode.
225/// Otherwise return NULL.
226static const TableEntry *TableLookup(const TableEntry *Table, unsigned N,
227                                unsigned Opcode) {
228  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
229  if (I != Table+N && I->from == Opcode)
230    return I;
231  return NULL;
232}
233
234#define ARRAY_SIZE(TABLE)  \
235   (sizeof(TABLE)/sizeof(TABLE[0]))
236
237#ifdef NDEBUG
238#define ASSERT_SORTED(TABLE)
239#else
240#define ASSERT_SORTED(TABLE)                                              \
241  { static bool TABLE##Checked = false;                                   \
242    if (!TABLE##Checked) {                                                \
243       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
244              "All lookup tables must be sorted for efficient access!");  \
245       TABLE##Checked = true;                                             \
246    }                                                                     \
247  }
248#endif
249
250
251MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI,
252                                                 unsigned i,
253                                                 int FrameIndex) const {
254  // Check switch flag
255  if (NoFusing) return NULL;
256
257  // Table (and size) to search
258  const TableEntry *OpcodeTablePtr = NULL;
259  unsigned OpcodeTableSize = 0;
260  bool isTwoAddrFold = false;
261
262  // Folding a memory location into the two-address part of a two-address
263  // instruction is different than folding it other places.  It requires
264  // replacing the *two* registers with the memory location.
265  if (MI->getNumOperands() >= 2 && MI->getOperand(0).isReg() &&
266      MI->getOperand(1).isReg() && i < 2 &&
267      MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
268      TII.isTwoAddrInstr(MI->getOpcode())) {
269    static const TableEntry OpcodeTable[] = {
270      { X86::ADC32ri,     X86::ADC32mi },
271      { X86::ADC32ri8,    X86::ADC32mi8 },
272      { X86::ADC32rr,     X86::ADC32mr },
273      { X86::ADD16ri,     X86::ADD16mi },
274      { X86::ADD16ri8,    X86::ADD16mi8 },
275      { X86::ADD16rr,     X86::ADD16mr },
276      { X86::ADD32ri,     X86::ADD32mi },
277      { X86::ADD32ri8,    X86::ADD32mi8 },
278      { X86::ADD32rr,     X86::ADD32mr },
279      { X86::ADD8ri,      X86::ADD8mi },
280      { X86::ADD8rr,      X86::ADD8mr },
281      { X86::AND16ri,     X86::AND16mi },
282      { X86::AND16ri8,    X86::AND16mi8 },
283      { X86::AND16rr,     X86::AND16mr },
284      { X86::AND32ri,     X86::AND32mi },
285      { X86::AND32ri8,    X86::AND32mi8 },
286      { X86::AND32rr,     X86::AND32mr },
287      { X86::AND8ri,      X86::AND8mi },
288      { X86::AND8rr,      X86::AND8mr },
289      { X86::DEC16r,      X86::DEC16m },
290      { X86::DEC32r,      X86::DEC32m },
291      { X86::DEC8r,       X86::DEC8m },
292      { X86::INC16r,      X86::INC16m },
293      { X86::INC32r,      X86::INC32m },
294      { X86::INC8r,       X86::INC8m },
295      { X86::NEG16r,      X86::NEG16m },
296      { X86::NEG32r,      X86::NEG32m },
297      { X86::NEG8r,       X86::NEG8m },
298      { X86::NOT16r,      X86::NOT16m },
299      { X86::NOT32r,      X86::NOT32m },
300      { X86::NOT8r,       X86::NOT8m },
301      { X86::OR16ri,      X86::OR16mi },
302      { X86::OR16ri8,     X86::OR16mi8 },
303      { X86::OR16rr,      X86::OR16mr },
304      { X86::OR32ri,      X86::OR32mi },
305      { X86::OR32ri8,     X86::OR32mi8 },
306      { X86::OR32rr,      X86::OR32mr },
307      { X86::OR8ri,       X86::OR8mi },
308      { X86::OR8rr,       X86::OR8mr },
309      { X86::ROL16r1,     X86::ROL16m1 },
310      { X86::ROL16rCL,    X86::ROL16mCL },
311      { X86::ROL16ri,     X86::ROL16mi },
312      { X86::ROL32r1,     X86::ROL32m1 },
313      { X86::ROL32rCL,    X86::ROL32mCL },
314      { X86::ROL32ri,     X86::ROL32mi },
315      { X86::ROL8r1,      X86::ROL8m1 },
316      { X86::ROL8rCL,     X86::ROL8mCL },
317      { X86::ROL8ri,      X86::ROL8mi },
318      { X86::ROR16r1,     X86::ROR16m1 },
319      { X86::ROR16rCL,    X86::ROR16mCL },
320      { X86::ROR16ri,     X86::ROR16mi },
321      { X86::ROR32r1,     X86::ROR32m1 },
322      { X86::ROR32rCL,    X86::ROR32mCL },
323      { X86::ROR32ri,     X86::ROR32mi },
324      { X86::ROR8r1,      X86::ROR8m1 },
325      { X86::ROR8rCL,     X86::ROR8mCL },
326      { X86::ROR8ri,      X86::ROR8mi },
327      { X86::SAR16r1,     X86::SAR16m1 },
328      { X86::SAR16rCL,    X86::SAR16mCL },
329      { X86::SAR16ri,     X86::SAR16mi },
330      { X86::SAR32r1,     X86::SAR32m1 },
331      { X86::SAR32rCL,    X86::SAR32mCL },
332      { X86::SAR32ri,     X86::SAR32mi },
333      { X86::SAR8r1,      X86::SAR8m1 },
334      { X86::SAR8rCL,     X86::SAR8mCL },
335      { X86::SAR8ri,      X86::SAR8mi },
336      { X86::SBB32ri,     X86::SBB32mi },
337      { X86::SBB32ri8,    X86::SBB32mi8 },
338      { X86::SBB32rr,     X86::SBB32mr },
339      { X86::SHL16r1,     X86::SHL16m1 },
340      { X86::SHL16rCL,    X86::SHL16mCL },
341      { X86::SHL16ri,     X86::SHL16mi },
342      { X86::SHL32r1,     X86::SHL32m1 },
343      { X86::SHL32rCL,    X86::SHL32mCL },
344      { X86::SHL32ri,     X86::SHL32mi },
345      { X86::SHL8r1,      X86::SHL8m1 },
346      { X86::SHL8rCL,     X86::SHL8mCL },
347      { X86::SHL8ri,      X86::SHL8mi },
348      { X86::SHLD16rrCL,  X86::SHLD16mrCL },
349      { X86::SHLD16rri8,  X86::SHLD16mri8 },
350      { X86::SHLD32rrCL,  X86::SHLD32mrCL },
351      { X86::SHLD32rri8,  X86::SHLD32mri8 },
352      { X86::SHR16r1,     X86::SHR16m1 },
353      { X86::SHR16rCL,    X86::SHR16mCL },
354      { X86::SHR16ri,     X86::SHR16mi },
355      { X86::SHR32r1,     X86::SHR32m1 },
356      { X86::SHR32rCL,    X86::SHR32mCL },
357      { X86::SHR32ri,     X86::SHR32mi },
358      { X86::SHR8r1,      X86::SHR8m1 },
359      { X86::SHR8rCL,     X86::SHR8mCL },
360      { X86::SHR8ri,      X86::SHR8mi },
361      { X86::SHRD16rrCL,  X86::SHRD16mrCL },
362      { X86::SHRD16rri8,  X86::SHRD16mri8 },
363      { X86::SHRD32rrCL,  X86::SHRD32mrCL },
364      { X86::SHRD32rri8,  X86::SHRD32mri8 },
365      { X86::SUB16ri,     X86::SUB16mi },
366      { X86::SUB16ri8,    X86::SUB16mi8 },
367      { X86::SUB16rr,     X86::SUB16mr },
368      { X86::SUB32ri,     X86::SUB32mi },
369      { X86::SUB32ri8,    X86::SUB32mi8 },
370      { X86::SUB32rr,     X86::SUB32mr },
371      { X86::SUB8ri,      X86::SUB8mi },
372      { X86::SUB8rr,      X86::SUB8mr },
373      { X86::XOR16ri,     X86::XOR16mi },
374      { X86::XOR16ri8,    X86::XOR16mi8 },
375      { X86::XOR16rr,     X86::XOR16mr },
376      { X86::XOR32ri,     X86::XOR32mi },
377      { X86::XOR32ri8,    X86::XOR32mi8 },
378      { X86::XOR32rr,     X86::XOR32mr },
379      { X86::XOR8ri,      X86::XOR8mi },
380      { X86::XOR8rr,      X86::XOR8mr }
381    };
382    ASSERT_SORTED(OpcodeTable);
383    OpcodeTablePtr = OpcodeTable;
384    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
385    isTwoAddrFold = true;
386  } else if (i == 0) { // If operand 0
387    if (MI->getOpcode() == X86::MOV16r0)
388      return MakeM0Inst(X86::MOV16mi, FrameIndex, MI);
389    else if (MI->getOpcode() == X86::MOV32r0)
390      return MakeM0Inst(X86::MOV32mi, FrameIndex, MI);
391    else if (MI->getOpcode() == X86::MOV8r0)
392      return MakeM0Inst(X86::MOV8mi, FrameIndex, MI);
393
394    static const TableEntry OpcodeTable[] = {
395      { X86::CMP16ri,     X86::CMP16mi },
396      { X86::CMP16ri8,    X86::CMP16mi8 },
397      { X86::CMP32ri,     X86::CMP32mi },
398      { X86::CMP32ri8,    X86::CMP32mi8 },
399      { X86::CMP8ri,      X86::CMP8mi },
400      { X86::DIV16r,      X86::DIV16m },
401      { X86::DIV32r,      X86::DIV32m },
402      { X86::DIV8r,       X86::DIV8m },
403      { X86::FsMOVAPDrr,  X86::MOVSDmr },
404      { X86::FsMOVAPSrr,  X86::MOVSSmr },
405      { X86::IDIV16r,     X86::IDIV16m },
406      { X86::IDIV32r,     X86::IDIV32m },
407      { X86::IDIV8r,      X86::IDIV8m },
408      { X86::IMUL16r,     X86::IMUL16m },
409      { X86::IMUL32r,     X86::IMUL32m },
410      { X86::IMUL8r,      X86::IMUL8m },
411      { X86::MOV16ri,     X86::MOV16mi },
412      { X86::MOV16rr,     X86::MOV16mr },
413      { X86::MOV32ri,     X86::MOV32mi },
414      { X86::MOV32rr,     X86::MOV32mr },
415      { X86::MOV8ri,      X86::MOV8mi },
416      { X86::MOV8rr,      X86::MOV8mr },
417      { X86::MOVAPDrr,    X86::MOVAPDmr },
418      { X86::MOVAPSrr,    X86::MOVAPSmr },
419      { X86::MOVPDI2DIrr, X86::MOVPDI2DImr },
420      { X86::MOVPS2SSrr,  X86::MOVPS2SSmr },
421      { X86::MOVSDrr,     X86::MOVSDmr },
422      { X86::MOVSSrr,     X86::MOVSSmr },
423      { X86::MOVUPDrr,    X86::MOVUPDmr },
424      { X86::MOVUPSrr,    X86::MOVUPSmr },
425      { X86::MUL16r,      X86::MUL16m },
426      { X86::MUL32r,      X86::MUL32m },
427      { X86::MUL8r,       X86::MUL8m },
428      { X86::SETAEr,      X86::SETAEm },
429      { X86::SETAr,       X86::SETAm },
430      { X86::SETBEr,      X86::SETBEm },
431      { X86::SETBr,       X86::SETBm },
432      { X86::SETEr,       X86::SETEm },
433      { X86::SETGEr,      X86::SETGEm },
434      { X86::SETGr,       X86::SETGm },
435      { X86::SETLEr,      X86::SETLEm },
436      { X86::SETLr,       X86::SETLm },
437      { X86::SETNEr,      X86::SETNEm },
438      { X86::SETNPr,      X86::SETNPm },
439      { X86::SETNSr,      X86::SETNSm },
440      { X86::SETPr,       X86::SETPm },
441      { X86::SETSr,       X86::SETSm },
442      { X86::TEST16ri,    X86::TEST16mi },
443      { X86::TEST32ri,    X86::TEST32mi },
444      { X86::TEST8ri,     X86::TEST8mi },
445      { X86::XCHG16rr,    X86::XCHG16mr },
446      { X86::XCHG32rr,    X86::XCHG32mr },
447      { X86::XCHG8rr,     X86::XCHG8mr }
448    };
449    ASSERT_SORTED(OpcodeTable);
450    OpcodeTablePtr = OpcodeTable;
451    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
452  } else if (i == 1) {
453    static const TableEntry OpcodeTable[] = {
454      { X86::CMP16rr,         X86::CMP16rm },
455      { X86::CMP32rr,         X86::CMP32rm },
456      { X86::CMP8rr,          X86::CMP8rm },
457      { X86::CMPPDrri,        X86::CMPPDrmi },
458      { X86::CMPPSrri,        X86::CMPPSrmi },
459      { X86::CMPSDrr,         X86::CMPSDrm },
460      { X86::CMPSSrr,         X86::CMPSSrm },
461      { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
462      { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
463      { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
464      { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
465      { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
466      { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
467      { X86::FsMOVAPDrr,      X86::MOVSDrm },
468      { X86::FsMOVAPSrr,      X86::MOVSSrm },
469      { X86::IMUL16rri,       X86::IMUL16rmi },
470      { X86::IMUL16rri8,      X86::IMUL16rmi8 },
471      { X86::IMUL32rri,       X86::IMUL32rmi },
472      { X86::IMUL32rri8,      X86::IMUL32rmi8 },
473      { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
474      { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
475      { X86::Int_COMISDrr,    X86::Int_COMISDrm },
476      { X86::Int_COMISSrr,    X86::Int_COMISSrm },
477      { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
478      { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
479      { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
480      { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
481      { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
482      { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
483      { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
484      { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
485      { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
486      { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
487      { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
488      { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
489      { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
490      { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
491      { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
492      { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
493      { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
494      { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
495      { X86::MOV16rr,         X86::MOV16rm },
496      { X86::MOV32rr,         X86::MOV32rm },
497      { X86::MOV8rr,          X86::MOV8rm },
498      { X86::MOVAPDrr,        X86::MOVAPDrm },
499      { X86::MOVAPSrr,        X86::MOVAPSrm },
500      { X86::MOVDDUPrr,       X86::MOVDDUPrm },
501      { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
502      { X86::MOVQI2PQIrr,     X86::MOVQI2PQIrm },
503      { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
504      { X86::MOVSDrr,         X86::MOVSDrm },
505      { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
506      { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
507      { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
508      { X86::MOVSSrr,         X86::MOVSSrm },
509      { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
510      { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
511      { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
512      { X86::MOVUPDrr,        X86::MOVUPDrm },
513      { X86::MOVUPSrr,        X86::MOVUPSrm },
514      { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
515      { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
516      { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
517      { X86::PSHUFDri,        X86::PSHUFDmi },
518      { X86::PSHUFHWri,       X86::PSHUFHWmi },
519      { X86::PSHUFLWri,       X86::PSHUFLWmi },
520      { X86::TEST16rr,        X86::TEST16rm },
521      { X86::TEST32rr,        X86::TEST32rm },
522      { X86::TEST8rr,         X86::TEST8rm },
523      { X86::UCOMISDrr,       X86::UCOMISDrm },
524      { X86::UCOMISSrr,       X86::UCOMISSrm },
525      { X86::XCHG16rr,        X86::XCHG16rm },
526      { X86::XCHG32rr,        X86::XCHG32rm },
527      { X86::XCHG8rr,         X86::XCHG8rm }
528    };
529    ASSERT_SORTED(OpcodeTable);
530    OpcodeTablePtr = OpcodeTable;
531    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
532  } else if (i == 2) {
533    static const TableEntry OpcodeTable[] = {
534      { X86::ADC32rr,         X86::ADC32rm },
535      { X86::ADD16rr,         X86::ADD16rm },
536      { X86::ADD32rr,         X86::ADD32rm },
537      { X86::ADD8rr,          X86::ADD8rm },
538      { X86::ADDPDrr,         X86::ADDPDrm },
539      { X86::ADDPSrr,         X86::ADDPSrm },
540      { X86::ADDSDrr,         X86::ADDSDrm },
541      { X86::ADDSSrr,         X86::ADDSSrm },
542      { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
543      { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
544      { X86::AND16rr,         X86::AND16rm },
545      { X86::AND32rr,         X86::AND32rm },
546      { X86::AND8rr,          X86::AND8rm },
547      { X86::ANDNPDrr,        X86::ANDNPDrm },
548      { X86::ANDNPSrr,        X86::ANDNPSrm },
549      { X86::ANDPDrr,         X86::ANDPDrm },
550      { X86::ANDPSrr,         X86::ANDPSrm },
551      { X86::CMOVA16rr,       X86::CMOVA16rm },
552      { X86::CMOVA32rr,       X86::CMOVA32rm },
553      { X86::CMOVAE16rr,      X86::CMOVAE16rm },
554      { X86::CMOVAE32rr,      X86::CMOVAE32rm },
555      { X86::CMOVB16rr,       X86::CMOVB16rm },
556      { X86::CMOVB32rr,       X86::CMOVB32rm },
557      { X86::CMOVBE16rr,      X86::CMOVBE16rm },
558      { X86::CMOVBE32rr,      X86::CMOVBE32rm },
559      { X86::CMOVE16rr,       X86::CMOVE16rm },
560      { X86::CMOVE32rr,       X86::CMOVE32rm },
561      { X86::CMOVG16rr,       X86::CMOVG16rm },
562      { X86::CMOVG32rr,       X86::CMOVG32rm },
563      { X86::CMOVGE16rr,      X86::CMOVGE16rm },
564      { X86::CMOVGE32rr,      X86::CMOVGE32rm },
565      { X86::CMOVL16rr,       X86::CMOVL16rm },
566      { X86::CMOVL32rr,       X86::CMOVL32rm },
567      { X86::CMOVLE16rr,      X86::CMOVLE16rm },
568      { X86::CMOVLE32rr,      X86::CMOVLE32rm },
569      { X86::CMOVNE16rr,      X86::CMOVNE16rm },
570      { X86::CMOVNE32rr,      X86::CMOVNE32rm },
571      { X86::CMOVNP16rr,      X86::CMOVNP16rm },
572      { X86::CMOVNP32rr,      X86::CMOVNP32rm },
573      { X86::CMOVNS16rr,      X86::CMOVNS16rm },
574      { X86::CMOVNS32rr,      X86::CMOVNS32rm },
575      { X86::CMOVP16rr,       X86::CMOVP16rm },
576      { X86::CMOVP32rr,       X86::CMOVP32rm },
577      { X86::CMOVS16rr,       X86::CMOVS16rm },
578      { X86::CMOVS32rr,       X86::CMOVS32rm },
579      { X86::DIVPDrr,         X86::DIVPDrm },
580      { X86::DIVPSrr,         X86::DIVPSrm },
581      { X86::DIVSDrr,         X86::DIVSDrm },
582      { X86::DIVSSrr,         X86::DIVSSrm },
583      { X86::HADDPDrr,        X86::HADDPDrm },
584      { X86::HADDPSrr,        X86::HADDPSrm },
585      { X86::HSUBPDrr,        X86::HSUBPDrm },
586      { X86::HSUBPSrr,        X86::HSUBPSrm },
587      { X86::IMUL16rr,        X86::IMUL16rm },
588      { X86::IMUL32rr,        X86::IMUL32rm },
589      { X86::MAXPDrr,         X86::MAXPDrm },
590      { X86::MAXPSrr,         X86::MAXPSrm },
591      { X86::MINPDrr,         X86::MINPDrm },
592      { X86::MINPSrr,         X86::MINPSrm },
593      { X86::MULPDrr,         X86::MULPDrm },
594      { X86::MULPSrr,         X86::MULPSrm },
595      { X86::MULSDrr,         X86::MULSDrm },
596      { X86::MULSSrr,         X86::MULSSrm },
597      { X86::OR16rr,          X86::OR16rm },
598      { X86::OR32rr,          X86::OR32rm },
599      { X86::OR8rr,           X86::OR8rm },
600      { X86::ORPDrr,          X86::ORPDrm },
601      { X86::ORPSrr,          X86::ORPSrm },
602      { X86::PACKSSDWrr,      X86::PACKSSDWrm },
603      { X86::PACKSSWBrr,      X86::PACKSSWBrm },
604      { X86::PACKUSWBrr,      X86::PACKUSWBrm },
605      { X86::PADDBrr,         X86::PADDBrm },
606      { X86::PADDDrr,         X86::PADDDrm },
607      { X86::PADDSBrr,        X86::PADDSBrm },
608      { X86::PADDSWrr,        X86::PADDSWrm },
609      { X86::PADDWrr,         X86::PADDWrm },
610      { X86::PANDNrr,         X86::PANDNrm },
611      { X86::PANDrr,          X86::PANDrm },
612      { X86::PAVGBrr,         X86::PAVGBrm },
613      { X86::PAVGWrr,         X86::PAVGWrm },
614      { X86::PCMPEQBrr,       X86::PCMPEQBrm },
615      { X86::PCMPEQDrr,       X86::PCMPEQDrm },
616      { X86::PCMPEQWrr,       X86::PCMPEQWrm },
617      { X86::PCMPGTBrr,       X86::PCMPGTBrm },
618      { X86::PCMPGTDrr,       X86::PCMPGTDrm },
619      { X86::PCMPGTWrr,       X86::PCMPGTWrm },
620      { X86::PINSRWrri,       X86::PINSRWrmi },
621      { X86::PMADDWDrr,       X86::PMADDWDrm },
622      { X86::PMAXSWrr,        X86::PMAXSWrm },
623      { X86::PMAXUBrr,        X86::PMAXUBrm },
624      { X86::PMINSWrr,        X86::PMINSWrm },
625      { X86::PMINUBrr,        X86::PMINUBrm },
626      { X86::PMULHUWrr,       X86::PMULHUWrm },
627      { X86::PMULHWrr,        X86::PMULHWrm },
628      { X86::PMULLWrr,        X86::PMULLWrm },
629      { X86::PMULUDQrr,       X86::PMULUDQrm },
630      { X86::PORrr,           X86::PORrm },
631      { X86::PSADBWrr,        X86::PSADBWrm },
632      { X86::PSLLDrr,         X86::PSLLDrm },
633      { X86::PSLLQrr,         X86::PSLLQrm },
634      { X86::PSLLWrr,         X86::PSLLWrm },
635      { X86::PSRADrr,         X86::PSRADrm },
636      { X86::PSRAWrr,         X86::PSRAWrm },
637      { X86::PSRLDrr,         X86::PSRLDrm },
638      { X86::PSRLQrr,         X86::PSRLQrm },
639      { X86::PSRLWrr,         X86::PSRLWrm },
640      { X86::PSUBBrr,         X86::PSUBBrm },
641      { X86::PSUBDrr,         X86::PSUBDrm },
642      { X86::PSUBSBrr,        X86::PSUBSBrm },
643      { X86::PSUBSWrr,        X86::PSUBSWrm },
644      { X86::PSUBWrr,         X86::PSUBWrm },
645      { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
646      { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
647      { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
648      { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
649      { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
650      { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
651      { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
652      { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
653      { X86::PXORrr,          X86::PXORrm },
654      { X86::RCPPSr,          X86::RCPPSm },
655      { X86::RSQRTPSr,        X86::RSQRTPSm },
656      { X86::SBB32rr,         X86::SBB32rm },
657      { X86::SHUFPDrri,       X86::SHUFPDrmi },
658      { X86::SHUFPSrri,       X86::SHUFPSrmi },
659      { X86::SQRTPDr,         X86::SQRTPDm },
660      { X86::SQRTPSr,         X86::SQRTPSm },
661      { X86::SQRTSDr,         X86::SQRTSDm },
662      { X86::SQRTSSr,         X86::SQRTSSm },
663      { X86::SUB16rr,         X86::SUB16rm },
664      { X86::SUB32rr,         X86::SUB32rm },
665      { X86::SUB8rr,          X86::SUB8rm },
666      { X86::SUBPDrr,         X86::SUBPDrm },
667      { X86::SUBPSrr,         X86::SUBPSrm },
668      { X86::SUBSDrr,         X86::SUBSDrm },
669      { X86::SUBSSrr,         X86::SUBSSrm },
670      { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
671      { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
672      { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
673      { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
674      { X86::XOR16rr,         X86::XOR16rm },
675      { X86::XOR32rr,         X86::XOR32rm },
676      { X86::XOR8rr,          X86::XOR8rm },
677      { X86::XORPDrr,         X86::XORPDrm },
678      { X86::XORPSrr,         X86::XORPSrm }
679    };
680    ASSERT_SORTED(OpcodeTable);
681    OpcodeTablePtr = OpcodeTable;
682    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
683  }
684
685  // If table selected...
686  if (OpcodeTablePtr) {
687    // Find the Opcode to fuse
688    unsigned fromOpcode = MI->getOpcode();
689    // Lookup fromOpcode in table
690    if (const TableEntry *Entry = TableLookup(OpcodeTablePtr, OpcodeTableSize,
691                                              fromOpcode)) {
692      if (isTwoAddrFold)
693        return FuseTwoAddrInst(Entry->to, FrameIndex, MI);
694
695      return FuseInst(Entry->to, i, FrameIndex, MI);
696    }
697  }
698
699  // No fusion
700  if (PrintFailedFusing)
701    std::cerr << "We failed to fuse ("
702              << ((i == 1) ? "r" : "s") << "): " << *MI;
703  return NULL;
704}
705
706
707const unsigned *X86RegisterInfo::getCalleeSaveRegs() const {
708  static const unsigned CalleeSaveRegs[] = {
709    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
710  };
711  return CalleeSaveRegs;
712}
713
714const TargetRegisterClass* const*
715X86RegisterInfo::getCalleeSaveRegClasses() const {
716  static const TargetRegisterClass * const CalleeSaveRegClasses[] = {
717    &X86::GR32RegClass, &X86::GR32RegClass,
718    &X86::GR32RegClass, &X86::GR32RegClass,  0
719  };
720  return CalleeSaveRegClasses;
721}
722
723//===----------------------------------------------------------------------===//
724// Stack Frame Processing methods
725//===----------------------------------------------------------------------===//
726
727// hasFP - Return true if the specified function should have a dedicated frame
728// pointer register.  This is true if the function has variable sized allocas or
729// if frame pointer elimination is disabled.
730//
731static bool hasFP(const MachineFunction &MF) {
732  return (NoFramePointerElim ||
733          MF.getFrameInfo()->hasVarSizedObjects() ||
734          MF.getInfo<X86FunctionInfo>()->getForceFramePointer());
735}
736
737void X86RegisterInfo::
738eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
739                              MachineBasicBlock::iterator I) const {
740  if (hasFP(MF)) {
741    // If we have a frame pointer, turn the adjcallstackup instruction into a
742    // 'sub ESP, <amt>' and the adjcallstackdown instruction into 'add ESP,
743    // <amt>'
744    MachineInstr *Old = I;
745    unsigned Amount = Old->getOperand(0).getImmedValue();
746    if (Amount != 0) {
747      // We need to keep the stack aligned properly.  To do this, we round the
748      // amount of space needed for the outgoing arguments up to the next
749      // alignment boundary.
750      unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
751      Amount = (Amount+Align-1)/Align*Align;
752
753      MachineInstr *New = 0;
754      if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
755        New=BuildMI(X86::SUB32ri, 2, X86::ESP).addReg(X86::ESP).addImm(Amount);
756      } else {
757        assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
758        // factor out the amount the callee already popped.
759        unsigned CalleeAmt = Old->getOperand(1).getImmedValue();
760        Amount -= CalleeAmt;
761        if (Amount) {
762          unsigned Opc = Amount < 128 ? X86::ADD32ri8 : X86::ADD32ri;
763          New = BuildMI(Opc, 2, X86::ESP).addReg(X86::ESP).addImm(Amount);
764        }
765      }
766
767      // Replace the pseudo instruction with a new instruction...
768      if (New) MBB.insert(I, New);
769    }
770  } else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
771    // If we are performing frame pointer elimination and if the callee pops
772    // something off the stack pointer, add it back.  We do this until we have
773    // more advanced stack pointer tracking ability.
774    if (unsigned CalleeAmt = I->getOperand(1).getImmedValue()) {
775      unsigned Opc = CalleeAmt < 128 ? X86::SUB32ri8 : X86::SUB32ri;
776      MachineInstr *New =
777        BuildMI(Opc, 1, X86::ESP).addReg(X86::ESP).addImm(CalleeAmt);
778      MBB.insert(I, New);
779    }
780  }
781
782  MBB.erase(I);
783}
784
785void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const{
786  unsigned i = 0;
787  MachineInstr &MI = *II;
788  MachineFunction &MF = *MI.getParent()->getParent();
789  while (!MI.getOperand(i).isFrameIndex()) {
790    ++i;
791    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
792  }
793
794  int FrameIndex = MI.getOperand(i).getFrameIndex();
795
796  // This must be part of a four operand memory reference.  Replace the
797  // FrameIndex with base register with EBP.  Add add an offset to the offset.
798  MI.getOperand(i).ChangeToRegister(hasFP(MF) ? X86::EBP : X86::ESP, false);
799
800  // Now add the frame object offset to the offset from EBP.
801  int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
802               MI.getOperand(i+3).getImmedValue()+4;
803
804  if (!hasFP(MF))
805    Offset += MF.getFrameInfo()->getStackSize();
806  else
807    Offset += 4;  // Skip the saved EBP
808
809  MI.getOperand(i+3).ChangeToImmediate(Offset);
810}
811
812void
813X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
814  if (hasFP(MF)) {
815    // Create a frame entry for the EBP register that must be saved.
816    int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, -8);
817    assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
818           "Slot for EBP register must be last in order to be found!");
819  }
820}
821
822void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
823  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
824  MachineBasicBlock::iterator MBBI = MBB.begin();
825  MachineFrameInfo *MFI = MF.getFrameInfo();
826  unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
827  const Function* Fn = MF.getFunction();
828  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
829  MachineInstr *MI;
830
831  // Get the number of bytes to allocate from the FrameInfo
832  unsigned NumBytes = MFI->getStackSize();
833  if (MFI->hasCalls() || MF.getFrameInfo()->hasVarSizedObjects()) {
834    // When we have no frame pointer, we reserve argument space for call sites
835    // in the function immediately on entry to the current function.  This
836    // eliminates the need for add/sub ESP brackets around call sites.
837    //
838    if (!hasFP(MF))
839      NumBytes += MFI->getMaxCallFrameSize();
840
841    // Round the size to a multiple of the alignment (don't forget the 4 byte
842    // offset though).
843    NumBytes = ((NumBytes+4)+Align-1)/Align*Align - 4;
844  }
845
846  // Update frame info to pretend that this is part of the stack...
847  MFI->setStackSize(NumBytes);
848
849  if (NumBytes) {   // adjust stack pointer: ESP -= numbytes
850    if (NumBytes >= 4096 && Subtarget->TargetType == X86Subtarget::isCygwin) {
851      // Function prologue calls _alloca to probe the stack when allocating
852      // more than 4k bytes in one go. Touching the stack at 4K increments is
853      // necessary to ensure that the guard pages used by the OS virtual memory
854      // manager are allocated in correct sequence.
855      MI = BuildMI(X86::MOV32ri, 2, X86::EAX).addImm(NumBytes);
856      MBB.insert(MBBI, MI);
857      MI = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("_alloca");
858      MBB.insert(MBBI, MI);
859    } else {
860      unsigned Opc = NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri;
861      MI = BuildMI(Opc, 2, X86::ESP).addReg(X86::ESP).addImm(NumBytes);
862      MBB.insert(MBBI, MI);
863    }
864  }
865
866  if (hasFP(MF)) {
867    // Get the offset of the stack slot for the EBP register... which is
868    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
869    int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexBegin())+4;
870
871    // Save EBP into the appropriate stack slot...
872    MI = addRegOffset(BuildMI(X86::MOV32mr, 5),    // mov [ESP-<offset>], EBP
873                      X86::ESP, EBPOffset+NumBytes).addReg(X86::EBP);
874    MBB.insert(MBBI, MI);
875
876    // Update EBP with the new base value...
877    if (NumBytes == 4)    // mov EBP, ESP
878      MI = BuildMI(X86::MOV32rr, 2, X86::EBP).addReg(X86::ESP);
879    else                  // lea EBP, [ESP+StackSize]
880      MI = addRegOffset(BuildMI(X86::LEA32r, 5, X86::EBP), X86::ESP,NumBytes-4);
881
882    MBB.insert(MBBI, MI);
883  }
884
885  // If it's main() on Cygwin\Mingw32 we should align stack as well
886  if (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
887      Subtarget->TargetType == X86Subtarget::isCygwin) {
888    MI = BuildMI(X86::AND32ri, 2, X86::ESP).addReg(X86::ESP).addImm(-Align);
889    MBB.insert(MBBI, MI);
890
891    // Probe the stack
892    MI = BuildMI(X86::MOV32ri, 2, X86::EAX).addImm(Align);
893    MBB.insert(MBBI, MI);
894    MI = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("_alloca");
895    MBB.insert(MBBI, MI);
896  }
897}
898
899void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
900                                   MachineBasicBlock &MBB) const {
901  const MachineFrameInfo *MFI = MF.getFrameInfo();
902  MachineBasicBlock::iterator MBBI = prior(MBB.end());
903
904  switch (MBBI->getOpcode()) {
905  case X86::RET:
906  case X86::RETI:
907  case X86::TAILJMPd:
908  case X86::TAILJMPr:
909  case X86::TAILJMPm: break;  // These are ok
910  default:
911    assert(0 && "Can only insert epilog into returning blocks");
912  }
913
914  if (hasFP(MF)) {
915    // Get the offset of the stack slot for the EBP register... which is
916    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
917    int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexEnd()-1)+4;
918
919    // mov ESP, EBP
920    BuildMI(MBB, MBBI, X86::MOV32rr, 1, X86::ESP).addReg(X86::EBP);
921
922    // pop EBP
923    BuildMI(MBB, MBBI, X86::POP32r, 0, X86::EBP);
924  } else {
925    // Get the number of bytes allocated from the FrameInfo...
926    unsigned NumBytes = MFI->getStackSize();
927
928    if (NumBytes) {    // adjust stack pointer back: ESP += numbytes
929      // If there is an ADD32ri or SUB32ri of ESP immediately before this
930      // instruction, merge the two instructions.
931      if (MBBI != MBB.begin()) {
932        MachineBasicBlock::iterator PI = prior(MBBI);
933        if ((PI->getOpcode() == X86::ADD32ri ||
934             PI->getOpcode() == X86::ADD32ri8) &&
935            PI->getOperand(0).getReg() == X86::ESP) {
936          NumBytes += PI->getOperand(1).getImmedValue();
937          MBB.erase(PI);
938        } else if ((PI->getOpcode() == X86::SUB32ri ||
939                    PI->getOpcode() == X86::SUB32ri8) &&
940                   PI->getOperand(0).getReg() == X86::ESP) {
941          NumBytes -= PI->getOperand(1).getImmedValue();
942          MBB.erase(PI);
943        } else if (PI->getOpcode() == X86::ADJSTACKPTRri) {
944          NumBytes += PI->getOperand(1).getImmedValue();
945          MBB.erase(PI);
946        }
947      }
948
949      if (NumBytes > 0) {
950        unsigned Opc = NumBytes < 128 ? X86::ADD32ri8 : X86::ADD32ri;
951        BuildMI(MBB, MBBI, Opc, 2, X86::ESP).addReg(X86::ESP).addImm(NumBytes);
952      } else if ((int)NumBytes < 0) {
953        unsigned Opc = -NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri;
954        BuildMI(MBB, MBBI, Opc, 2, X86::ESP).addReg(X86::ESP).addImm(-NumBytes);
955      }
956    }
957  }
958}
959
960unsigned X86RegisterInfo::getRARegister() const {
961  return X86::ST0;  // use a non-register register
962}
963
964unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
965  return hasFP(MF) ? X86::EBP : X86::ESP;
966}
967
968namespace llvm {
969unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) {
970  switch (VT) {
971  default: return Reg;
972  case MVT::i8:
973    if (High) {
974      switch (Reg) {
975      default: return Reg;
976      case X86::AH: case X86::AL: case X86::AX: case X86::EAX:
977        return X86::AH;
978      case X86::DH: case X86::DL: case X86::DX: case X86::EDX:
979        return X86::DH;
980      case X86::CH: case X86::CL: case X86::CX: case X86::ECX:
981        return X86::CH;
982      case X86::BH: case X86::BL: case X86::BX: case X86::EBX:
983        return X86::BH;
984      }
985    } else {
986      switch (Reg) {
987      default: return Reg;
988      case X86::AH: case X86::AL: case X86::AX: case X86::EAX:
989        return X86::AL;
990      case X86::DH: case X86::DL: case X86::DX: case X86::EDX:
991        return X86::DL;
992      case X86::CH: case X86::CL: case X86::CX: case X86::ECX:
993        return X86::CL;
994      case X86::BH: case X86::BL: case X86::BX: case X86::EBX:
995        return X86::BL;
996      }
997    }
998  case MVT::i16:
999    switch (Reg) {
1000    default: return Reg;
1001    case X86::AH: case X86::AL: case X86::AX: case X86::EAX:
1002      return X86::AX;
1003    case X86::DH: case X86::DL: case X86::DX: case X86::EDX:
1004      return X86::DX;
1005    case X86::CH: case X86::CL: case X86::CX: case X86::ECX:
1006      return X86::CX;
1007    case X86::BH: case X86::BL: case X86::BX: case X86::EBX:
1008      return X86::BX;
1009    case X86::ESI:
1010      return X86::SI;
1011    case X86::EDI:
1012      return X86::DI;
1013    case X86::EBP:
1014      return X86::BP;
1015    case X86::ESP:
1016      return X86::SP;
1017    }
1018  case MVT::i32:
1019    switch (Reg) {
1020    default: return true;
1021    case X86::AH: case X86::AL: case X86::AX: case X86::EAX:
1022      return X86::EAX;
1023    case X86::DH: case X86::DL: case X86::DX: case X86::EDX:
1024      return X86::EDX;
1025    case X86::CH: case X86::CL: case X86::CX: case X86::ECX:
1026      return X86::ECX;
1027    case X86::BH: case X86::BL: case X86::BX: case X86::EBX:
1028      return X86::EBX;
1029    case X86::SI:
1030      return X86::ESI;
1031    case X86::DI:
1032      return X86::EDI;
1033    case X86::BP:
1034      return X86::EBP;
1035    case X86::SP:
1036      return X86::ESP;
1037    }
1038  }
1039
1040  return Reg;
1041}
1042}
1043
1044#include "X86GenRegisterInfo.inc"
1045
1046