X86RegisterInfo.cpp revision 82f58740c76b42af8370247b23677a0318f6dde8
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetRegisterInfo class.
11// This file is responsible for the frame pointer elimination optimization
12// on X86.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86RegisterInfo.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineLocation.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/BitVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44cl::opt<bool>
45ForceStackAlign("force-align-stack",
46                 cl::desc("Force align the stack to the minimum alignment"
47                           " needed for the function."),
48                 cl::init(false), cl::Hidden);
49
50X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
51                                 const TargetInstrInfo &tii)
52  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
53                         X86::ADJCALLSTACKDOWN64 :
54                         X86::ADJCALLSTACKDOWN32,
55                       tm.getSubtarget<X86Subtarget>().is64Bit() ?
56                         X86::ADJCALLSTACKUP64 :
57                         X86::ADJCALLSTACKUP32),
58    TM(tm), TII(tii) {
59  // Cache some information.
60  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
61  Is64Bit = Subtarget->is64Bit();
62  IsWin64 = Subtarget->isTargetWin64();
63  StackAlign = TM.getFrameInfo()->getStackAlignment();
64
65  if (Is64Bit) {
66    SlotSize = 8;
67    StackPtr = X86::RSP;
68    FramePtr = X86::RBP;
69  } else {
70    SlotSize = 4;
71    StackPtr = X86::ESP;
72    FramePtr = X86::EBP;
73  }
74}
75
76/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF
77/// specific numbering, used in debug info and exception tables.
78int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
79  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
80  unsigned Flavour = DWARFFlavour::X86_64;
81
82  if (!Subtarget->is64Bit()) {
83    if (Subtarget->isTargetDarwin()) {
84      if (isEH)
85        Flavour = DWARFFlavour::X86_32_DarwinEH;
86      else
87        Flavour = DWARFFlavour::X86_32_Generic;
88    } else if (Subtarget->isTargetCygMing()) {
89      // Unsupported by now, just quick fallback
90      Flavour = DWARFFlavour::X86_32_Generic;
91    } else {
92      Flavour = DWARFFlavour::X86_32_Generic;
93    }
94  }
95
96  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
97}
98
99/// getX86RegNum - This function maps LLVM register identifiers to their X86
100/// specific numbering, which is used in various places encoding instructions.
101unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
102  switch(RegNo) {
103  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
104  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
105  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
106  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
107  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
108    return N86::ESP;
109  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
110    return N86::EBP;
111  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
112    return N86::ESI;
113  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
114    return N86::EDI;
115
116  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
117    return N86::EAX;
118  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
119    return N86::ECX;
120  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
121    return N86::EDX;
122  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
123    return N86::EBX;
124  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
125    return N86::ESP;
126  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
127    return N86::EBP;
128  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
129    return N86::ESI;
130  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
131    return N86::EDI;
132
133  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
134  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
135    return RegNo-X86::ST0;
136
137  case X86::XMM0: case X86::XMM8:
138  case X86::YMM0: case X86::YMM8: case X86::MM0:
139    return 0;
140  case X86::XMM1: case X86::XMM9:
141  case X86::YMM1: case X86::YMM9: case X86::MM1:
142    return 1;
143  case X86::XMM2: case X86::XMM10:
144  case X86::YMM2: case X86::YMM10: case X86::MM2:
145    return 2;
146  case X86::XMM3: case X86::XMM11:
147  case X86::YMM3: case X86::YMM11: case X86::MM3:
148    return 3;
149  case X86::XMM4: case X86::XMM12:
150  case X86::YMM4: case X86::YMM12: case X86::MM4:
151    return 4;
152  case X86::XMM5: case X86::XMM13:
153  case X86::YMM5: case X86::YMM13: case X86::MM5:
154    return 5;
155  case X86::XMM6: case X86::XMM14:
156  case X86::YMM6: case X86::YMM14: case X86::MM6:
157    return 6;
158  case X86::XMM7: case X86::XMM15:
159  case X86::YMM7: case X86::YMM15: case X86::MM7:
160    return 7;
161
162  case X86::ES: return 0;
163  case X86::CS: return 1;
164  case X86::SS: return 2;
165  case X86::DS: return 3;
166  case X86::FS: return 4;
167  case X86::GS: return 5;
168
169  case X86::CR0: case X86::CR8 : case X86::DR0: return 0;
170  case X86::CR1: case X86::CR9 : case X86::DR1: return 1;
171  case X86::CR2: case X86::CR10: case X86::DR2: return 2;
172  case X86::CR3: case X86::CR11: case X86::DR3: return 3;
173  case X86::CR4: case X86::CR12: case X86::DR4: return 4;
174  case X86::CR5: case X86::CR13: case X86::DR5: return 5;
175  case X86::CR6: case X86::CR14: case X86::DR6: return 6;
176  case X86::CR7: case X86::CR15: case X86::DR7: return 7;
177
178  // Pseudo index registers are equivalent to a "none"
179  // scaled index (See Intel Manual 2A, table 2-3)
180  case X86::EIZ:
181  case X86::RIZ:
182    return 4;
183
184  default:
185    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
186    llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
187    return 0;
188  }
189}
190
191const TargetRegisterClass *
192X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
193                                          const TargetRegisterClass *B,
194                                          unsigned SubIdx) const {
195  switch (SubIdx) {
196  default: return 0;
197  case X86::sub_8bit:
198    if (B == &X86::GR8RegClass) {
199      if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
200        return A;
201    } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
202      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
203          A == &X86::GR64_NOREXRegClass ||
204          A == &X86::GR64_NOSPRegClass ||
205          A == &X86::GR64_NOREX_NOSPRegClass)
206        return &X86::GR64_ABCDRegClass;
207      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
208               A == &X86::GR32_NOREXRegClass ||
209               A == &X86::GR32_NOSPRegClass)
210        return &X86::GR32_ABCDRegClass;
211      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
212               A == &X86::GR16_NOREXRegClass)
213        return &X86::GR16_ABCDRegClass;
214    } else if (B == &X86::GR8_NOREXRegClass) {
215      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
216          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
217        return &X86::GR64_NOREXRegClass;
218      else if (A == &X86::GR64_ABCDRegClass)
219        return &X86::GR64_ABCDRegClass;
220      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
221               A == &X86::GR32_NOSPRegClass)
222        return &X86::GR32_NOREXRegClass;
223      else if (A == &X86::GR32_ABCDRegClass)
224        return &X86::GR32_ABCDRegClass;
225      else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
226        return &X86::GR16_NOREXRegClass;
227      else if (A == &X86::GR16_ABCDRegClass)
228        return &X86::GR16_ABCDRegClass;
229    }
230    break;
231  case X86::sub_8bit_hi:
232    if (B == &X86::GR8_ABCD_HRegClass) {
233      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
234          A == &X86::GR64_NOREXRegClass ||
235          A == &X86::GR64_NOSPRegClass ||
236          A == &X86::GR64_NOREX_NOSPRegClass)
237        return &X86::GR64_ABCDRegClass;
238      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
239               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
240        return &X86::GR32_ABCDRegClass;
241      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
242               A == &X86::GR16_NOREXRegClass)
243        return &X86::GR16_ABCDRegClass;
244    }
245    break;
246  case X86::sub_16bit:
247    if (B == &X86::GR16RegClass) {
248      if (A->getSize() == 4 || A->getSize() == 8)
249        return A;
250    } else if (B == &X86::GR16_ABCDRegClass) {
251      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
252          A == &X86::GR64_NOREXRegClass ||
253          A == &X86::GR64_NOSPRegClass ||
254          A == &X86::GR64_NOREX_NOSPRegClass)
255        return &X86::GR64_ABCDRegClass;
256      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
257               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
258        return &X86::GR32_ABCDRegClass;
259    } else if (B == &X86::GR16_NOREXRegClass) {
260      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
261          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
262        return &X86::GR64_NOREXRegClass;
263      else if (A == &X86::GR64_ABCDRegClass)
264        return &X86::GR64_ABCDRegClass;
265      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
266               A == &X86::GR32_NOSPRegClass)
267        return &X86::GR32_NOREXRegClass;
268      else if (A == &X86::GR32_ABCDRegClass)
269        return &X86::GR64_ABCDRegClass;
270    }
271    break;
272  case X86::sub_32bit:
273    if (B == &X86::GR32RegClass) {
274      if (A->getSize() == 8)
275        return A;
276    } else if (B == &X86::GR32_NOSPRegClass) {
277      if (A == &X86::GR64RegClass || A == &X86::GR64_NOSPRegClass)
278        return &X86::GR64_NOSPRegClass;
279      if (A->getSize() == 8)
280        return getCommonSubClass(A, &X86::GR64_NOSPRegClass);
281    } else if (B == &X86::GR32_ABCDRegClass) {
282      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
283          A == &X86::GR64_NOREXRegClass ||
284          A == &X86::GR64_NOSPRegClass ||
285          A == &X86::GR64_NOREX_NOSPRegClass)
286        return &X86::GR64_ABCDRegClass;
287    } else if (B == &X86::GR32_NOREXRegClass) {
288      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
289          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
290        return &X86::GR64_NOREXRegClass;
291      else if (A == &X86::GR64_ABCDRegClass)
292        return &X86::GR64_ABCDRegClass;
293    }
294    break;
295  case X86::sub_ss:
296    if (B == &X86::FR32RegClass)
297      return A;
298    break;
299  case X86::sub_sd:
300    if (B == &X86::FR64RegClass)
301      return A;
302    break;
303  case X86::sub_xmm:
304    if (B == &X86::VR128RegClass)
305      return A;
306    break;
307  }
308  return 0;
309}
310
311const TargetRegisterClass *
312X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
313  switch (Kind) {
314  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
315  case 0: // Normal GPRs.
316    if (TM.getSubtarget<X86Subtarget>().is64Bit())
317      return &X86::GR64RegClass;
318    return &X86::GR32RegClass;
319  case 1: // Normal GRPs except the stack pointer (for encoding reasons).
320    if (TM.getSubtarget<X86Subtarget>().is64Bit())
321      return &X86::GR64_NOSPRegClass;
322    return &X86::GR32_NOSPRegClass;
323  }
324}
325
326const TargetRegisterClass *
327X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
328  if (RC == &X86::CCRRegClass) {
329    if (Is64Bit)
330      return &X86::GR64RegClass;
331    else
332      return &X86::GR32RegClass;
333  }
334  return NULL;
335}
336
337const unsigned *
338X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
339  bool callsEHReturn = false;
340  bool ghcCall = false;
341
342  if (MF) {
343    callsEHReturn = MF->getMMI().callsEHReturn();
344    const Function *F = MF->getFunction();
345    ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false);
346  }
347
348  static const unsigned GhcCalleeSavedRegs[] = {
349    0
350  };
351
352  static const unsigned CalleeSavedRegs32Bit[] = {
353    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
354  };
355
356  static const unsigned CalleeSavedRegs32EHRet[] = {
357    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
358  };
359
360  static const unsigned CalleeSavedRegs64Bit[] = {
361    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
362  };
363
364  static const unsigned CalleeSavedRegs64EHRet[] = {
365    X86::RAX, X86::RDX, X86::RBX, X86::R12,
366    X86::R13, X86::R14, X86::R15, X86::RBP, 0
367  };
368
369  static const unsigned CalleeSavedRegsWin64[] = {
370    X86::RBX,   X86::RBP,   X86::RDI,   X86::RSI,
371    X86::R12,   X86::R13,   X86::R14,   X86::R15,
372    X86::XMM6,  X86::XMM7,  X86::XMM8,  X86::XMM9,
373    X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
374    X86::XMM14, X86::XMM15, 0
375  };
376
377  if (ghcCall) {
378    return GhcCalleeSavedRegs;
379  } else if (Is64Bit) {
380    if (IsWin64)
381      return CalleeSavedRegsWin64;
382    else
383      return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
384  } else {
385    return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
386  }
387}
388
389BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
390  BitVector Reserved(getNumRegs());
391  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
392
393  // Set the stack-pointer register and its aliases as reserved.
394  Reserved.set(X86::RSP);
395  Reserved.set(X86::ESP);
396  Reserved.set(X86::SP);
397  Reserved.set(X86::SPL);
398
399  // Set the instruction pointer register and its aliases as reserved.
400  Reserved.set(X86::RIP);
401  Reserved.set(X86::EIP);
402  Reserved.set(X86::IP);
403
404  // Set the frame-pointer register and its aliases as reserved if needed.
405  if (TFI->hasFP(MF)) {
406    Reserved.set(X86::RBP);
407    Reserved.set(X86::EBP);
408    Reserved.set(X86::BP);
409    Reserved.set(X86::BPL);
410  }
411
412  // Mark the x87 stack registers as reserved, since they don't behave normally
413  // with respect to liveness. We don't fully model the effects of x87 stack
414  // pushes and pops after stackification.
415  Reserved.set(X86::ST0);
416  Reserved.set(X86::ST1);
417  Reserved.set(X86::ST2);
418  Reserved.set(X86::ST3);
419  Reserved.set(X86::ST4);
420  Reserved.set(X86::ST5);
421  Reserved.set(X86::ST6);
422  Reserved.set(X86::ST7);
423  return Reserved;
424}
425
426//===----------------------------------------------------------------------===//
427// Stack Frame Processing methods
428//===----------------------------------------------------------------------===//
429
430bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
431  const MachineFrameInfo *MFI = MF.getFrameInfo();
432  return (RealignStack &&
433          !MFI->hasVarSizedObjects());
434}
435
436bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
437  const MachineFrameInfo *MFI = MF.getFrameInfo();
438  const Function *F = MF.getFunction();
439  bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
440                               F->hasFnAttr(Attribute::StackAlignment));
441
442  // FIXME: Currently we don't support stack realignment for functions with
443  //        variable-sized allocas.
444  // FIXME: It's more complicated than this...
445  if (0 && requiresRealignment && MFI->hasVarSizedObjects())
446    report_fatal_error(
447      "Stack realignment in presense of dynamic allocas is not supported");
448
449  // If we've requested that we force align the stack do so now.
450  if (ForceStackAlign)
451    return canRealignStack(MF);
452
453  return requiresRealignment && canRealignStack(MF);
454}
455
456bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
457                                           unsigned Reg, int &FrameIdx) const {
458  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
459
460  if (Reg == FramePtr && TFI->hasFP(MF)) {
461    FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
462    return true;
463  }
464  return false;
465}
466
467static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
468  if (is64Bit) {
469    if (isInt<8>(Imm))
470      return X86::SUB64ri8;
471    return X86::SUB64ri32;
472  } else {
473    if (isInt<8>(Imm))
474      return X86::SUB32ri8;
475    return X86::SUB32ri;
476  }
477}
478
479static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
480  if (is64Bit) {
481    if (isInt<8>(Imm))
482      return X86::ADD64ri8;
483    return X86::ADD64ri32;
484  } else {
485    if (isInt<8>(Imm))
486      return X86::ADD32ri8;
487    return X86::ADD32ri;
488  }
489}
490
491void X86RegisterInfo::
492eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
493                              MachineBasicBlock::iterator I) const {
494  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
495
496  if (!TFI->hasReservedCallFrame(MF)) {
497    // If the stack pointer can be changed after prologue, turn the
498    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
499    // adjcallstackdown instruction into 'add ESP, <amt>'
500    // TODO: consider using push / pop instead of sub + store / add
501    MachineInstr *Old = I;
502    uint64_t Amount = Old->getOperand(0).getImm();
503    if (Amount != 0) {
504      // We need to keep the stack aligned properly.  To do this, we round the
505      // amount of space needed for the outgoing arguments up to the next
506      // alignment boundary.
507      Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
508
509      MachineInstr *New = 0;
510      if (Old->getOpcode() == getCallFrameSetupOpcode()) {
511        New = BuildMI(MF, Old->getDebugLoc(),
512                      TII.get(getSUBriOpcode(Is64Bit, Amount)),
513                      StackPtr)
514          .addReg(StackPtr)
515          .addImm(Amount);
516      } else {
517        assert(Old->getOpcode() == getCallFrameDestroyOpcode());
518
519        // Factor out the amount the callee already popped.
520        uint64_t CalleeAmt = Old->getOperand(1).getImm();
521        Amount -= CalleeAmt;
522
523      if (Amount) {
524          unsigned Opc = getADDriOpcode(Is64Bit, Amount);
525          New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
526            .addReg(StackPtr)
527            .addImm(Amount);
528        }
529      }
530
531      if (New) {
532        // The EFLAGS implicit def is dead.
533        New->getOperand(3).setIsDead();
534
535        // Replace the pseudo instruction with a new instruction.
536        MBB.insert(I, New);
537      }
538    }
539  } else if (I->getOpcode() == getCallFrameDestroyOpcode()) {
540    // If we are performing frame pointer elimination and if the callee pops
541    // something off the stack pointer, add it back.  We do this until we have
542    // more advanced stack pointer tracking ability.
543    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
544      unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt);
545      MachineInstr *Old = I;
546      MachineInstr *New =
547        BuildMI(MF, Old->getDebugLoc(), TII.get(Opc),
548                StackPtr)
549          .addReg(StackPtr)
550          .addImm(CalleeAmt);
551
552      // The EFLAGS implicit def is dead.
553      New->getOperand(3).setIsDead();
554      MBB.insert(I, New);
555    }
556  }
557
558  MBB.erase(I);
559}
560
561void
562X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
563                                     int SPAdj, RegScavenger *RS) const{
564  assert(SPAdj == 0 && "Unexpected");
565
566  unsigned i = 0;
567  MachineInstr &MI = *II;
568  MachineFunction &MF = *MI.getParent()->getParent();
569  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
570
571  while (!MI.getOperand(i).isFI()) {
572    ++i;
573    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
574  }
575
576  int FrameIndex = MI.getOperand(i).getIndex();
577  unsigned BasePtr;
578
579  unsigned Opc = MI.getOpcode();
580  bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm;
581  if (needsStackRealignment(MF))
582    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
583  else if (AfterFPPop)
584    BasePtr = StackPtr;
585  else
586    BasePtr = (TFI->hasFP(MF) ? FramePtr : StackPtr);
587
588  // This must be part of a four operand memory reference.  Replace the
589  // FrameIndex with base register with EBP.  Add an offset to the offset.
590  MI.getOperand(i).ChangeToRegister(BasePtr, false);
591
592  // Now add the frame object offset to the offset from EBP.
593  int FIOffset;
594  if (AfterFPPop) {
595    // Tail call jmp happens after FP is popped.
596    const MachineFrameInfo *MFI = MF.getFrameInfo();
597    FIOffset = MFI->getObjectOffset(FrameIndex) - TFI->getOffsetOfLocalArea();
598  } else
599    FIOffset = TFI->getFrameIndexOffset(MF, FrameIndex);
600
601  if (MI.getOperand(i+3).isImm()) {
602    // Offset is a 32-bit integer.
603    int Offset = FIOffset + (int)(MI.getOperand(i + 3).getImm());
604    MI.getOperand(i + 3).ChangeToImmediate(Offset);
605  } else {
606    // Offset is symbolic. This is extremely rare.
607    uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset();
608    MI.getOperand(i+3).setOffset(Offset);
609  }
610}
611
612void
613X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
614                                                      RegScavenger *RS) const {
615  MachineFrameInfo *MFI = MF.getFrameInfo();
616  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
617
618  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
619  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
620
621  if (TailCallReturnAddrDelta < 0) {
622    // create RETURNADDR area
623    //   arg
624    //   arg
625    //   RETADDR
626    //   { ...
627    //     RETADDR area
628    //     ...
629    //   }
630    //   [EBP]
631    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
632                           (-1U*SlotSize)+TailCallReturnAddrDelta, true);
633  }
634
635  if (TFI->hasFP(MF)) {
636    assert((TailCallReturnAddrDelta <= 0) &&
637           "The Delta should always be zero or negative");
638    const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
639
640    // Create a frame entry for the EBP register that must be saved.
641    int FrameIdx = MFI->CreateFixedObject(SlotSize,
642                                          -(int)SlotSize +
643                                          TFI.getOffsetOfLocalArea() +
644                                          TailCallReturnAddrDelta,
645                                          true);
646    assert(FrameIdx == MFI->getObjectIndexBegin() &&
647           "Slot for EBP register must be last in order to be found!");
648    FrameIdx = 0;
649  }
650}
651
652unsigned X86RegisterInfo::getRARegister() const {
653  return Is64Bit ? X86::RIP     // Should have dwarf #16.
654                 : X86::EIP;    // Should have dwarf #8.
655}
656
657unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
658  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
659  return TFI->hasFP(MF) ? FramePtr : StackPtr;
660}
661
662unsigned X86RegisterInfo::getEHExceptionRegister() const {
663  llvm_unreachable("What is the exception register");
664  return 0;
665}
666
667unsigned X86RegisterInfo::getEHHandlerRegister() const {
668  llvm_unreachable("What is the exception handler register");
669  return 0;
670}
671
672namespace llvm {
673unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
674  switch (VT.getSimpleVT().SimpleTy) {
675  default: return Reg;
676  case MVT::i8:
677    if (High) {
678      switch (Reg) {
679      default: return 0;
680      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
681        return X86::AH;
682      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
683        return X86::DH;
684      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
685        return X86::CH;
686      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
687        return X86::BH;
688      }
689    } else {
690      switch (Reg) {
691      default: return 0;
692      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
693        return X86::AL;
694      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
695        return X86::DL;
696      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
697        return X86::CL;
698      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
699        return X86::BL;
700      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
701        return X86::SIL;
702      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
703        return X86::DIL;
704      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
705        return X86::BPL;
706      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
707        return X86::SPL;
708      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
709        return X86::R8B;
710      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
711        return X86::R9B;
712      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
713        return X86::R10B;
714      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
715        return X86::R11B;
716      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
717        return X86::R12B;
718      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
719        return X86::R13B;
720      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
721        return X86::R14B;
722      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
723        return X86::R15B;
724      }
725    }
726  case MVT::i16:
727    switch (Reg) {
728    default: return Reg;
729    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
730      return X86::AX;
731    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
732      return X86::DX;
733    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
734      return X86::CX;
735    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
736      return X86::BX;
737    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
738      return X86::SI;
739    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
740      return X86::DI;
741    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
742      return X86::BP;
743    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
744      return X86::SP;
745    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
746      return X86::R8W;
747    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
748      return X86::R9W;
749    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
750      return X86::R10W;
751    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
752      return X86::R11W;
753    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
754      return X86::R12W;
755    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
756      return X86::R13W;
757    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
758      return X86::R14W;
759    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
760      return X86::R15W;
761    }
762  case MVT::i32:
763    switch (Reg) {
764    default: return Reg;
765    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
766      return X86::EAX;
767    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
768      return X86::EDX;
769    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
770      return X86::ECX;
771    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
772      return X86::EBX;
773    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
774      return X86::ESI;
775    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
776      return X86::EDI;
777    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
778      return X86::EBP;
779    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
780      return X86::ESP;
781    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
782      return X86::R8D;
783    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
784      return X86::R9D;
785    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
786      return X86::R10D;
787    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
788      return X86::R11D;
789    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
790      return X86::R12D;
791    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
792      return X86::R13D;
793    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
794      return X86::R14D;
795    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
796      return X86::R15D;
797    }
798  case MVT::i64:
799    switch (Reg) {
800    default: return Reg;
801    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
802      return X86::RAX;
803    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
804      return X86::RDX;
805    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
806      return X86::RCX;
807    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
808      return X86::RBX;
809    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
810      return X86::RSI;
811    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
812      return X86::RDI;
813    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
814      return X86::RBP;
815    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
816      return X86::RSP;
817    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
818      return X86::R8;
819    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
820      return X86::R9;
821    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
822      return X86::R10;
823    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
824      return X86::R11;
825    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
826      return X86::R12;
827    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
828      return X86::R13;
829    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
830      return X86::R14;
831    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
832      return X86::R15;
833    }
834  }
835
836  return Reg;
837}
838}
839
840#include "X86GenRegisterInfo.inc"
841
842namespace {
843  struct MSAH : public MachineFunctionPass {
844    static char ID;
845    MSAH() : MachineFunctionPass(ID) {}
846
847    virtual bool runOnMachineFunction(MachineFunction &MF) {
848      const X86TargetMachine *TM =
849        static_cast<const X86TargetMachine *>(&MF.getTarget());
850      const X86RegisterInfo *X86RI = TM->getRegisterInfo();
851      MachineRegisterInfo &RI = MF.getRegInfo();
852      X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
853      unsigned StackAlignment = X86RI->getStackAlignment();
854
855      // Be over-conservative: scan over all vreg defs and find whether vector
856      // registers are used. If yes, there is a possibility that vector register
857      // will be spilled and thus require dynamic stack realignment.
858      for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
859           RegNum < RI.getLastVirtReg(); ++RegNum)
860        if (RI.getRegClass(RegNum)->getAlignment() > StackAlignment) {
861          FuncInfo->setReserveFP(true);
862          return true;
863        }
864
865      // Nothing to do
866      return false;
867    }
868
869    virtual const char *getPassName() const {
870      return "X86 Maximal Stack Alignment Check";
871    }
872
873    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
874      AU.setPreservesCFG();
875      MachineFunctionPass::getAnalysisUsage(AU);
876    }
877  };
878
879  char MSAH::ID = 0;
880}
881
882FunctionPass*
883llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); }
884