X86RegisterInfo.cpp revision 849f214a4e3676e41168b0c5398165c4d4fb99f8
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the MRegisterInfo class.  This
11// file is responsible for the frame pointer elimination optimization on X86.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86RegisterInfo.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/Type.h"
24#include "llvm/CodeGen/ValueTypes.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineLocation.h"
29#include "llvm/Target/TargetAsmInfo.h"
30#include "llvm/Target/TargetFrameInfo.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37using namespace llvm;
38
39namespace {
40  cl::opt<bool>
41  NoFusing("disable-spill-fusing",
42           cl::desc("Disable fusing of spill code into instructions"));
43  cl::opt<bool>
44  PrintFailedFusing("print-failed-fuse-candidates",
45                    cl::desc("Print instructions that the allocator wants to"
46                             " fuse, but the X86 backend currently can't"),
47                    cl::Hidden);
48}
49
50X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
51                                 const TargetInstrInfo &tii)
52  : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP),
53    TM(tm), TII(tii) {
54  // Cache some information.
55  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
56  Is64Bit = Subtarget->is64Bit();
57  if (Is64Bit) {
58    SlotSize = 8;
59    StackPtr = X86::RSP;
60    FramePtr = X86::RBP;
61  } else {
62    SlotSize = 4;
63    StackPtr = X86::ESP;
64    FramePtr = X86::EBP;
65  }
66}
67
68void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
69                                          MachineBasicBlock::iterator MI,
70                                          unsigned SrcReg, int FrameIdx,
71                                          const TargetRegisterClass *RC) const {
72  unsigned Opc;
73  if (RC == &X86::GR64RegClass) {
74    Opc = X86::MOV64mr;
75  } else if (RC == &X86::GR32RegClass) {
76    Opc = X86::MOV32mr;
77  } else if (RC == &X86::GR16RegClass) {
78    Opc = X86::MOV16mr;
79  } else if (RC == &X86::GR8RegClass) {
80    Opc = X86::MOV8mr;
81  } else if (RC == &X86::GR32_RegClass) {
82    Opc = X86::MOV32_mr;
83  } else if (RC == &X86::GR16_RegClass) {
84    Opc = X86::MOV16_mr;
85  } else if (RC == &X86::RFP64RegClass || RC == &X86::RSTRegClass) {
86    Opc = X86::FpST64m;
87  } else if (RC == &X86::RFP32RegClass) {
88    Opc = X86::FpST32m;
89  } else if (RC == &X86::FR32RegClass) {
90    Opc = X86::MOVSSmr;
91  } else if (RC == &X86::FR64RegClass) {
92    Opc = X86::MOVSDmr;
93  } else if (RC == &X86::VR128RegClass) {
94    Opc = X86::MOVAPSmr;
95  } else if (RC == &X86::VR64RegClass) {
96    Opc = X86::MMX_MOVQ64mr;
97  } else {
98    assert(0 && "Unknown regclass");
99    abort();
100  }
101  addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx)
102    .addReg(SrcReg, false, false, true);
103}
104
105void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
106                                           MachineBasicBlock::iterator MI,
107                                           unsigned DestReg, int FrameIdx,
108                                           const TargetRegisterClass *RC) const{
109  unsigned Opc;
110  if (RC == &X86::GR64RegClass) {
111    Opc = X86::MOV64rm;
112  } else if (RC == &X86::GR32RegClass) {
113    Opc = X86::MOV32rm;
114  } else if (RC == &X86::GR16RegClass) {
115    Opc = X86::MOV16rm;
116  } else if (RC == &X86::GR8RegClass) {
117    Opc = X86::MOV8rm;
118  } else if (RC == &X86::GR32_RegClass) {
119    Opc = X86::MOV32_rm;
120  } else if (RC == &X86::GR16_RegClass) {
121    Opc = X86::MOV16_rm;
122  } else if (RC == &X86::RFP64RegClass || RC == &X86::RSTRegClass) {
123    Opc = X86::FpLD64m;
124  } else if (RC == &X86::RFP32RegClass) {
125    Opc = X86::FpLD32m;
126  } else if (RC == &X86::FR32RegClass) {
127    Opc = X86::MOVSSrm;
128  } else if (RC == &X86::FR64RegClass) {
129    Opc = X86::MOVSDrm;
130  } else if (RC == &X86::VR128RegClass) {
131    Opc = X86::MOVAPSrm;
132  } else if (RC == &X86::VR64RegClass) {
133    Opc = X86::MMX_MOVQ64rm;
134  } else {
135    assert(0 && "Unknown regclass");
136    abort();
137  }
138  addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx);
139}
140
141void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
142                                   MachineBasicBlock::iterator MI,
143                                   unsigned DestReg, unsigned SrcReg,
144                                   const TargetRegisterClass *RC) const {
145  unsigned Opc;
146  if (RC == &X86::GR64RegClass) {
147    Opc = X86::MOV64rr;
148  } else if (RC == &X86::GR32RegClass) {
149    Opc = X86::MOV32rr;
150  } else if (RC == &X86::GR16RegClass) {
151    Opc = X86::MOV16rr;
152  } else if (RC == &X86::GR8RegClass) {
153    Opc = X86::MOV8rr;
154  } else if (RC == &X86::GR32_RegClass) {
155    Opc = X86::MOV32_rr;
156  } else if (RC == &X86::GR16_RegClass) {
157    Opc = X86::MOV16_rr;
158  } else if (RC == &X86::RFP32RegClass) {
159    Opc = X86::FpMOV3232;
160  } else if (RC == &X86::RFP64RegClass || RC == &X86::RSTRegClass) {
161    Opc = X86::FpMOV6464;
162  } else if (RC == &X86::FR32RegClass) {
163    Opc = X86::FsMOVAPSrr;
164  } else if (RC == &X86::FR64RegClass) {
165    Opc = X86::FsMOVAPDrr;
166  } else if (RC == &X86::VR128RegClass) {
167    Opc = X86::MOVAPSrr;
168  } else if (RC == &X86::VR64RegClass) {
169    Opc = X86::MMX_MOVQ64rr;
170  } else {
171    assert(0 && "Unknown regclass");
172    abort();
173  }
174  BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg);
175}
176
177
178void X86RegisterInfo::reMaterialize(MachineBasicBlock &MBB,
179                                    MachineBasicBlock::iterator I,
180                                    unsigned DestReg,
181                                    const MachineInstr *Orig) const {
182  MachineInstr *MI = Orig->clone();
183  MI->getOperand(0).setReg(DestReg);
184  MBB.insert(I, MI);
185}
186
187static MachineInstr *FuseTwoAddrInst(unsigned Opcode, unsigned FrameIndex,
188                                     MachineInstr *MI,
189                                     const TargetInstrInfo &TII) {
190  unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2;
191  // Create the base instruction with the memory operand as the first part.
192  MachineInstrBuilder MIB = addFrameReference(BuildMI(TII.get(Opcode)),
193                                              FrameIndex);
194
195  // Loop over the rest of the ri operands, converting them over.
196  for (unsigned i = 0; i != NumOps; ++i) {
197    MachineOperand &MO = MI->getOperand(i+2);
198    if (MO.isReg())
199      MIB = MIB.addReg(MO.getReg(), false, MO.isImplicit());
200    else if (MO.isImm())
201      MIB = MIB.addImm(MO.getImm());
202    else if (MO.isGlobalAddress())
203      MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
204    else if (MO.isJumpTableIndex())
205      MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex());
206    else if (MO.isExternalSymbol())
207      MIB = MIB.addExternalSymbol(MO.getSymbolName());
208    else
209      assert(0 && "Unknown operand type!");
210  }
211  return MIB;
212}
213
214static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
215                              unsigned FrameIndex, MachineInstr *MI,
216                              const TargetInstrInfo &TII) {
217  MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
218
219  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
220    MachineOperand &MO = MI->getOperand(i);
221    if (i == OpNo) {
222      assert(MO.isReg() && "Expected to fold into reg operand!");
223      MIB = addFrameReference(MIB, FrameIndex);
224    } else if (MO.isReg())
225      MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit());
226    else if (MO.isImm())
227      MIB = MIB.addImm(MO.getImm());
228    else if (MO.isGlobalAddress())
229      MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
230    else if (MO.isJumpTableIndex())
231      MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex());
232    else if (MO.isExternalSymbol())
233      MIB = MIB.addExternalSymbol(MO.getSymbolName());
234    else
235      assert(0 && "Unknown operand for FuseInst!");
236  }
237  return MIB;
238}
239
240static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII,
241                                unsigned Opcode, unsigned FrameIndex,
242                                MachineInstr *MI) {
243  return addFrameReference(BuildMI(TII.get(Opcode)), FrameIndex).addImm(0);
244}
245
246
247//===----------------------------------------------------------------------===//
248// Efficient Lookup Table Support
249//===----------------------------------------------------------------------===//
250
251namespace {
252  /// TableEntry - Maps the 'from' opcode to a fused form of the 'to' opcode.
253  ///
254  struct TableEntry {
255    unsigned from;                      // Original opcode.
256    unsigned to;                        // New opcode.
257
258    // less operators used by STL search.
259    bool operator<(const TableEntry &TE) const { return from < TE.from; }
260    friend bool operator<(const TableEntry &TE, unsigned V) {
261      return TE.from < V;
262    }
263    friend bool operator<(unsigned V, const TableEntry &TE) {
264      return V < TE.from;
265    }
266  };
267}
268
269/// TableIsSorted - Return true if the table is in 'from' opcode order.
270///
271static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
272  for (unsigned i = 1; i != NumEntries; ++i)
273    if (!(Table[i-1] < Table[i])) {
274      cerr << "Entries out of order " << Table[i-1].from
275           << " " << Table[i].from << "\n";
276      return false;
277    }
278  return true;
279}
280
281/// TableLookup - Return the table entry matching the specified opcode.
282/// Otherwise return NULL.
283static const TableEntry *TableLookup(const TableEntry *Table, unsigned N,
284                                unsigned Opcode) {
285  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
286  if (I != Table+N && I->from == Opcode)
287    return I;
288  return NULL;
289}
290
291#define ARRAY_SIZE(TABLE)  \
292   (sizeof(TABLE)/sizeof(TABLE[0]))
293
294#ifdef NDEBUG
295#define ASSERT_SORTED(TABLE)
296#else
297#define ASSERT_SORTED(TABLE)                                              \
298  { static bool TABLE##Checked = false;                                   \
299    if (!TABLE##Checked) {                                                \
300       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
301              "All lookup tables must be sorted for efficient access!");  \
302       TABLE##Checked = true;                                             \
303    }                                                                     \
304  }
305#endif
306
307
308MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI,
309                                                 unsigned i,
310                                                 int FrameIndex) const {
311  // Check switch flag
312  if (NoFusing) return NULL;
313
314  // Table (and size) to search
315  const TableEntry *OpcodeTablePtr = NULL;
316  unsigned OpcodeTableSize = 0;
317  bool isTwoAddrFold = false;
318  unsigned NumOps = TII.getNumOperands(MI->getOpcode());
319  bool isTwoAddr = NumOps > 1 &&
320    MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1;
321
322  MachineInstr *NewMI = NULL;
323  // Folding a memory location into the two-address part of a two-address
324  // instruction is different than folding it other places.  It requires
325  // replacing the *two* registers with the memory location.
326  if (isTwoAddr && NumOps >= 2 && i < 2 &&
327      MI->getOperand(0).isReg() &&
328      MI->getOperand(1).isReg() &&
329      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
330    static const TableEntry OpcodeTable[] = {
331      { X86::ADC32ri,     X86::ADC32mi },
332      { X86::ADC32ri8,    X86::ADC32mi8 },
333      { X86::ADC32rr,     X86::ADC32mr },
334      { X86::ADC64ri32,   X86::ADC64mi32 },
335      { X86::ADC64ri8,    X86::ADC64mi8 },
336      { X86::ADC64rr,     X86::ADC64mr },
337      { X86::ADD16ri,     X86::ADD16mi },
338      { X86::ADD16ri8,    X86::ADD16mi8 },
339      { X86::ADD16rr,     X86::ADD16mr },
340      { X86::ADD32ri,     X86::ADD32mi },
341      { X86::ADD32ri8,    X86::ADD32mi8 },
342      { X86::ADD32rr,     X86::ADD32mr },
343      { X86::ADD64ri32,   X86::ADD64mi32 },
344      { X86::ADD64ri8,    X86::ADD64mi8 },
345      { X86::ADD64rr,     X86::ADD64mr },
346      { X86::ADD8ri,      X86::ADD8mi },
347      { X86::ADD8rr,      X86::ADD8mr },
348      { X86::AND16ri,     X86::AND16mi },
349      { X86::AND16ri8,    X86::AND16mi8 },
350      { X86::AND16rr,     X86::AND16mr },
351      { X86::AND32ri,     X86::AND32mi },
352      { X86::AND32ri8,    X86::AND32mi8 },
353      { X86::AND32rr,     X86::AND32mr },
354      { X86::AND64ri32,   X86::AND64mi32 },
355      { X86::AND64ri8,    X86::AND64mi8 },
356      { X86::AND64rr,     X86::AND64mr },
357      { X86::AND8ri,      X86::AND8mi },
358      { X86::AND8rr,      X86::AND8mr },
359      { X86::DEC16r,      X86::DEC16m },
360      { X86::DEC32r,      X86::DEC32m },
361      { X86::DEC64_16r,   X86::DEC16m },
362      { X86::DEC64_32r,   X86::DEC32m },
363      { X86::DEC64r,      X86::DEC64m },
364      { X86::DEC8r,       X86::DEC8m },
365      { X86::INC16r,      X86::INC16m },
366      { X86::INC32r,      X86::INC32m },
367      { X86::INC64_16r,   X86::INC16m },
368      { X86::INC64_32r,   X86::INC32m },
369      { X86::INC64r,      X86::INC64m },
370      { X86::INC8r,       X86::INC8m },
371      { X86::NEG16r,      X86::NEG16m },
372      { X86::NEG32r,      X86::NEG32m },
373      { X86::NEG64r,      X86::NEG64m },
374      { X86::NEG8r,       X86::NEG8m },
375      { X86::NOT16r,      X86::NOT16m },
376      { X86::NOT32r,      X86::NOT32m },
377      { X86::NOT64r,      X86::NOT64m },
378      { X86::NOT8r,       X86::NOT8m },
379      { X86::OR16ri,      X86::OR16mi },
380      { X86::OR16ri8,     X86::OR16mi8 },
381      { X86::OR16rr,      X86::OR16mr },
382      { X86::OR32ri,      X86::OR32mi },
383      { X86::OR32ri8,     X86::OR32mi8 },
384      { X86::OR32rr,      X86::OR32mr },
385      { X86::OR64ri32,    X86::OR64mi32 },
386      { X86::OR64ri8,     X86::OR64mi8 },
387      { X86::OR64rr,      X86::OR64mr },
388      { X86::OR8ri,       X86::OR8mi },
389      { X86::OR8rr,       X86::OR8mr },
390      { X86::ROL16r1,     X86::ROL16m1 },
391      { X86::ROL16rCL,    X86::ROL16mCL },
392      { X86::ROL16ri,     X86::ROL16mi },
393      { X86::ROL32r1,     X86::ROL32m1 },
394      { X86::ROL32rCL,    X86::ROL32mCL },
395      { X86::ROL32ri,     X86::ROL32mi },
396      { X86::ROL64r1,     X86::ROL64m1 },
397      { X86::ROL64rCL,    X86::ROL64mCL },
398      { X86::ROL64ri,     X86::ROL64mi },
399      { X86::ROL8r1,      X86::ROL8m1 },
400      { X86::ROL8rCL,     X86::ROL8mCL },
401      { X86::ROL8ri,      X86::ROL8mi },
402      { X86::ROR16r1,     X86::ROR16m1 },
403      { X86::ROR16rCL,    X86::ROR16mCL },
404      { X86::ROR16ri,     X86::ROR16mi },
405      { X86::ROR32r1,     X86::ROR32m1 },
406      { X86::ROR32rCL,    X86::ROR32mCL },
407      { X86::ROR32ri,     X86::ROR32mi },
408      { X86::ROR64r1,     X86::ROR64m1 },
409      { X86::ROR64rCL,    X86::ROR64mCL },
410      { X86::ROR64ri,     X86::ROR64mi },
411      { X86::ROR8r1,      X86::ROR8m1 },
412      { X86::ROR8rCL,     X86::ROR8mCL },
413      { X86::ROR8ri,      X86::ROR8mi },
414      { X86::SAR16r1,     X86::SAR16m1 },
415      { X86::SAR16rCL,    X86::SAR16mCL },
416      { X86::SAR16ri,     X86::SAR16mi },
417      { X86::SAR32r1,     X86::SAR32m1 },
418      { X86::SAR32rCL,    X86::SAR32mCL },
419      { X86::SAR32ri,     X86::SAR32mi },
420      { X86::SAR64r1,     X86::SAR64m1 },
421      { X86::SAR64rCL,    X86::SAR64mCL },
422      { X86::SAR64ri,     X86::SAR64mi },
423      { X86::SAR8r1,      X86::SAR8m1 },
424      { X86::SAR8rCL,     X86::SAR8mCL },
425      { X86::SAR8ri,      X86::SAR8mi },
426      { X86::SBB32ri,     X86::SBB32mi },
427      { X86::SBB32ri8,    X86::SBB32mi8 },
428      { X86::SBB32rr,     X86::SBB32mr },
429      { X86::SBB64ri32,   X86::SBB64mi32 },
430      { X86::SBB64ri8,    X86::SBB64mi8 },
431      { X86::SBB64rr,     X86::SBB64mr },
432      { X86::SHL16r1,     X86::SHL16m1 },
433      { X86::SHL16rCL,    X86::SHL16mCL },
434      { X86::SHL16ri,     X86::SHL16mi },
435      { X86::SHL32r1,     X86::SHL32m1 },
436      { X86::SHL32rCL,    X86::SHL32mCL },
437      { X86::SHL32ri,     X86::SHL32mi },
438      { X86::SHL64r1,     X86::SHL64m1 },
439      { X86::SHL64rCL,    X86::SHL64mCL },
440      { X86::SHL64ri,     X86::SHL64mi },
441      { X86::SHL8r1,      X86::SHL8m1 },
442      { X86::SHL8rCL,     X86::SHL8mCL },
443      { X86::SHL8ri,      X86::SHL8mi },
444      { X86::SHLD16rrCL,  X86::SHLD16mrCL },
445      { X86::SHLD16rri8,  X86::SHLD16mri8 },
446      { X86::SHLD32rrCL,  X86::SHLD32mrCL },
447      { X86::SHLD32rri8,  X86::SHLD32mri8 },
448      { X86::SHLD64rrCL,  X86::SHLD64mrCL },
449      { X86::SHLD64rri8,  X86::SHLD64mri8 },
450      { X86::SHR16r1,     X86::SHR16m1 },
451      { X86::SHR16rCL,    X86::SHR16mCL },
452      { X86::SHR16ri,     X86::SHR16mi },
453      { X86::SHR32r1,     X86::SHR32m1 },
454      { X86::SHR32rCL,    X86::SHR32mCL },
455      { X86::SHR32ri,     X86::SHR32mi },
456      { X86::SHR64r1,     X86::SHR64m1 },
457      { X86::SHR64rCL,    X86::SHR64mCL },
458      { X86::SHR64ri,     X86::SHR64mi },
459      { X86::SHR8r1,      X86::SHR8m1 },
460      { X86::SHR8rCL,     X86::SHR8mCL },
461      { X86::SHR8ri,      X86::SHR8mi },
462      { X86::SHRD16rrCL,  X86::SHRD16mrCL },
463      { X86::SHRD16rri8,  X86::SHRD16mri8 },
464      { X86::SHRD32rrCL,  X86::SHRD32mrCL },
465      { X86::SHRD32rri8,  X86::SHRD32mri8 },
466      { X86::SHRD64rrCL,  X86::SHRD64mrCL },
467      { X86::SHRD64rri8,  X86::SHRD64mri8 },
468      { X86::SUB16ri,     X86::SUB16mi },
469      { X86::SUB16ri8,    X86::SUB16mi8 },
470      { X86::SUB16rr,     X86::SUB16mr },
471      { X86::SUB32ri,     X86::SUB32mi },
472      { X86::SUB32ri8,    X86::SUB32mi8 },
473      { X86::SUB32rr,     X86::SUB32mr },
474      { X86::SUB64ri32,   X86::SUB64mi32 },
475      { X86::SUB64ri8,    X86::SUB64mi8 },
476      { X86::SUB64rr,     X86::SUB64mr },
477      { X86::SUB8ri,      X86::SUB8mi },
478      { X86::SUB8rr,      X86::SUB8mr },
479      { X86::XOR16ri,     X86::XOR16mi },
480      { X86::XOR16ri8,    X86::XOR16mi8 },
481      { X86::XOR16rr,     X86::XOR16mr },
482      { X86::XOR32ri,     X86::XOR32mi },
483      { X86::XOR32ri8,    X86::XOR32mi8 },
484      { X86::XOR32rr,     X86::XOR32mr },
485      { X86::XOR64ri32,   X86::XOR64mi32 },
486      { X86::XOR64ri8,    X86::XOR64mi8 },
487      { X86::XOR64rr,     X86::XOR64mr },
488      { X86::XOR8ri,      X86::XOR8mi },
489      { X86::XOR8rr,      X86::XOR8mr }
490    };
491    ASSERT_SORTED(OpcodeTable);
492    OpcodeTablePtr = OpcodeTable;
493    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
494    isTwoAddrFold = true;
495  } else if (i == 0) { // If operand 0
496    if (MI->getOpcode() == X86::MOV16r0)
497      NewMI = MakeM0Inst(TII, X86::MOV16mi, FrameIndex, MI);
498    else if (MI->getOpcode() == X86::MOV32r0)
499      NewMI = MakeM0Inst(TII, X86::MOV32mi, FrameIndex, MI);
500    else if (MI->getOpcode() == X86::MOV64r0)
501      NewMI = MakeM0Inst(TII, X86::MOV64mi32, FrameIndex, MI);
502    else if (MI->getOpcode() == X86::MOV8r0)
503      NewMI = MakeM0Inst(TII, X86::MOV8mi, FrameIndex, MI);
504    if (NewMI) {
505      NewMI->copyKillDeadInfo(MI);
506      return NewMI;
507    }
508
509    static const TableEntry OpcodeTable[] = {
510      { X86::CMP16ri,     X86::CMP16mi },
511      { X86::CMP16ri8,    X86::CMP16mi8 },
512      { X86::CMP32ri,     X86::CMP32mi },
513      { X86::CMP32ri8,    X86::CMP32mi8 },
514      { X86::CMP8ri,      X86::CMP8mi },
515      { X86::DIV16r,      X86::DIV16m },
516      { X86::DIV32r,      X86::DIV32m },
517      { X86::DIV64r,      X86::DIV64m },
518      { X86::DIV8r,       X86::DIV8m },
519      { X86::FsMOVAPDrr,  X86::MOVSDmr },
520      { X86::FsMOVAPSrr,  X86::MOVSSmr },
521      { X86::IDIV16r,     X86::IDIV16m },
522      { X86::IDIV32r,     X86::IDIV32m },
523      { X86::IDIV64r,     X86::IDIV64m },
524      { X86::IDIV8r,      X86::IDIV8m },
525      { X86::IMUL16r,     X86::IMUL16m },
526      { X86::IMUL32r,     X86::IMUL32m },
527      { X86::IMUL64r,     X86::IMUL64m },
528      { X86::IMUL8r,      X86::IMUL8m },
529      { X86::MOV16ri,     X86::MOV16mi },
530      { X86::MOV16rr,     X86::MOV16mr },
531      { X86::MOV32ri,     X86::MOV32mi },
532      { X86::MOV32rr,     X86::MOV32mr },
533      { X86::MOV64ri32,   X86::MOV64mi32 },
534      { X86::MOV64rr,     X86::MOV64mr },
535      { X86::MOV8ri,      X86::MOV8mi },
536      { X86::MOV8rr,      X86::MOV8mr },
537      { X86::MOVAPDrr,    X86::MOVAPDmr },
538      { X86::MOVAPSrr,    X86::MOVAPSmr },
539      { X86::MOVPDI2DIrr, X86::MOVPDI2DImr },
540      { X86::MOVPQIto64rr,X86::MOVPQIto64mr },
541      { X86::MOVPS2SSrr,  X86::MOVPS2SSmr },
542      { X86::MOVSDrr,     X86::MOVSDmr },
543      { X86::MOVSDto64rr, X86::MOVSDto64mr },
544      { X86::MOVSS2DIrr,  X86::MOVSS2DImr },
545      { X86::MOVSSrr,     X86::MOVSSmr },
546      { X86::MOVUPDrr,    X86::MOVUPDmr },
547      { X86::MOVUPSrr,    X86::MOVUPSmr },
548      { X86::MUL16r,      X86::MUL16m },
549      { X86::MUL32r,      X86::MUL32m },
550      { X86::MUL64r,      X86::MUL64m },
551      { X86::MUL8r,       X86::MUL8m },
552      { X86::SETAEr,      X86::SETAEm },
553      { X86::SETAr,       X86::SETAm },
554      { X86::SETBEr,      X86::SETBEm },
555      { X86::SETBr,       X86::SETBm },
556      { X86::SETEr,       X86::SETEm },
557      { X86::SETGEr,      X86::SETGEm },
558      { X86::SETGr,       X86::SETGm },
559      { X86::SETLEr,      X86::SETLEm },
560      { X86::SETLr,       X86::SETLm },
561      { X86::SETNEr,      X86::SETNEm },
562      { X86::SETNPr,      X86::SETNPm },
563      { X86::SETNSr,      X86::SETNSm },
564      { X86::SETPr,       X86::SETPm },
565      { X86::SETSr,       X86::SETSm },
566      { X86::TEST16ri,    X86::TEST16mi },
567      { X86::TEST32ri,    X86::TEST32mi },
568      { X86::TEST64ri32,  X86::TEST64mi32 },
569      { X86::TEST8ri,     X86::TEST8mi },
570      { X86::XCHG16rr,    X86::XCHG16mr },
571      { X86::XCHG32rr,    X86::XCHG32mr },
572      { X86::XCHG64rr,    X86::XCHG64mr },
573      { X86::XCHG8rr,     X86::XCHG8mr }
574    };
575    ASSERT_SORTED(OpcodeTable);
576    OpcodeTablePtr = OpcodeTable;
577    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
578  } else if (i == 1) {
579    static const TableEntry OpcodeTable[] = {
580      { X86::CMP16rr,         X86::CMP16rm },
581      { X86::CMP32rr,         X86::CMP32rm },
582      { X86::CMP64ri32,       X86::CMP64mi32 },
583      { X86::CMP64ri8,        X86::CMP64mi8 },
584      { X86::CMP64rr,         X86::CMP64rm },
585      { X86::CMP8rr,          X86::CMP8rm },
586      { X86::CMPPDrri,        X86::CMPPDrmi },
587      { X86::CMPPSrri,        X86::CMPPSrmi },
588      { X86::CMPSDrr,         X86::CMPSDrm },
589      { X86::CMPSSrr,         X86::CMPSSrm },
590      { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
591      { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
592      { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
593      { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
594      { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
595      { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
596      { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
597      { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
598      { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
599      { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
600      { X86::FsMOVAPDrr,      X86::MOVSDrm },
601      { X86::FsMOVAPSrr,      X86::MOVSSrm },
602      { X86::IMUL16rri,       X86::IMUL16rmi },
603      { X86::IMUL16rri8,      X86::IMUL16rmi8 },
604      { X86::IMUL32rri,       X86::IMUL32rmi },
605      { X86::IMUL32rri8,      X86::IMUL32rmi8 },
606      { X86::IMUL64rr,        X86::IMUL64rm },
607      { X86::IMUL64rri32,     X86::IMUL64rmi32 },
608      { X86::IMUL64rri8,      X86::IMUL64rmi8 },
609      { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
610      { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
611      { X86::Int_COMISDrr,    X86::Int_COMISDrm },
612      { X86::Int_COMISSrr,    X86::Int_COMISSrm },
613      { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
614      { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
615      { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
616      { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
617      { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
618      { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
619      { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
620      { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
621      { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
622      { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
623      { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
624      { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
625      { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
626      { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
627      { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
628      { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
629      { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
630      { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
631      { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
632      { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
633      { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
634      { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
635      { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
636      { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
637      { X86::MOV16rr,         X86::MOV16rm },
638      { X86::MOV32rr,         X86::MOV32rm },
639      { X86::MOV64rr,         X86::MOV64rm },
640      { X86::MOV64toPQIrr,    X86::MOV64toPQIrm },
641      { X86::MOV64toSDrr,     X86::MOV64toSDrm },
642      { X86::MOV8rr,          X86::MOV8rm },
643      { X86::MOVAPDrr,        X86::MOVAPDrm },
644      { X86::MOVAPSrr,        X86::MOVAPSrm },
645      { X86::MOVDDUPrr,       X86::MOVDDUPrm },
646      { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
647      { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
648      { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
649      { X86::MOVSDrr,         X86::MOVSDrm },
650      { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
651      { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
652      { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
653      { X86::MOVSSrr,         X86::MOVSSrm },
654      { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
655      { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
656      { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
657      { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
658      { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
659      { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
660      { X86::MOVUPDrr,        X86::MOVUPDrm },
661      { X86::MOVUPSrr,        X86::MOVUPSrm },
662      { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
663      { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
664      { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
665      { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
666      { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
667      { X86::PSHUFDri,        X86::PSHUFDmi },
668      { X86::PSHUFHWri,       X86::PSHUFHWmi },
669      { X86::PSHUFLWri,       X86::PSHUFLWmi },
670      { X86::PsMOVZX64rr32,   X86::PsMOVZX64rm32 },
671      { X86::TEST16rr,        X86::TEST16rm },
672      { X86::TEST32rr,        X86::TEST32rm },
673      { X86::TEST64rr,        X86::TEST64rm },
674      { X86::TEST8rr,         X86::TEST8rm },
675      // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
676      { X86::UCOMISDrr,       X86::UCOMISDrm },
677      { X86::UCOMISSrr,       X86::UCOMISSrm },
678      { X86::XCHG16rr,        X86::XCHG16rm },
679      { X86::XCHG32rr,        X86::XCHG32rm },
680      { X86::XCHG64rr,        X86::XCHG64rm },
681      { X86::XCHG8rr,         X86::XCHG8rm }
682    };
683    ASSERT_SORTED(OpcodeTable);
684    OpcodeTablePtr = OpcodeTable;
685    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
686  } else if (i == 2) {
687    static const TableEntry OpcodeTable[] = {
688      { X86::ADC32rr,         X86::ADC32rm },
689      { X86::ADC64rr,         X86::ADC64rm },
690      { X86::ADD16rr,         X86::ADD16rm },
691      { X86::ADD32rr,         X86::ADD32rm },
692      { X86::ADD64rr,         X86::ADD64rm },
693      { X86::ADD8rr,          X86::ADD8rm },
694      { X86::ADDPDrr,         X86::ADDPDrm },
695      { X86::ADDPSrr,         X86::ADDPSrm },
696      { X86::ADDSDrr,         X86::ADDSDrm },
697      { X86::ADDSSrr,         X86::ADDSSrm },
698      { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
699      { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
700      { X86::AND16rr,         X86::AND16rm },
701      { X86::AND32rr,         X86::AND32rm },
702      { X86::AND64rr,         X86::AND64rm },
703      { X86::AND8rr,          X86::AND8rm },
704      { X86::ANDNPDrr,        X86::ANDNPDrm },
705      { X86::ANDNPSrr,        X86::ANDNPSrm },
706      { X86::ANDPDrr,         X86::ANDPDrm },
707      { X86::ANDPSrr,         X86::ANDPSrm },
708      { X86::CMOVA16rr,       X86::CMOVA16rm },
709      { X86::CMOVA32rr,       X86::CMOVA32rm },
710      { X86::CMOVA64rr,       X86::CMOVA64rm },
711      { X86::CMOVAE16rr,      X86::CMOVAE16rm },
712      { X86::CMOVAE32rr,      X86::CMOVAE32rm },
713      { X86::CMOVAE64rr,      X86::CMOVAE64rm },
714      { X86::CMOVB16rr,       X86::CMOVB16rm },
715      { X86::CMOVB32rr,       X86::CMOVB32rm },
716      { X86::CMOVB64rr,       X86::CMOVB64rm },
717      { X86::CMOVBE16rr,      X86::CMOVBE16rm },
718      { X86::CMOVBE32rr,      X86::CMOVBE32rm },
719      { X86::CMOVBE64rr,      X86::CMOVBE64rm },
720      { X86::CMOVE16rr,       X86::CMOVE16rm },
721      { X86::CMOVE32rr,       X86::CMOVE32rm },
722      { X86::CMOVE64rr,       X86::CMOVE64rm },
723      { X86::CMOVG16rr,       X86::CMOVG16rm },
724      { X86::CMOVG32rr,       X86::CMOVG32rm },
725      { X86::CMOVG64rr,       X86::CMOVG64rm },
726      { X86::CMOVGE16rr,      X86::CMOVGE16rm },
727      { X86::CMOVGE32rr,      X86::CMOVGE32rm },
728      { X86::CMOVGE64rr,      X86::CMOVGE64rm },
729      { X86::CMOVL16rr,       X86::CMOVL16rm },
730      { X86::CMOVL32rr,       X86::CMOVL32rm },
731      { X86::CMOVL64rr,       X86::CMOVL64rm },
732      { X86::CMOVLE16rr,      X86::CMOVLE16rm },
733      { X86::CMOVLE32rr,      X86::CMOVLE32rm },
734      { X86::CMOVLE64rr,      X86::CMOVLE64rm },
735      { X86::CMOVNE16rr,      X86::CMOVNE16rm },
736      { X86::CMOVNE32rr,      X86::CMOVNE32rm },
737      { X86::CMOVNE64rr,      X86::CMOVNE64rm },
738      { X86::CMOVNP16rr,      X86::CMOVNP16rm },
739      { X86::CMOVNP32rr,      X86::CMOVNP32rm },
740      { X86::CMOVNP64rr,      X86::CMOVNP64rm },
741      { X86::CMOVNS16rr,      X86::CMOVNS16rm },
742      { X86::CMOVNS32rr,      X86::CMOVNS32rm },
743      { X86::CMOVNS64rr,      X86::CMOVNS64rm },
744      { X86::CMOVP16rr,       X86::CMOVP16rm },
745      { X86::CMOVP32rr,       X86::CMOVP32rm },
746      { X86::CMOVP64rr,       X86::CMOVP64rm },
747      { X86::CMOVS16rr,       X86::CMOVS16rm },
748      { X86::CMOVS32rr,       X86::CMOVS32rm },
749      { X86::CMOVS64rr,       X86::CMOVS64rm },
750      { X86::DIVPDrr,         X86::DIVPDrm },
751      { X86::DIVPSrr,         X86::DIVPSrm },
752      { X86::DIVSDrr,         X86::DIVSDrm },
753      { X86::DIVSSrr,         X86::DIVSSrm },
754      { X86::HADDPDrr,        X86::HADDPDrm },
755      { X86::HADDPSrr,        X86::HADDPSrm },
756      { X86::HSUBPDrr,        X86::HSUBPDrm },
757      { X86::HSUBPSrr,        X86::HSUBPSrm },
758      { X86::IMUL16rr,        X86::IMUL16rm },
759      { X86::IMUL32rr,        X86::IMUL32rm },
760      { X86::MAXPDrr,         X86::MAXPDrm },
761      { X86::MAXPSrr,         X86::MAXPSrm },
762      { X86::MINPDrr,         X86::MINPDrm },
763      { X86::MINPSrr,         X86::MINPSrm },
764      { X86::MULPDrr,         X86::MULPDrm },
765      { X86::MULPSrr,         X86::MULPSrm },
766      { X86::MULSDrr,         X86::MULSDrm },
767      { X86::MULSSrr,         X86::MULSSrm },
768      { X86::OR16rr,          X86::OR16rm },
769      { X86::OR32rr,          X86::OR32rm },
770      { X86::OR64rr,          X86::OR64rm },
771      { X86::OR8rr,           X86::OR8rm },
772      { X86::ORPDrr,          X86::ORPDrm },
773      { X86::ORPSrr,          X86::ORPSrm },
774      { X86::PACKSSDWrr,      X86::PACKSSDWrm },
775      { X86::PACKSSWBrr,      X86::PACKSSWBrm },
776      { X86::PACKUSWBrr,      X86::PACKUSWBrm },
777      { X86::PADDBrr,         X86::PADDBrm },
778      { X86::PADDDrr,         X86::PADDDrm },
779      { X86::PADDQrr,         X86::PADDQrm },
780      { X86::PADDSBrr,        X86::PADDSBrm },
781      { X86::PADDSWrr,        X86::PADDSWrm },
782      { X86::PADDWrr,         X86::PADDWrm },
783      { X86::PANDNrr,         X86::PANDNrm },
784      { X86::PANDrr,          X86::PANDrm },
785      { X86::PAVGBrr,         X86::PAVGBrm },
786      { X86::PAVGWrr,         X86::PAVGWrm },
787      { X86::PCMPEQBrr,       X86::PCMPEQBrm },
788      { X86::PCMPEQDrr,       X86::PCMPEQDrm },
789      { X86::PCMPEQWrr,       X86::PCMPEQWrm },
790      { X86::PCMPGTBrr,       X86::PCMPGTBrm },
791      { X86::PCMPGTDrr,       X86::PCMPGTDrm },
792      { X86::PCMPGTWrr,       X86::PCMPGTWrm },
793      { X86::PINSRWrri,       X86::PINSRWrmi },
794      { X86::PMADDWDrr,       X86::PMADDWDrm },
795      { X86::PMAXSWrr,        X86::PMAXSWrm },
796      { X86::PMAXUBrr,        X86::PMAXUBrm },
797      { X86::PMINSWrr,        X86::PMINSWrm },
798      { X86::PMINUBrr,        X86::PMINUBrm },
799      { X86::PMULHUWrr,       X86::PMULHUWrm },
800      { X86::PMULHWrr,        X86::PMULHWrm },
801      { X86::PMULLWrr,        X86::PMULLWrm },
802      { X86::PMULUDQrr,       X86::PMULUDQrm },
803      { X86::PORrr,           X86::PORrm },
804      { X86::PSADBWrr,        X86::PSADBWrm },
805      { X86::PSLLDrr,         X86::PSLLDrm },
806      { X86::PSLLQrr,         X86::PSLLQrm },
807      { X86::PSLLWrr,         X86::PSLLWrm },
808      { X86::PSRADrr,         X86::PSRADrm },
809      { X86::PSRAWrr,         X86::PSRAWrm },
810      { X86::PSRLDrr,         X86::PSRLDrm },
811      { X86::PSRLQrr,         X86::PSRLQrm },
812      { X86::PSRLWrr,         X86::PSRLWrm },
813      { X86::PSUBBrr,         X86::PSUBBrm },
814      { X86::PSUBDrr,         X86::PSUBDrm },
815      { X86::PSUBSBrr,        X86::PSUBSBrm },
816      { X86::PSUBSWrr,        X86::PSUBSWrm },
817      { X86::PSUBWrr,         X86::PSUBWrm },
818      { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
819      { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
820      { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
821      { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
822      { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
823      { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
824      { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
825      { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
826      { X86::PXORrr,          X86::PXORrm },
827      { X86::RCPPSr,          X86::RCPPSm },
828      { X86::RSQRTPSr,        X86::RSQRTPSm },
829      { X86::SBB32rr,         X86::SBB32rm },
830      { X86::SBB64rr,         X86::SBB64rm },
831      { X86::SHUFPDrri,       X86::SHUFPDrmi },
832      { X86::SHUFPSrri,       X86::SHUFPSrmi },
833      { X86::SQRTPDr,         X86::SQRTPDm },
834      { X86::SQRTPSr,         X86::SQRTPSm },
835      { X86::SQRTSDr,         X86::SQRTSDm },
836      { X86::SQRTSSr,         X86::SQRTSSm },
837      { X86::SUB16rr,         X86::SUB16rm },
838      { X86::SUB32rr,         X86::SUB32rm },
839      { X86::SUB64rr,         X86::SUB64rm },
840      { X86::SUB8rr,          X86::SUB8rm },
841      { X86::SUBPDrr,         X86::SUBPDrm },
842      { X86::SUBPSrr,         X86::SUBPSrm },
843      { X86::SUBSDrr,         X86::SUBSDrm },
844      { X86::SUBSSrr,         X86::SUBSSrm },
845      // FIXME: TEST*rr -> swapped operand of TEST*mr.
846      { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
847      { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
848      { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
849      { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
850      { X86::XOR16rr,         X86::XOR16rm },
851      { X86::XOR32rr,         X86::XOR32rm },
852      { X86::XOR64rr,         X86::XOR64rm },
853      { X86::XOR8rr,          X86::XOR8rm },
854      { X86::XORPDrr,         X86::XORPDrm },
855      { X86::XORPSrr,         X86::XORPSrm }
856    };
857    ASSERT_SORTED(OpcodeTable);
858    OpcodeTablePtr = OpcodeTable;
859    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
860  }
861
862  // If table selected...
863  if (OpcodeTablePtr) {
864    // Find the Opcode to fuse
865    unsigned fromOpcode = MI->getOpcode();
866    // Lookup fromOpcode in table
867    if (const TableEntry *Entry = TableLookup(OpcodeTablePtr, OpcodeTableSize,
868                                              fromOpcode)) {
869      if (isTwoAddrFold)
870        NewMI = FuseTwoAddrInst(Entry->to, FrameIndex, MI, TII);
871      else
872        NewMI = FuseInst(Entry->to, i, FrameIndex, MI, TII);
873      NewMI->copyKillDeadInfo(MI);
874      return NewMI;
875    }
876  }
877
878  // No fusion
879  if (PrintFailedFusing)
880    cerr << "We failed to fuse ("
881         << ((i == 1) ? "r" : "s") << "): " << *MI;
882  return NULL;
883}
884
885
886const unsigned *X86RegisterInfo::getCalleeSavedRegs() const {
887  static const unsigned CalleeSavedRegs32Bit[] = {
888    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
889  };
890  static const unsigned CalleeSavedRegs64Bit[] = {
891    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
892  };
893
894  return Is64Bit ? CalleeSavedRegs64Bit : CalleeSavedRegs32Bit;
895}
896
897const TargetRegisterClass* const*
898X86RegisterInfo::getCalleeSavedRegClasses() const {
899  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
900    &X86::GR32RegClass, &X86::GR32RegClass,
901    &X86::GR32RegClass, &X86::GR32RegClass,  0
902  };
903  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
904    &X86::GR64RegClass, &X86::GR64RegClass,
905    &X86::GR64RegClass, &X86::GR64RegClass,
906    &X86::GR64RegClass, &X86::GR64RegClass, 0
907  };
908
909  return Is64Bit ? CalleeSavedRegClasses64Bit : CalleeSavedRegClasses32Bit;
910}
911
912BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
913  BitVector Reserved(getNumRegs());
914  Reserved.set(X86::RSP);
915  Reserved.set(X86::ESP);
916  Reserved.set(X86::SP);
917  Reserved.set(X86::SPL);
918  if (hasFP(MF)) {
919    Reserved.set(X86::RBP);
920    Reserved.set(X86::EBP);
921    Reserved.set(X86::BP);
922    Reserved.set(X86::BPL);
923  }
924  return Reserved;
925}
926
927//===----------------------------------------------------------------------===//
928// Stack Frame Processing methods
929//===----------------------------------------------------------------------===//
930
931// hasFP - Return true if the specified function should have a dedicated frame
932// pointer register.  This is true if the function has variable sized allocas or
933// if frame pointer elimination is disabled.
934//
935bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
936  return (NoFramePointerElim ||
937          MF.getFrameInfo()->hasVarSizedObjects() ||
938          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer());
939}
940
941void X86RegisterInfo::
942eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
943                              MachineBasicBlock::iterator I) const {
944  if (hasFP(MF)) {
945    // If we have a frame pointer, turn the adjcallstackup instruction into a
946    // 'sub ESP, <amt>' and the adjcallstackdown instruction into 'add ESP,
947    // <amt>'
948    MachineInstr *Old = I;
949    uint64_t Amount = Old->getOperand(0).getImm();
950    if (Amount != 0) {
951      // We need to keep the stack aligned properly.  To do this, we round the
952      // amount of space needed for the outgoing arguments up to the next
953      // alignment boundary.
954      unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
955      Amount = (Amount+Align-1)/Align*Align;
956
957      MachineInstr *New = 0;
958      if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
959        New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr)
960          .addReg(StackPtr).addImm(Amount);
961      } else {
962        assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
963        // factor out the amount the callee already popped.
964        uint64_t CalleeAmt = Old->getOperand(1).getImm();
965        Amount -= CalleeAmt;
966        if (Amount) {
967          unsigned Opc = (Amount < 128) ?
968            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
969            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
970          New = BuildMI(TII.get(Opc),  StackPtr)
971                        .addReg(StackPtr).addImm(Amount);
972        }
973      }
974
975      // Replace the pseudo instruction with a new instruction...
976      if (New) MBB.insert(I, New);
977    }
978  } else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
979    // If we are performing frame pointer elimination and if the callee pops
980    // something off the stack pointer, add it back.  We do this until we have
981    // more advanced stack pointer tracking ability.
982    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
983      unsigned Opc = (CalleeAmt < 128) ?
984        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
985        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
986      MachineInstr *New =
987        BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt);
988      MBB.insert(I, New);
989    }
990  }
991
992  MBB.erase(I);
993}
994
995void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
996                                          int SPAdj, RegScavenger *RS) const{
997  assert(SPAdj == 0 && "Unexpected");
998
999  unsigned i = 0;
1000  MachineInstr &MI = *II;
1001  MachineFunction &MF = *MI.getParent()->getParent();
1002  while (!MI.getOperand(i).isFrameIndex()) {
1003    ++i;
1004    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
1005  }
1006
1007  int FrameIndex = MI.getOperand(i).getFrameIndex();
1008  // This must be part of a four operand memory reference.  Replace the
1009  // FrameIndex with base register with EBP.  Add an offset to the offset.
1010  MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false);
1011
1012  // Now add the frame object offset to the offset from EBP.
1013  int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
1014                   MI.getOperand(i+3).getImm()+SlotSize;
1015
1016  if (!hasFP(MF))
1017    Offset += MF.getFrameInfo()->getStackSize();
1018  else
1019    Offset += SlotSize;  // Skip the saved EBP
1020
1021  MI.getOperand(i+3).ChangeToImmediate(Offset);
1022}
1023
1024void
1025X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
1026  if (hasFP(MF)) {
1027    // Create a frame entry for the EBP register that must be saved.
1028    int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1029                                                        (int)SlotSize * -2);
1030    assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
1031           "Slot for EBP register must be last in order to be found!");
1032  }
1033}
1034
1035/// emitSPUpdate - Emit a series of instructions to increment / decrement the
1036/// stack pointer by a constant value.
1037static
1038void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
1039                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
1040                  const TargetInstrInfo &TII) {
1041  bool isSub = NumBytes < 0;
1042  uint64_t Offset = isSub ? -NumBytes : NumBytes;
1043  unsigned Opc = isSub
1044    ? ((Offset < 128) ?
1045       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
1046       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
1047    : ((Offset < 128) ?
1048       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
1049       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
1050  uint64_t Chunk = (1LL << 31) - 1;
1051
1052  while (Offset) {
1053    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
1054    BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal);
1055    Offset -= ThisVal;
1056  }
1057}
1058
1059void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
1060  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
1061  MachineBasicBlock::iterator MBBI = MBB.begin();
1062  MachineFrameInfo *MFI = MF.getFrameInfo();
1063  unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1064  const Function* Fn = MF.getFunction();
1065  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
1066  MachineInstr *MI;
1067  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1068
1069  // Prepare for frame info.
1070  unsigned FrameLabelId = 0, StartLabelId = 0;
1071
1072  // Get the number of bytes to allocate from the FrameInfo
1073  uint64_t NumBytes = MFI->getStackSize();
1074
1075  if (MMI && MMI->needsFrameInfo()) {
1076    // Mark function start
1077    StartLabelId = MMI->NextLabelID();
1078    BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(StartLabelId);
1079  }
1080
1081  if (NumBytes) {   // adjust stack pointer: ESP -= numbytes
1082    if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1083      // Check, whether EAX is livein for this function
1084      bool isEAXAlive = false;
1085      for (MachineFunction::livein_iterator II = MF.livein_begin(),
1086             EE = MF.livein_end(); (II != EE) && !isEAXAlive; ++II) {
1087        unsigned Reg = II->first;
1088        isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1089                      Reg == X86::AH || Reg == X86::AL);
1090      }
1091
1092      // Function prologue calls _alloca to probe the stack when allocating
1093      // more than 4k bytes in one go. Touching the stack at 4K increments is
1094      // necessary to ensure that the guard pages used by the OS virtual memory
1095      // manager are allocated in correct sequence.
1096      if (!isEAXAlive) {
1097        MI = BuildMI(TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes);
1098        MBB.insert(MBBI, MI);
1099        MI = BuildMI(TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca");
1100        MBB.insert(MBBI, MI);
1101      } else {
1102        // Save EAX
1103        MI = BuildMI(TII.get(X86::PUSH32r), X86::EAX);
1104        MBB.insert(MBBI, MI);
1105        // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1106        // allocated bytes for EAX.
1107        MI = BuildMI(TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4);
1108        MBB.insert(MBBI, MI);
1109        MI = BuildMI(TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca");
1110        MBB.insert(MBBI, MI);
1111        // Restore EAX
1112        MI = addRegOffset(BuildMI(TII.get(X86::MOV32rm), X86::EAX),
1113                          StackPtr, NumBytes-4);
1114        MBB.insert(MBBI, MI);
1115      }
1116    } else {
1117      emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1118    }
1119  }
1120
1121  if (MMI && MMI->needsFrameInfo()) {
1122    // Mark effective beginning of when frame pointer becomes valid.
1123    FrameLabelId = MMI->NextLabelID();
1124    BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(FrameLabelId);
1125  }
1126
1127  if (hasFP(MF)) {
1128    // Get the offset of the stack slot for the EBP register... which is
1129    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1130    int64_t EBPOffset =
1131      MFI->getObjectOffset(MFI->getObjectIndexBegin())+SlotSize;
1132    // Update the frame offset adjustment.
1133    MFI->setOffsetAdjustment(SlotSize-NumBytes);
1134
1135    // Save EBP into the appropriate stack slot...
1136    // mov [ESP-<offset>], EBP
1137    MI = addRegOffset(BuildMI(TII.get(Is64Bit ? X86::MOV64mr : X86::MOV32mr)),
1138                      StackPtr, EBPOffset+NumBytes).addReg(FramePtr);
1139    MBB.insert(MBBI, MI);
1140
1141    // Update EBP with the new base value...
1142    if (NumBytes == SlotSize)    // mov EBP, ESP
1143      MI = BuildMI(TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr).
1144        addReg(StackPtr);
1145    else                  // lea EBP, [ESP+StackSize]
1146      MI = addRegOffset(BuildMI(TII.get(Is64Bit ? X86::LEA64r : X86::LEA32r),
1147                                FramePtr), StackPtr, NumBytes-SlotSize);
1148
1149    MBB.insert(MBBI, MI);
1150  }
1151
1152  if (MMI && MMI->needsFrameInfo()) {
1153    std::vector<MachineMove> &Moves = MMI->getFrameMoves();
1154    const TargetAsmInfo *TAI = MF.getTarget().getTargetAsmInfo();
1155
1156    // Calculate amount of bytes used for return address storing
1157    int stackGrowth =
1158      (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
1159       TargetFrameInfo::StackGrowsUp ?
1160       TAI->getAddressSize() : -TAI->getAddressSize());
1161
1162    if (NumBytes) {
1163      // Show update of SP.
1164      if (hasFP(MF)) {
1165        // Adjust SP
1166        MachineLocation SPDst(MachineLocation::VirtualFP);
1167        MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth);
1168        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1169      } else {
1170        MachineLocation SPDst(MachineLocation::VirtualFP);
1171        MachineLocation SPSrc(MachineLocation::VirtualFP, -NumBytes+stackGrowth);
1172        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1173      }
1174    } else {
1175      //FIXME: Verify & implement for FP
1176      MachineLocation SPDst(StackPtr);
1177      MachineLocation SPSrc(StackPtr, stackGrowth);
1178      Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1179    }
1180
1181    // Add callee saved registers to move list.
1182    const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
1183    for (unsigned I = 0, E = CSI.size(); I != E; ++I) {
1184      int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
1185      unsigned Reg = CSI[I].getReg();
1186      MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
1187      MachineLocation CSSrc(Reg);
1188      Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc));
1189    }
1190
1191    // Mark effective beginning of when frame pointer is ready.
1192    unsigned ReadyLabelId = MMI->NextLabelID();
1193    BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(ReadyLabelId);
1194
1195    if (hasFP(MF)) {
1196      // Save FP
1197      MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth);
1198      MachineLocation FPSrc(FramePtr);
1199      Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1200    }
1201
1202    MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr);
1203    MachineLocation FPSrc(MachineLocation::VirtualFP);
1204    Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1205  }
1206
1207  // If it's main() on Cygwin\Mingw32 we should align stack as well
1208  if (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
1209      Subtarget->isTargetCygMing()) {
1210    MI= BuildMI(TII.get(X86::AND32ri), X86::ESP)
1211                .addReg(X86::ESP).addImm(-Align);
1212    MBB.insert(MBBI, MI);
1213
1214    // Probe the stack
1215    MI = BuildMI(TII.get(X86::MOV32ri), X86::EAX).addImm(Align);
1216    MBB.insert(MBBI, MI);
1217    MI = BuildMI(TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca");
1218    MBB.insert(MBBI, MI);
1219  }
1220}
1221
1222void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1223                                   MachineBasicBlock &MBB) const {
1224  const MachineFrameInfo *MFI = MF.getFrameInfo();
1225  MachineBasicBlock::iterator MBBI = prior(MBB.end());
1226
1227  switch (MBBI->getOpcode()) {
1228  case X86::RET:
1229  case X86::RETI:
1230  case X86::TAILJMPd:
1231  case X86::TAILJMPr:
1232  case X86::TAILJMPm: break;  // These are ok
1233  default:
1234    assert(0 && "Can only insert epilog into returning blocks");
1235  }
1236
1237  if (hasFP(MF)) {
1238    // mov ESP, EBP
1239    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
1240      addReg(FramePtr);
1241
1242    // pop EBP
1243    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1244  } else {
1245    // Get the number of bytes allocated from the FrameInfo.
1246    uint64_t NumBytes = MFI->getStackSize();
1247
1248    if (NumBytes) {    // adjust stack pointer back: ESP += numbytes
1249      // If there is an ADD32ri or SUB32ri of ESP immediately before this
1250      // instruction, merge the two instructions.
1251      if (MBBI != MBB.begin()) {
1252        MachineBasicBlock::iterator PI = prior(MBBI);
1253        unsigned Opc = PI->getOpcode();
1254        if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1255             Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1256            PI->getOperand(0).getReg() == StackPtr) {
1257          NumBytes += PI->getOperand(2).getImm();
1258          MBB.erase(PI);
1259        } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1260                    Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1261                   PI->getOperand(0).getReg() == StackPtr) {
1262          NumBytes -= PI->getOperand(2).getImm();
1263          MBB.erase(PI);
1264        }
1265      }
1266
1267      if (NumBytes)
1268        emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1269    }
1270  }
1271}
1272
1273unsigned X86RegisterInfo::getRARegister() const {
1274  if (Is64Bit)
1275    return X86::RIP;  // Should have dwarf #16
1276  else
1277    return X86::EIP;  // Should have dwarf #8
1278}
1279
1280unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
1281  return hasFP(MF) ? FramePtr : StackPtr;
1282}
1283
1284void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
1285                                                                         const {
1286  // Calculate amount of bytes used for return address storing
1287  int stackGrowth = (Is64Bit ? -8 : -4);
1288
1289  // Initial state of the frame pointer is esp+4.
1290  MachineLocation Dst(MachineLocation::VirtualFP);
1291  MachineLocation Src(StackPtr, stackGrowth);
1292  Moves.push_back(MachineMove(0, Dst, Src));
1293
1294  // Add return address to move list
1295  MachineLocation CSDst(StackPtr, stackGrowth);
1296  MachineLocation CSSrc(getRARegister());
1297  Moves.push_back(MachineMove(0, CSDst, CSSrc));
1298}
1299
1300unsigned X86RegisterInfo::getEHExceptionRegister() const {
1301  assert(0 && "What is the exception register");
1302  return 0;
1303}
1304
1305unsigned X86RegisterInfo::getEHHandlerRegister() const {
1306  assert(0 && "What is the exception handler register");
1307  return 0;
1308}
1309
1310namespace llvm {
1311unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) {
1312  switch (VT) {
1313  default: return Reg;
1314  case MVT::i8:
1315    if (High) {
1316      switch (Reg) {
1317      default: return 0;
1318      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1319        return X86::AH;
1320      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1321        return X86::DH;
1322      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1323        return X86::CH;
1324      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1325        return X86::BH;
1326      }
1327    } else {
1328      switch (Reg) {
1329      default: return 0;
1330      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1331        return X86::AL;
1332      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1333        return X86::DL;
1334      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1335        return X86::CL;
1336      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1337        return X86::BL;
1338      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1339        return X86::SIL;
1340      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1341        return X86::DIL;
1342      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1343        return X86::BPL;
1344      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1345        return X86::SPL;
1346      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1347        return X86::R8B;
1348      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1349        return X86::R9B;
1350      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1351        return X86::R10B;
1352      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1353        return X86::R11B;
1354      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1355        return X86::R12B;
1356      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1357        return X86::R13B;
1358      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1359        return X86::R14B;
1360      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1361        return X86::R15B;
1362      }
1363    }
1364  case MVT::i16:
1365    switch (Reg) {
1366    default: return Reg;
1367    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1368      return X86::AX;
1369    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1370      return X86::DX;
1371    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1372      return X86::CX;
1373    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1374      return X86::BX;
1375    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1376      return X86::SI;
1377    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1378      return X86::DI;
1379    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1380      return X86::BP;
1381    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1382      return X86::SP;
1383    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1384      return X86::R8W;
1385    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1386      return X86::R9W;
1387    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1388      return X86::R10W;
1389    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1390      return X86::R11W;
1391    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1392      return X86::R12W;
1393    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1394      return X86::R13W;
1395    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1396      return X86::R14W;
1397    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1398      return X86::R15W;
1399    }
1400  case MVT::i32:
1401    switch (Reg) {
1402    default: return Reg;
1403    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1404      return X86::EAX;
1405    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1406      return X86::EDX;
1407    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1408      return X86::ECX;
1409    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1410      return X86::EBX;
1411    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1412      return X86::ESI;
1413    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1414      return X86::EDI;
1415    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1416      return X86::EBP;
1417    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1418      return X86::ESP;
1419    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1420      return X86::R8D;
1421    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1422      return X86::R9D;
1423    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1424      return X86::R10D;
1425    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1426      return X86::R11D;
1427    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1428      return X86::R12D;
1429    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1430      return X86::R13D;
1431    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1432      return X86::R14D;
1433    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1434      return X86::R15D;
1435    }
1436  case MVT::i64:
1437    switch (Reg) {
1438    default: return Reg;
1439    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1440      return X86::RAX;
1441    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1442      return X86::RDX;
1443    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1444      return X86::RCX;
1445    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1446      return X86::RBX;
1447    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1448      return X86::RSI;
1449    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1450      return X86::RDI;
1451    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1452      return X86::RBP;
1453    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1454      return X86::RSP;
1455    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1456      return X86::R8;
1457    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1458      return X86::R9;
1459    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1460      return X86::R10;
1461    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1462      return X86::R11;
1463    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1464      return X86::R12;
1465    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1466      return X86::R13;
1467    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1468      return X86::R14;
1469    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1470      return X86::R15;
1471    }
1472  }
1473
1474  return Reg;
1475}
1476}
1477
1478#include "X86GenRegisterInfo.inc"
1479
1480