X86RegisterInfo.cpp revision bdf7b5da476c31dbccd79e1768cc2b14ceeb11f9
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetRegisterInfo class.
11// This file is responsible for the frame pointer elimination optimization
12// on X86.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86RegisterInfo.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineLocation.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/Target/TargetAsmInfo.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/BitVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/Compiler.h"
41using namespace llvm;
42
43X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
44                                 const TargetInstrInfo &tii)
45  : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP),
46    TM(tm), TII(tii) {
47  // Cache some information.
48  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
49  Is64Bit = Subtarget->is64Bit();
50  IsWin64 = Subtarget->isTargetWin64();
51  StackAlign = TM.getFrameInfo()->getStackAlignment();
52  if (Is64Bit) {
53    SlotSize = 8;
54    StackPtr = X86::RSP;
55    FramePtr = X86::RBP;
56  } else {
57    SlotSize = 4;
58    StackPtr = X86::ESP;
59    FramePtr = X86::EBP;
60  }
61}
62
63// getDwarfRegNum - This function maps LLVM register identifiers to the
64// Dwarf specific numbering, used in debug info and exception tables.
65
66int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
67  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
68  unsigned Flavour = DWARFFlavour::X86_64;
69  if (!Subtarget->is64Bit()) {
70    if (Subtarget->isTargetDarwin()) {
71      if (isEH)
72        Flavour = DWARFFlavour::X86_32_DarwinEH;
73      else
74        Flavour = DWARFFlavour::X86_32_Generic;
75    } else if (Subtarget->isTargetCygMing()) {
76      // Unsupported by now, just quick fallback
77      Flavour = DWARFFlavour::X86_32_Generic;
78    } else {
79      Flavour = DWARFFlavour::X86_32_Generic;
80    }
81  }
82
83  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
84}
85
86// getX86RegNum - This function maps LLVM register identifiers to their X86
87// specific numbering, which is used in various places encoding instructions.
88//
89unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
90  switch(RegNo) {
91  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
92  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
93  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
94  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
95  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
96    return N86::ESP;
97  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
98    return N86::EBP;
99  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
100    return N86::ESI;
101  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
102    return N86::EDI;
103
104  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
105    return N86::EAX;
106  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
107    return N86::ECX;
108  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
109    return N86::EDX;
110  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
111    return N86::EBX;
112  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
113    return N86::ESP;
114  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
115    return N86::EBP;
116  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
117    return N86::ESI;
118  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
119    return N86::EDI;
120
121  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
122  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
123    return RegNo-X86::ST0;
124
125  case X86::XMM0: case X86::XMM8: case X86::MM0:
126    return 0;
127  case X86::XMM1: case X86::XMM9: case X86::MM1:
128    return 1;
129  case X86::XMM2: case X86::XMM10: case X86::MM2:
130    return 2;
131  case X86::XMM3: case X86::XMM11: case X86::MM3:
132    return 3;
133  case X86::XMM4: case X86::XMM12: case X86::MM4:
134    return 4;
135  case X86::XMM5: case X86::XMM13: case X86::MM5:
136    return 5;
137  case X86::XMM6: case X86::XMM14: case X86::MM6:
138    return 6;
139  case X86::XMM7: case X86::XMM15: case X86::MM7:
140    return 7;
141
142  default:
143    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
144    assert(0 && "Register allocator hasn't allocated reg correctly yet!");
145    return 0;
146  }
147}
148
149const TargetRegisterClass *
150X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
151  if (RC == &X86::CCRRegClass) {
152    if (Is64Bit)
153      return &X86::GR64RegClass;
154    else
155      return &X86::GR32RegClass;
156  }
157  return NULL;
158}
159
160const unsigned *
161X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
162  static const unsigned CalleeSavedRegs32Bit[] = {
163    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
164  };
165
166  static const unsigned CalleeSavedRegs32EHRet[] = {
167    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
168  };
169
170  static const unsigned CalleeSavedRegs64Bit[] = {
171    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
172  };
173
174  static const unsigned CalleeSavedRegsWin64[] = {
175    X86::RBX, X86::RBP, X86::RDI, X86::RSI,
176    X86::R12, X86::R13, X86::R14, X86::R15, 0
177  };
178
179  if (Is64Bit) {
180    if (IsWin64)
181      return CalleeSavedRegsWin64;
182    else
183      return CalleeSavedRegs64Bit;
184  } else {
185    if (MF) {
186        const MachineFrameInfo *MFI = MF->getFrameInfo();
187        const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
188        if (MMI && MMI->callsEHReturn())
189          return CalleeSavedRegs32EHRet;
190    }
191    return CalleeSavedRegs32Bit;
192  }
193}
194
195const TargetRegisterClass* const*
196X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
197  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
198    &X86::GR32RegClass, &X86::GR32RegClass,
199    &X86::GR32RegClass, &X86::GR32RegClass,  0
200  };
201  static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
202    &X86::GR32RegClass, &X86::GR32RegClass,
203    &X86::GR32RegClass, &X86::GR32RegClass,
204    &X86::GR32RegClass, &X86::GR32RegClass,  0
205  };
206  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
207    &X86::GR64RegClass, &X86::GR64RegClass,
208    &X86::GR64RegClass, &X86::GR64RegClass,
209    &X86::GR64RegClass, &X86::GR64RegClass, 0
210  };
211  static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = {
212    &X86::GR64RegClass, &X86::GR64RegClass,
213    &X86::GR64RegClass, &X86::GR64RegClass,
214    &X86::GR64RegClass, &X86::GR64RegClass,
215    &X86::GR64RegClass, &X86::GR64RegClass, 0
216  };
217
218  if (Is64Bit) {
219    if (IsWin64)
220      return CalleeSavedRegClassesWin64;
221    else
222      return CalleeSavedRegClasses64Bit;
223  } else {
224    if (MF) {
225        const MachineFrameInfo *MFI = MF->getFrameInfo();
226        const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
227        if (MMI && MMI->callsEHReturn())
228          return CalleeSavedRegClasses32EHRet;
229    }
230    return CalleeSavedRegClasses32Bit;
231  }
232
233}
234
235BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
236  BitVector Reserved(getNumRegs());
237  Reserved.set(X86::RSP);
238  Reserved.set(X86::ESP);
239  Reserved.set(X86::SP);
240  Reserved.set(X86::SPL);
241  if (hasFP(MF)) {
242    Reserved.set(X86::RBP);
243    Reserved.set(X86::EBP);
244    Reserved.set(X86::BP);
245    Reserved.set(X86::BPL);
246  }
247  return Reserved;
248}
249
250//===----------------------------------------------------------------------===//
251// Stack Frame Processing methods
252//===----------------------------------------------------------------------===//
253
254static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) {
255  unsigned MaxAlign = 0;
256  for (int i = FFI->getObjectIndexBegin(),
257         e = FFI->getObjectIndexEnd(); i != e; ++i) {
258    if (FFI->isDeadObjectIndex(i))
259      continue;
260    unsigned Align = FFI->getObjectAlignment(i);
261    MaxAlign = std::max(MaxAlign, Align);
262  }
263
264  return MaxAlign;
265}
266
267// hasFP - Return true if the specified function should have a dedicated frame
268// pointer register.  This is true if the function has variable sized allocas or
269// if frame pointer elimination is disabled.
270//
271bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
272  const MachineFrameInfo *MFI = MF.getFrameInfo();
273  const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
274
275  return (NoFramePointerElim ||
276          needsStackRealignment(MF) ||
277          MFI->hasVarSizedObjects() ||
278          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
279          (MMI && MMI->callsUnwindInit()));
280}
281
282bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
283  const MachineFrameInfo *MFI = MF.getFrameInfo();;
284
285  // FIXME: Currently we don't support stack realignment for functions with
286  // variable-sized allocas
287  return (RealignStack &&
288          (MFI->getMaxAlignment() > StackAlign &&
289           !MFI->hasVarSizedObjects()));
290}
291
292bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
293  return !MF.getFrameInfo()->hasVarSizedObjects();
294}
295
296int
297X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
298  int Offset = MF.getFrameInfo()->getObjectOffset(FI) + SlotSize;
299  uint64_t StackSize = MF.getFrameInfo()->getStackSize();
300
301  if (needsStackRealignment(MF)) {
302    if (FI < 0)
303      // Skip the saved EBP
304      Offset += SlotSize;
305    else {
306      unsigned Align = MF.getFrameInfo()->getObjectAlignment(FI);
307      assert( (-(Offset + StackSize)) % Align == 0);
308      return Offset + StackSize;
309    }
310
311    // FIXME: Support tail calls
312  } else {
313    if (!hasFP(MF))
314      return Offset + StackSize;
315
316    // Skip the saved EBP
317    Offset += SlotSize;
318
319    // Skip the RETADDR move area
320    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
321    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
322    if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
323  }
324
325  return Offset;
326}
327
328void X86RegisterInfo::
329eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
330                              MachineBasicBlock::iterator I) const {
331  if (!hasReservedCallFrame(MF)) {
332    // If the stack pointer can be changed after prologue, turn the
333    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
334    // adjcallstackdown instruction into 'add ESP, <amt>'
335    // TODO: consider using push / pop instead of sub + store / add
336    MachineInstr *Old = I;
337    uint64_t Amount = Old->getOperand(0).getImm();
338    if (Amount != 0) {
339      // We need to keep the stack aligned properly.  To do this, we round the
340      // amount of space needed for the outgoing arguments up to the next
341      // alignment boundary.
342      Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
343
344      MachineInstr *New = 0;
345      if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
346        New = BuildMI(MF, TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri),
347                      StackPtr).addReg(StackPtr).addImm(Amount);
348      } else {
349        assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
350        // factor out the amount the callee already popped.
351        uint64_t CalleeAmt = Old->getOperand(1).getImm();
352        Amount -= CalleeAmt;
353        if (Amount) {
354          unsigned Opc = (Amount < 128) ?
355            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
356            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
357          New = BuildMI(MF, TII.get(Opc), StackPtr)
358            .addReg(StackPtr).addImm(Amount);
359        }
360      }
361
362      // Replace the pseudo instruction with a new instruction...
363      if (New) MBB.insert(I, New);
364    }
365  } else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
366    // If we are performing frame pointer elimination and if the callee pops
367    // something off the stack pointer, add it back.  We do this until we have
368    // more advanced stack pointer tracking ability.
369    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
370      unsigned Opc = (CalleeAmt < 128) ?
371        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
372        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
373      MachineInstr *New =
374        BuildMI(MF, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt);
375      MBB.insert(I, New);
376    }
377  }
378
379  MBB.erase(I);
380}
381
382void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
383                                          int SPAdj, RegScavenger *RS) const{
384  assert(SPAdj == 0 && "Unexpected");
385
386  unsigned i = 0;
387  MachineInstr &MI = *II;
388  MachineFunction &MF = *MI.getParent()->getParent();
389  while (!MI.getOperand(i).isFrameIndex()) {
390    ++i;
391    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
392  }
393
394  int FrameIndex = MI.getOperand(i).getIndex();
395
396  unsigned BasePtr;
397  if (needsStackRealignment(MF))
398    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
399  else
400    BasePtr = (hasFP(MF) ? FramePtr : StackPtr);
401
402  // This must be part of a four operand memory reference.  Replace the
403  // FrameIndex with base register with EBP.  Add an offset to the offset.
404  MI.getOperand(i).ChangeToRegister(BasePtr, false);
405
406  // Now add the frame object offset to the offset from EBP.
407  int64_t Offset = getFrameIndexOffset(MF, FrameIndex) +
408                   MI.getOperand(i+3).getImm();
409
410  MI.getOperand(i+3).ChangeToImmediate(Offset);
411}
412
413void
414X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
415                                                      RegScavenger *RS) const {
416  MachineFrameInfo *FFI = MF.getFrameInfo();
417
418  // Calculate and set max stack object alignment early, so we can decide
419  // whether we will need stack realignment (and thus FP).
420  unsigned MaxAlign = std::max(FFI->getMaxAlignment(),
421                               calculateMaxStackAlignment(FFI));
422
423  FFI->setMaxAlignment(MaxAlign);
424}
425
426void
427X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
428  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
429  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
430  if (TailCallReturnAddrDelta < 0) {
431    // create RETURNADDR area
432    //   arg
433    //   arg
434    //   RETADDR
435    //   { ...
436    //     RETADDR area
437    //     ...
438    //   }
439    //   [EBP]
440    MF.getFrameInfo()->
441      CreateFixedObject(-TailCallReturnAddrDelta,
442                        (-1*SlotSize)+TailCallReturnAddrDelta);
443  }
444  if (hasFP(MF)) {
445    assert((TailCallReturnAddrDelta <= 0) &&
446           "The Delta should always be zero or negative");
447    // Create a frame entry for the EBP register that must be saved.
448    int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
449                                                        (int)SlotSize * -2+
450                                                       TailCallReturnAddrDelta);
451    assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
452           "Slot for EBP register must be last in order to be found!");
453  }
454}
455
456/// emitSPUpdate - Emit a series of instructions to increment / decrement the
457/// stack pointer by a constant value.
458static
459void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
460                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
461                  const TargetInstrInfo &TII) {
462  bool isSub = NumBytes < 0;
463  uint64_t Offset = isSub ? -NumBytes : NumBytes;
464  unsigned Opc = isSub
465    ? ((Offset < 128) ?
466       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
467       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
468    : ((Offset < 128) ?
469       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
470       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
471  uint64_t Chunk = (1LL << 31) - 1;
472
473  while (Offset) {
474    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
475    BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal);
476    Offset -= ThisVal;
477  }
478}
479
480// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
481static
482void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
483                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
484  if (MBBI == MBB.begin()) return;
485
486  MachineBasicBlock::iterator PI = prior(MBBI);
487  unsigned Opc = PI->getOpcode();
488  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
489       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
490      PI->getOperand(0).getReg() == StackPtr) {
491    if (NumBytes)
492      *NumBytes += PI->getOperand(2).getImm();
493    MBB.erase(PI);
494  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
495              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
496             PI->getOperand(0).getReg() == StackPtr) {
497    if (NumBytes)
498      *NumBytes -= PI->getOperand(2).getImm();
499    MBB.erase(PI);
500  }
501}
502
503// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
504static
505void mergeSPUpdatesDown(MachineBasicBlock &MBB,
506                        MachineBasicBlock::iterator &MBBI,
507                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
508  return;
509
510  if (MBBI == MBB.end()) return;
511
512  MachineBasicBlock::iterator NI = next(MBBI);
513  if (NI == MBB.end()) return;
514
515  unsigned Opc = NI->getOpcode();
516  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
517       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
518      NI->getOperand(0).getReg() == StackPtr) {
519    if (NumBytes)
520      *NumBytes -= NI->getOperand(2).getImm();
521    MBB.erase(NI);
522    MBBI = NI;
523  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
524              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
525             NI->getOperand(0).getReg() == StackPtr) {
526    if (NumBytes)
527      *NumBytes += NI->getOperand(2).getImm();
528    MBB.erase(NI);
529    MBBI = NI;
530  }
531}
532
533/// mergeSPUpdates - Checks the instruction before/after the passed
534/// instruction. If it is an ADD/SUB instruction it is deleted
535/// argument and the stack adjustment is returned as a positive value for ADD
536/// and a negative for SUB.
537static int mergeSPUpdates(MachineBasicBlock &MBB,
538                           MachineBasicBlock::iterator &MBBI,
539                           unsigned StackPtr,
540                           bool doMergeWithPrevious) {
541
542  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
543      (!doMergeWithPrevious && MBBI == MBB.end()))
544    return 0;
545
546  int Offset = 0;
547
548  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
549  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
550  unsigned Opc = PI->getOpcode();
551  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
552       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
553      PI->getOperand(0).getReg() == StackPtr){
554    Offset += PI->getOperand(2).getImm();
555    MBB.erase(PI);
556    if (!doMergeWithPrevious) MBBI = NI;
557  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
558              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
559             PI->getOperand(0).getReg() == StackPtr) {
560    Offset -= PI->getOperand(2).getImm();
561    MBB.erase(PI);
562    if (!doMergeWithPrevious) MBBI = NI;
563  }
564
565  return Offset;
566}
567
568void X86RegisterInfo::emitFrameMoves(MachineFunction &MF,
569                                     unsigned FrameLabelId,
570                                     unsigned ReadyLabelId) const {
571  MachineFrameInfo *MFI = MF.getFrameInfo();
572  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
573  if (!MMI)
574    return;
575
576  uint64_t StackSize = MFI->getStackSize();
577  std::vector<MachineMove> &Moves = MMI->getFrameMoves();
578  const TargetData *TD = MF.getTarget().getTargetData();
579
580  // Calculate amount of bytes used for return address storing
581  int stackGrowth =
582    (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
583     TargetFrameInfo::StackGrowsUp ?
584     TD->getPointerSize() : -TD->getPointerSize());
585
586  if (StackSize) {
587    // Show update of SP.
588    if (hasFP(MF)) {
589      // Adjust SP
590      MachineLocation SPDst(MachineLocation::VirtualFP);
591      MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth);
592      Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
593    } else {
594      MachineLocation SPDst(MachineLocation::VirtualFP);
595      MachineLocation SPSrc(MachineLocation::VirtualFP,
596                            -StackSize+stackGrowth);
597      Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
598    }
599  } else {
600    //FIXME: Verify & implement for FP
601    MachineLocation SPDst(StackPtr);
602    MachineLocation SPSrc(StackPtr, stackGrowth);
603    Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
604  }
605
606  // Add callee saved registers to move list.
607  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
608
609  // FIXME: This is dirty hack. The code itself is pretty mess right now.
610  // It should be rewritten from scratch and generalized sometimes.
611
612  // Determine maximum offset (minumum due to stack growth)
613  int64_t MaxOffset = 0;
614  for (unsigned I = 0, E = CSI.size(); I!=E; ++I)
615    MaxOffset = std::min(MaxOffset,
616                         MFI->getObjectOffset(CSI[I].getFrameIdx()));
617
618  // Calculate offsets
619  int64_t saveAreaOffset = (hasFP(MF) ? 3 : 2)*stackGrowth;
620  for (unsigned I = 0, E = CSI.size(); I!=E; ++I) {
621    int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
622    unsigned Reg = CSI[I].getReg();
623    Offset = (MaxOffset-Offset+saveAreaOffset);
624    MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
625    MachineLocation CSSrc(Reg);
626    Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc));
627  }
628
629  if (hasFP(MF)) {
630    // Save FP
631    MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth);
632    MachineLocation FPSrc(FramePtr);
633    Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
634  }
635
636  MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr);
637  MachineLocation FPSrc(MachineLocation::VirtualFP);
638  Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
639}
640
641
642void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
643  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
644  MachineFrameInfo *MFI = MF.getFrameInfo();
645  const Function* Fn = MF.getFunction();
646  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
647  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
648  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
649  MachineBasicBlock::iterator MBBI = MBB.begin();
650  bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) ||
651                          !Fn->doesNotThrow() ||
652                          UnwindTablesMandatory;
653  // Prepare for frame info.
654  unsigned FrameLabelId = 0;
655
656  // Get the number of bytes to allocate from the FrameInfo.
657  uint64_t StackSize = MFI->getStackSize();
658  // Get desired stack alignment
659  uint64_t MaxAlign  = MFI->getMaxAlignment();
660
661  // Add RETADDR move area to callee saved frame size.
662  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
663  if (TailCallReturnAddrDelta < 0)
664    X86FI->setCalleeSavedFrameSize(
665          X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
666
667  // Insert stack pointer adjustment for later moving of return addr.  Only
668  // applies to tail call optimized functions where the callee argument stack
669  // size is bigger than the callers.
670  if (TailCallReturnAddrDelta < 0) {
671    BuildMI(MBB, MBBI, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
672            StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
673  }
674
675  uint64_t NumBytes = 0;
676  if (hasFP(MF)) {
677    // Calculate required stack adjustment
678    uint64_t FrameSize = StackSize - SlotSize;
679    if (needsStackRealignment(MF))
680      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
681
682    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
683
684    // Get the offset of the stack slot for the EBP register... which is
685    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
686    // Update the frame offset adjustment.
687    MFI->setOffsetAdjustment(-NumBytes);
688
689    // Save EBP into the appropriate stack slot...
690    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
691      .addReg(FramePtr);
692
693    if (needsFrameMoves) {
694      // Mark effective beginning of when frame pointer becomes valid.
695      FrameLabelId = MMI->NextLabelID();
696      BuildMI(MBB, MBBI, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
697    }
698
699    // Update EBP with the new base value...
700    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
701      .addReg(StackPtr);
702
703    // Realign stack
704    if (needsStackRealignment(MF))
705      BuildMI(MBB, MBBI,
706              TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
707              StackPtr).addReg(StackPtr).addImm(-MaxAlign);
708  } else
709    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
710
711  unsigned ReadyLabelId = 0;
712  if (needsFrameMoves) {
713    // Mark effective beginning of when frame pointer is ready.
714    ReadyLabelId = MMI->NextLabelID();
715    BuildMI(MBB, MBBI, TII.get(X86::DBG_LABEL)).addImm(ReadyLabelId);
716  }
717
718  // Skip the callee-saved push instructions.
719  while (MBBI != MBB.end() &&
720         (MBBI->getOpcode() == X86::PUSH32r ||
721          MBBI->getOpcode() == X86::PUSH64r))
722    ++MBBI;
723
724  if (NumBytes) {   // adjust stack pointer: ESP -= numbytes
725    if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
726      // Check, whether EAX is livein for this function
727      bool isEAXAlive = false;
728      for (MachineRegisterInfo::livein_iterator
729           II = MF.getRegInfo().livein_begin(),
730           EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
731        unsigned Reg = II->first;
732        isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
733                      Reg == X86::AH || Reg == X86::AL);
734      }
735
736      // Function prologue calls _alloca to probe the stack when allocating
737      // more than 4k bytes in one go. Touching the stack at 4K increments is
738      // necessary to ensure that the guard pages used by the OS virtual memory
739      // manager are allocated in correct sequence.
740      if (!isEAXAlive) {
741        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes);
742        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
743          .addExternalSymbol("_alloca");
744      } else {
745        // Save EAX
746        BuildMI(MBB, MBBI, TII.get(X86::PUSH32r), X86::EAX);
747        // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
748        // allocated bytes for EAX.
749        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4);
750        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
751          .addExternalSymbol("_alloca");
752        // Restore EAX
753        MachineInstr *MI = addRegOffset(BuildMI(MF, TII.get(X86::MOV32rm),X86::EAX),
754                                        StackPtr, false, NumBytes-4);
755        MBB.insert(MBBI, MI);
756      }
757    } else {
758      // If there is an SUB32ri of ESP immediately before this instruction,
759      // merge the two. This can be the case when tail call elimination is
760      // enabled and the callee has more arguments then the caller.
761      NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
762      // If there is an ADD32ri or SUB32ri of ESP immediately after this
763      // instruction, merge the two instructions.
764      mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
765
766      if (NumBytes)
767        emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
768    }
769  }
770
771  if (needsFrameMoves)
772    emitFrameMoves(MF, FrameLabelId, ReadyLabelId);
773}
774
775void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
776                                   MachineBasicBlock &MBB) const {
777  const MachineFrameInfo *MFI = MF.getFrameInfo();
778  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
779  MachineBasicBlock::iterator MBBI = prior(MBB.end());
780  unsigned RetOpcode = MBBI->getOpcode();
781
782  switch (RetOpcode) {
783  case X86::RET:
784  case X86::RETI:
785  case X86::TCRETURNdi:
786  case X86::TCRETURNri:
787  case X86::TCRETURNri64:
788  case X86::TCRETURNdi64:
789  case X86::EH_RETURN:
790  case X86::TAILJMPd:
791  case X86::TAILJMPr:
792  case X86::TAILJMPm: break;  // These are ok
793  default:
794    assert(0 && "Can only insert epilog into returning blocks");
795  }
796
797  // Get the number of bytes to allocate from the FrameInfo
798  uint64_t StackSize = MFI->getStackSize();
799  uint64_t MaxAlign  = MFI->getMaxAlignment();
800  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
801  uint64_t NumBytes = 0;
802
803  if (hasFP(MF)) {
804    // Calculate required stack adjustment
805    uint64_t FrameSize = StackSize - SlotSize;
806    if (needsStackRealignment(MF))
807      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
808
809    NumBytes = FrameSize - CSSize;
810
811    // pop EBP.
812    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
813  } else
814    NumBytes = StackSize - CSSize;
815
816  // Skip the callee-saved pop instructions.
817  MachineBasicBlock::iterator LastCSPop = MBBI;
818  while (MBBI != MBB.begin()) {
819    MachineBasicBlock::iterator PI = prior(MBBI);
820    unsigned Opc = PI->getOpcode();
821    if (Opc != X86::POP32r && Opc != X86::POP64r &&
822        !PI->getDesc().isTerminator())
823      break;
824    --MBBI;
825  }
826
827  // If there is an ADD32ri or SUB32ri of ESP immediately before this
828  // instruction, merge the two instructions.
829  if (NumBytes || MFI->hasVarSizedObjects())
830    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
831
832  // If dynamic alloca is used, then reset esp to point to the last callee-saved
833  // slot before popping them off! Same applies for the case, when stack was
834  // realigned
835  if (needsStackRealignment(MF)) {
836    // We cannot use LEA here, because stack pointer was realigned. We need to
837    // deallocate local frame back
838    if (CSSize) {
839      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
840      MBBI = prior(LastCSPop);
841    }
842
843    BuildMI(MBB, MBBI,
844            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
845            StackPtr).addReg(FramePtr);
846  } else if (MFI->hasVarSizedObjects()) {
847    if (CSSize) {
848      unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
849      MachineInstr *MI = addRegOffset(BuildMI(MF, TII.get(Opc), StackPtr),
850                                      FramePtr, false, -CSSize);
851      MBB.insert(MBBI, MI);
852    } else
853      BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
854              StackPtr).addReg(FramePtr);
855
856  } else {
857    // adjust stack pointer back: ESP += numbytes
858    if (NumBytes)
859      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
860  }
861
862  // We're returning from function via eh_return.
863  if (RetOpcode == X86::EH_RETURN) {
864    MBBI = prior(MBB.end());
865    MachineOperand &DestAddr  = MBBI->getOperand(0);
866    assert(DestAddr.isRegister() && "Offset should be in register!");
867    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
868      addReg(DestAddr.getReg());
869  // Tail call return: adjust the stack pointer and jump to callee
870  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
871             RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
872    MBBI = prior(MBB.end());
873    MachineOperand &JumpTarget = MBBI->getOperand(0);
874    MachineOperand &StackAdjust = MBBI->getOperand(1);
875    assert( StackAdjust.isImmediate() && "Expecting immediate value.");
876
877    // Adjust stack pointer.
878    int StackAdj = StackAdjust.getImm();
879    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
880    int Offset = 0;
881    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
882    // Incoporate the retaddr area.
883    Offset = StackAdj-MaxTCDelta;
884    assert(Offset >= 0 && "Offset should never be negative");
885    if (Offset) {
886      // Check for possible merge with preceeding ADD instruction.
887      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
888      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
889    }
890    // Jump to label or value in register.
891    if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
892      BuildMI(MBB, MBBI, TII.get(X86::TAILJMPd)).
893        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
894    else if (RetOpcode== X86::TCRETURNri64) {
895      BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
896    } else
897       BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr), JumpTarget.getReg());
898    // Delete the pseudo instruction TCRETURN.
899    MBB.erase(MBBI);
900  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
901             (X86FI->getTCReturnAddrDelta() < 0)) {
902    // Add the return addr area delta back since we are not tail calling.
903    int delta = -1*X86FI->getTCReturnAddrDelta();
904    MBBI = prior(MBB.end());
905    // Check for possible merge with preceeding ADD instruction.
906    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
907    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
908  }
909}
910
911unsigned X86RegisterInfo::getRARegister() const {
912  if (Is64Bit)
913    return X86::RIP;  // Should have dwarf #16
914  else
915    return X86::EIP;  // Should have dwarf #8
916}
917
918unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
919  return hasFP(MF) ? FramePtr : StackPtr;
920}
921
922void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
923                                                                         const {
924  // Calculate amount of bytes used for return address storing
925  int stackGrowth = (Is64Bit ? -8 : -4);
926
927  // Initial state of the frame pointer is esp+4.
928  MachineLocation Dst(MachineLocation::VirtualFP);
929  MachineLocation Src(StackPtr, stackGrowth);
930  Moves.push_back(MachineMove(0, Dst, Src));
931
932  // Add return address to move list
933  MachineLocation CSDst(StackPtr, stackGrowth);
934  MachineLocation CSSrc(getRARegister());
935  Moves.push_back(MachineMove(0, CSDst, CSSrc));
936}
937
938unsigned X86RegisterInfo::getEHExceptionRegister() const {
939  assert(0 && "What is the exception register");
940  return 0;
941}
942
943unsigned X86RegisterInfo::getEHHandlerRegister() const {
944  assert(0 && "What is the exception handler register");
945  return 0;
946}
947
948namespace llvm {
949unsigned getX86SubSuperRegister(unsigned Reg, MVT VT, bool High) {
950  switch (VT.getSimpleVT()) {
951  default: return Reg;
952  case MVT::i8:
953    if (High) {
954      switch (Reg) {
955      default: return 0;
956      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
957        return X86::AH;
958      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
959        return X86::DH;
960      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
961        return X86::CH;
962      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
963        return X86::BH;
964      }
965    } else {
966      switch (Reg) {
967      default: return 0;
968      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
969        return X86::AL;
970      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
971        return X86::DL;
972      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
973        return X86::CL;
974      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
975        return X86::BL;
976      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
977        return X86::SIL;
978      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
979        return X86::DIL;
980      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
981        return X86::BPL;
982      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
983        return X86::SPL;
984      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
985        return X86::R8B;
986      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
987        return X86::R9B;
988      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
989        return X86::R10B;
990      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
991        return X86::R11B;
992      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
993        return X86::R12B;
994      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
995        return X86::R13B;
996      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
997        return X86::R14B;
998      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
999        return X86::R15B;
1000      }
1001    }
1002  case MVT::i16:
1003    switch (Reg) {
1004    default: return Reg;
1005    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1006      return X86::AX;
1007    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1008      return X86::DX;
1009    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1010      return X86::CX;
1011    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1012      return X86::BX;
1013    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1014      return X86::SI;
1015    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1016      return X86::DI;
1017    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1018      return X86::BP;
1019    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1020      return X86::SP;
1021    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1022      return X86::R8W;
1023    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1024      return X86::R9W;
1025    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1026      return X86::R10W;
1027    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1028      return X86::R11W;
1029    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1030      return X86::R12W;
1031    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1032      return X86::R13W;
1033    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1034      return X86::R14W;
1035    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1036      return X86::R15W;
1037    }
1038  case MVT::i32:
1039    switch (Reg) {
1040    default: return Reg;
1041    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1042      return X86::EAX;
1043    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1044      return X86::EDX;
1045    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1046      return X86::ECX;
1047    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1048      return X86::EBX;
1049    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1050      return X86::ESI;
1051    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1052      return X86::EDI;
1053    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1054      return X86::EBP;
1055    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1056      return X86::ESP;
1057    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1058      return X86::R8D;
1059    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1060      return X86::R9D;
1061    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1062      return X86::R10D;
1063    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1064      return X86::R11D;
1065    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1066      return X86::R12D;
1067    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1068      return X86::R13D;
1069    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1070      return X86::R14D;
1071    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1072      return X86::R15D;
1073    }
1074  case MVT::i64:
1075    switch (Reg) {
1076    default: return Reg;
1077    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1078      return X86::RAX;
1079    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1080      return X86::RDX;
1081    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1082      return X86::RCX;
1083    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1084      return X86::RBX;
1085    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1086      return X86::RSI;
1087    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1088      return X86::RDI;
1089    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1090      return X86::RBP;
1091    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1092      return X86::RSP;
1093    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1094      return X86::R8;
1095    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1096      return X86::R9;
1097    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1098      return X86::R10;
1099    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1100      return X86::R11;
1101    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1102      return X86::R12;
1103    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1104      return X86::R13;
1105    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1106      return X86::R14;
1107    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1108      return X86::R15;
1109    }
1110  }
1111
1112  return Reg;
1113}
1114}
1115
1116#include "X86GenRegisterInfo.inc"
1117
1118namespace {
1119  struct VISIBILITY_HIDDEN MSAC : public MachineFunctionPass {
1120    static char ID;
1121    MSAC() : MachineFunctionPass((intptr_t)&ID) {}
1122
1123    virtual bool runOnMachineFunction(MachineFunction &MF) {
1124      MachineFrameInfo *FFI = MF.getFrameInfo();
1125      MachineRegisterInfo &RI = MF.getRegInfo();
1126
1127      // Calculate max stack alignment of all already allocated stack objects.
1128      unsigned MaxAlign = calculateMaxStackAlignment(FFI);
1129
1130      // Be over-conservative: scan over all vreg defs and find, whether vector
1131      // registers are used. If yes - there is probability, that vector register
1132      // will be spilled and thus stack needs to be aligned properly.
1133      for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
1134           RegNum < RI.getLastVirtReg(); ++RegNum)
1135        MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment());
1136
1137      FFI->setMaxAlignment(MaxAlign);
1138
1139      return false;
1140    }
1141
1142    virtual const char *getPassName() const {
1143      return "X86 Maximal Stack Alignment Calculator";
1144    }
1145  };
1146
1147  char MSAC::ID = 0;
1148}
1149
1150FunctionPass*
1151llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); }
1152