X86RegisterInfo.cpp revision c85e1716f0e45e4c18a9ef2fbe431a51ac3a4252
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the MRegisterInfo class.  This
11// file is responsible for the frame pointer elimination optimization on X86.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86RegisterInfo.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/Type.h"
24#include "llvm/CodeGen/ValueTypes.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineLocation.h"
29#include "llvm/CodeGen/SSARegMap.h"
30#include "llvm/Target/TargetAsmInfo.h"
31#include "llvm/Target/TargetFrameInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38using namespace llvm;
39
40namespace {
41  cl::opt<bool>
42  NoFusing("disable-spill-fusing",
43           cl::desc("Disable fusing of spill code into instructions"));
44  cl::opt<bool>
45  PrintFailedFusing("print-failed-fuse-candidates",
46                    cl::desc("Print instructions that the allocator wants to"
47                             " fuse, but the X86 backend currently can't"),
48                    cl::Hidden);
49}
50
51X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
52                                 const TargetInstrInfo &tii)
53  : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP),
54    TM(tm), TII(tii) {
55  // Cache some information.
56  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
57  Is64Bit = Subtarget->is64Bit();
58  if (Is64Bit) {
59    SlotSize = 8;
60    StackPtr = X86::RSP;
61    FramePtr = X86::RBP;
62  } else {
63    SlotSize = 4;
64    StackPtr = X86::ESP;
65    FramePtr = X86::EBP;
66  }
67
68  SmallVector<unsigned,16> AmbEntries;
69  static const unsigned OpTbl2Addr[][2] = {
70    { X86::ADC32ri,     X86::ADC32mi },
71    { X86::ADC32ri8,    X86::ADC32mi8 },
72    { X86::ADC32rr,     X86::ADC32mr },
73    { X86::ADC64ri32,   X86::ADC64mi32 },
74    { X86::ADC64ri8,    X86::ADC64mi8 },
75    { X86::ADC64rr,     X86::ADC64mr },
76    { X86::ADD16ri,     X86::ADD16mi },
77    { X86::ADD16ri8,    X86::ADD16mi8 },
78    { X86::ADD16rr,     X86::ADD16mr },
79    { X86::ADD32ri,     X86::ADD32mi },
80    { X86::ADD32ri8,    X86::ADD32mi8 },
81    { X86::ADD32rr,     X86::ADD32mr },
82    { X86::ADD64ri32,   X86::ADD64mi32 },
83    { X86::ADD64ri8,    X86::ADD64mi8 },
84    { X86::ADD64rr,     X86::ADD64mr },
85    { X86::ADD8ri,      X86::ADD8mi },
86    { X86::ADD8rr,      X86::ADD8mr },
87    { X86::AND16ri,     X86::AND16mi },
88    { X86::AND16ri8,    X86::AND16mi8 },
89    { X86::AND16rr,     X86::AND16mr },
90    { X86::AND32ri,     X86::AND32mi },
91    { X86::AND32ri8,    X86::AND32mi8 },
92    { X86::AND32rr,     X86::AND32mr },
93    { X86::AND64ri32,   X86::AND64mi32 },
94    { X86::AND64ri8,    X86::AND64mi8 },
95    { X86::AND64rr,     X86::AND64mr },
96    { X86::AND8ri,      X86::AND8mi },
97    { X86::AND8rr,      X86::AND8mr },
98    { X86::DEC16r,      X86::DEC16m },
99    { X86::DEC32r,      X86::DEC32m },
100    { X86::DEC64_16r,   X86::DEC16m },
101    { X86::DEC64_32r,   X86::DEC32m },
102    { X86::DEC64r,      X86::DEC64m },
103    { X86::DEC8r,       X86::DEC8m },
104    { X86::INC16r,      X86::INC16m },
105    { X86::INC32r,      X86::INC32m },
106    { X86::INC64_16r,   X86::INC16m },
107    { X86::INC64_32r,   X86::INC32m },
108    { X86::INC64r,      X86::INC64m },
109    { X86::INC8r,       X86::INC8m },
110    { X86::NEG16r,      X86::NEG16m },
111    { X86::NEG32r,      X86::NEG32m },
112    { X86::NEG64r,      X86::NEG64m },
113    { X86::NEG8r,       X86::NEG8m },
114    { X86::NOT16r,      X86::NOT16m },
115    { X86::NOT32r,      X86::NOT32m },
116    { X86::NOT64r,      X86::NOT64m },
117    { X86::NOT8r,       X86::NOT8m },
118    { X86::OR16ri,      X86::OR16mi },
119    { X86::OR16ri8,     X86::OR16mi8 },
120    { X86::OR16rr,      X86::OR16mr },
121    { X86::OR32ri,      X86::OR32mi },
122    { X86::OR32ri8,     X86::OR32mi8 },
123    { X86::OR32rr,      X86::OR32mr },
124    { X86::OR64ri32,    X86::OR64mi32 },
125    { X86::OR64ri8,     X86::OR64mi8 },
126    { X86::OR64rr,      X86::OR64mr },
127    { X86::OR8ri,       X86::OR8mi },
128    { X86::OR8rr,       X86::OR8mr },
129    { X86::ROL16r1,     X86::ROL16m1 },
130    { X86::ROL16rCL,    X86::ROL16mCL },
131    { X86::ROL16ri,     X86::ROL16mi },
132    { X86::ROL32r1,     X86::ROL32m1 },
133    { X86::ROL32rCL,    X86::ROL32mCL },
134    { X86::ROL32ri,     X86::ROL32mi },
135    { X86::ROL64r1,     X86::ROL64m1 },
136    { X86::ROL64rCL,    X86::ROL64mCL },
137    { X86::ROL64ri,     X86::ROL64mi },
138    { X86::ROL8r1,      X86::ROL8m1 },
139    { X86::ROL8rCL,     X86::ROL8mCL },
140    { X86::ROL8ri,      X86::ROL8mi },
141    { X86::ROR16r1,     X86::ROR16m1 },
142    { X86::ROR16rCL,    X86::ROR16mCL },
143    { X86::ROR16ri,     X86::ROR16mi },
144    { X86::ROR32r1,     X86::ROR32m1 },
145    { X86::ROR32rCL,    X86::ROR32mCL },
146    { X86::ROR32ri,     X86::ROR32mi },
147    { X86::ROR64r1,     X86::ROR64m1 },
148    { X86::ROR64rCL,    X86::ROR64mCL },
149    { X86::ROR64ri,     X86::ROR64mi },
150    { X86::ROR8r1,      X86::ROR8m1 },
151    { X86::ROR8rCL,     X86::ROR8mCL },
152    { X86::ROR8ri,      X86::ROR8mi },
153    { X86::SAR16r1,     X86::SAR16m1 },
154    { X86::SAR16rCL,    X86::SAR16mCL },
155    { X86::SAR16ri,     X86::SAR16mi },
156    { X86::SAR32r1,     X86::SAR32m1 },
157    { X86::SAR32rCL,    X86::SAR32mCL },
158    { X86::SAR32ri,     X86::SAR32mi },
159    { X86::SAR64r1,     X86::SAR64m1 },
160    { X86::SAR64rCL,    X86::SAR64mCL },
161    { X86::SAR64ri,     X86::SAR64mi },
162    { X86::SAR8r1,      X86::SAR8m1 },
163    { X86::SAR8rCL,     X86::SAR8mCL },
164    { X86::SAR8ri,      X86::SAR8mi },
165    { X86::SBB32ri,     X86::SBB32mi },
166    { X86::SBB32ri8,    X86::SBB32mi8 },
167    { X86::SBB32rr,     X86::SBB32mr },
168    { X86::SBB64ri32,   X86::SBB64mi32 },
169    { X86::SBB64ri8,    X86::SBB64mi8 },
170    { X86::SBB64rr,     X86::SBB64mr },
171    { X86::SHL16r1,     X86::SHL16m1 },
172    { X86::SHL16rCL,    X86::SHL16mCL },
173    { X86::SHL16ri,     X86::SHL16mi },
174    { X86::SHL32r1,     X86::SHL32m1 },
175    { X86::SHL32rCL,    X86::SHL32mCL },
176    { X86::SHL32ri,     X86::SHL32mi },
177    { X86::SHL64r1,     X86::SHL64m1 },
178    { X86::SHL64rCL,    X86::SHL64mCL },
179    { X86::SHL64ri,     X86::SHL64mi },
180    { X86::SHL8r1,      X86::SHL8m1 },
181    { X86::SHL8rCL,     X86::SHL8mCL },
182    { X86::SHL8ri,      X86::SHL8mi },
183    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
184    { X86::SHLD16rri8,  X86::SHLD16mri8 },
185    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
186    { X86::SHLD32rri8,  X86::SHLD32mri8 },
187    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
188    { X86::SHLD64rri8,  X86::SHLD64mri8 },
189    { X86::SHR16r1,     X86::SHR16m1 },
190    { X86::SHR16rCL,    X86::SHR16mCL },
191    { X86::SHR16ri,     X86::SHR16mi },
192    { X86::SHR32r1,     X86::SHR32m1 },
193    { X86::SHR32rCL,    X86::SHR32mCL },
194    { X86::SHR32ri,     X86::SHR32mi },
195    { X86::SHR64r1,     X86::SHR64m1 },
196    { X86::SHR64rCL,    X86::SHR64mCL },
197    { X86::SHR64ri,     X86::SHR64mi },
198    { X86::SHR8r1,      X86::SHR8m1 },
199    { X86::SHR8rCL,     X86::SHR8mCL },
200    { X86::SHR8ri,      X86::SHR8mi },
201    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
202    { X86::SHRD16rri8,  X86::SHRD16mri8 },
203    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
204    { X86::SHRD32rri8,  X86::SHRD32mri8 },
205    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
206    { X86::SHRD64rri8,  X86::SHRD64mri8 },
207    { X86::SUB16ri,     X86::SUB16mi },
208    { X86::SUB16ri8,    X86::SUB16mi8 },
209    { X86::SUB16rr,     X86::SUB16mr },
210    { X86::SUB32ri,     X86::SUB32mi },
211    { X86::SUB32ri8,    X86::SUB32mi8 },
212    { X86::SUB32rr,     X86::SUB32mr },
213    { X86::SUB64ri32,   X86::SUB64mi32 },
214    { X86::SUB64ri8,    X86::SUB64mi8 },
215    { X86::SUB64rr,     X86::SUB64mr },
216    { X86::SUB8ri,      X86::SUB8mi },
217    { X86::SUB8rr,      X86::SUB8mr },
218    { X86::XOR16ri,     X86::XOR16mi },
219    { X86::XOR16ri8,    X86::XOR16mi8 },
220    { X86::XOR16rr,     X86::XOR16mr },
221    { X86::XOR32ri,     X86::XOR32mi },
222    { X86::XOR32ri8,    X86::XOR32mi8 },
223    { X86::XOR32rr,     X86::XOR32mr },
224    { X86::XOR64ri32,   X86::XOR64mi32 },
225    { X86::XOR64ri8,    X86::XOR64mi8 },
226    { X86::XOR64rr,     X86::XOR64mr },
227    { X86::XOR8ri,      X86::XOR8mi },
228    { X86::XOR8rr,      X86::XOR8mr }
229  };
230
231  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
232    unsigned RegOp = OpTbl2Addr[i][0];
233    unsigned MemOp = OpTbl2Addr[i][1];
234    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
235      assert(false && "Duplicated entries?");
236    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
237    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
238                                               std::make_pair(RegOp, AuxInfo))))
239      AmbEntries.push_back(MemOp);
240  }
241
242  // If the third value is 1, then it's folding either a load or a store.
243  static const unsigned OpTbl0[][3] = {
244    { X86::CALL32r,     X86::CALL32m, 1 },
245    { X86::CALL64r,     X86::CALL64m, 1 },
246    { X86::CMP16ri,     X86::CMP16mi, 1 },
247    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
248    { X86::CMP32ri,     X86::CMP32mi, 1 },
249    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
250    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
251    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
252    { X86::CMP8ri,      X86::CMP8mi, 1 },
253    { X86::DIV16r,      X86::DIV16m, 1 },
254    { X86::DIV32r,      X86::DIV32m, 1 },
255    { X86::DIV64r,      X86::DIV64m, 1 },
256    { X86::DIV8r,       X86::DIV8m, 1 },
257    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
258    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
259    { X86::IDIV16r,     X86::IDIV16m, 1 },
260    { X86::IDIV32r,     X86::IDIV32m, 1 },
261    { X86::IDIV64r,     X86::IDIV64m, 1 },
262    { X86::IDIV8r,      X86::IDIV8m, 1 },
263    { X86::IMUL16r,     X86::IMUL16m, 1 },
264    { X86::IMUL32r,     X86::IMUL32m, 1 },
265    { X86::IMUL64r,     X86::IMUL64m, 1 },
266    { X86::IMUL8r,      X86::IMUL8m, 1 },
267    { X86::JMP32r,      X86::JMP32m, 1 },
268    { X86::JMP64r,      X86::JMP64m, 1 },
269    { X86::MOV16ri,     X86::MOV16mi, 0 },
270    { X86::MOV16rr,     X86::MOV16mr, 0 },
271    { X86::MOV32ri,     X86::MOV32mi, 0 },
272    { X86::MOV32rr,     X86::MOV32mr, 0 },
273    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
274    { X86::MOV64rr,     X86::MOV64mr, 0 },
275    { X86::MOV8ri,      X86::MOV8mi, 0 },
276    { X86::MOV8rr,      X86::MOV8mr, 0 },
277    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
278    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
279    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
280    { X86::MOVPQIto64rr,X86::MOVPQIto64mr, 0 },
281    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
282    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
283    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
284    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
285    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
286    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
287    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
288    { X86::MUL16r,      X86::MUL16m, 1 },
289    { X86::MUL32r,      X86::MUL32m, 1 },
290    { X86::MUL64r,      X86::MUL64m, 1 },
291    { X86::MUL8r,       X86::MUL8m, 1 },
292    { X86::SETAEr,      X86::SETAEm, 0 },
293    { X86::SETAr,       X86::SETAm, 0 },
294    { X86::SETBEr,      X86::SETBEm, 0 },
295    { X86::SETBr,       X86::SETBm, 0 },
296    { X86::SETEr,       X86::SETEm, 0 },
297    { X86::SETGEr,      X86::SETGEm, 0 },
298    { X86::SETGr,       X86::SETGm, 0 },
299    { X86::SETLEr,      X86::SETLEm, 0 },
300    { X86::SETLr,       X86::SETLm, 0 },
301    { X86::SETNEr,      X86::SETNEm, 0 },
302    { X86::SETNPr,      X86::SETNPm, 0 },
303    { X86::SETNSr,      X86::SETNSm, 0 },
304    { X86::SETPr,       X86::SETPm, 0 },
305    { X86::SETSr,       X86::SETSm, 0 },
306    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
307    { X86::TEST16ri,    X86::TEST16mi, 1 },
308    { X86::TEST32ri,    X86::TEST32mi, 1 },
309    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
310    { X86::TEST8ri,     X86::TEST8mi, 1 },
311    { X86::XCHG16rr,    X86::XCHG16mr, 0 },
312    { X86::XCHG32rr,    X86::XCHG32mr, 0 },
313    { X86::XCHG64rr,    X86::XCHG64mr, 0 },
314    { X86::XCHG8rr,     X86::XCHG8mr, 0 }
315  };
316
317  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
318    unsigned RegOp = OpTbl0[i][0];
319    unsigned MemOp = OpTbl0[i][1];
320    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
321      assert(false && "Duplicated entries?");
322    unsigned FoldedLoad = OpTbl0[i][2];
323    // Index 0, folded load or store.
324    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
325    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
326                                               std::make_pair(RegOp, AuxInfo))))
327      AmbEntries.push_back(MemOp);
328  }
329
330  static const unsigned OpTbl1[][2] = {
331    { X86::CMP16rr,         X86::CMP16rm },
332    { X86::CMP32rr,         X86::CMP32rm },
333    { X86::CMP64rr,         X86::CMP64rm },
334    { X86::CMP8rr,          X86::CMP8rm },
335    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
336    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
337    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
338    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
339    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
340    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
341    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
342    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
343    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
344    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
345    { X86::FsMOVAPDrr,      X86::MOVSDrm },
346    { X86::FsMOVAPSrr,      X86::MOVSSrm },
347    { X86::IMUL16rri,       X86::IMUL16rmi },
348    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
349    { X86::IMUL32rri,       X86::IMUL32rmi },
350    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
351    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
352    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
353    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
354    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
355    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
356    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
357    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
358    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
359    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
360    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
361    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
362    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
363    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
364    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
365    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
366    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
367    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
368    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
369    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
370    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
371    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
372    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
373    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
374    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
375    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
376    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
377    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
378    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
379    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
380    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
381    { X86::MOV16rr,         X86::MOV16rm },
382    { X86::MOV32rr,         X86::MOV32rm },
383    { X86::MOV64rr,         X86::MOV64rm },
384    { X86::MOV64toPQIrr,    X86::MOV64toPQIrm },
385    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
386    { X86::MOV8rr,          X86::MOV8rm },
387    { X86::MOVAPDrr,        X86::MOVAPDrm },
388    { X86::MOVAPSrr,        X86::MOVAPSrm },
389    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
390    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
391    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
392    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
393    { X86::MOVSDrr,         X86::MOVSDrm },
394    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
395    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
396    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
397    { X86::MOVSSrr,         X86::MOVSSrm },
398    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
399    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
400    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
401    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
402    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
403    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
404    { X86::MOVUPDrr,        X86::MOVUPDrm },
405    { X86::MOVUPSrr,        X86::MOVUPSrm },
406    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
407    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
408    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
409    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
410    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
411    { X86::PSHUFDri,        X86::PSHUFDmi },
412    { X86::PSHUFHWri,       X86::PSHUFHWmi },
413    { X86::PSHUFLWri,       X86::PSHUFLWmi },
414    { X86::PsMOVZX64rr32,   X86::PsMOVZX64rm32 },
415    { X86::RCPPSr,          X86::RCPPSm },
416    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
417    { X86::RSQRTPSr,        X86::RSQRTPSm },
418    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
419    { X86::RSQRTSSr,        X86::RSQRTSSm },
420    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
421    { X86::SQRTPDr,         X86::SQRTPDm },
422    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
423    { X86::SQRTPSr,         X86::SQRTPSm },
424    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
425    { X86::SQRTSDr,         X86::SQRTSDm },
426    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
427    { X86::SQRTSSr,         X86::SQRTSSm },
428    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
429    { X86::TEST16rr,        X86::TEST16rm },
430    { X86::TEST32rr,        X86::TEST32rm },
431    { X86::TEST64rr,        X86::TEST64rm },
432    { X86::TEST8rr,         X86::TEST8rm },
433    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
434    { X86::UCOMISDrr,       X86::UCOMISDrm },
435    { X86::UCOMISSrr,       X86::UCOMISSrm },
436    { X86::XCHG16rr,        X86::XCHG16rm },
437    { X86::XCHG32rr,        X86::XCHG32rm },
438    { X86::XCHG64rr,        X86::XCHG64rm },
439    { X86::XCHG8rr,         X86::XCHG8rm }
440  };
441
442  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
443    unsigned RegOp = OpTbl1[i][0];
444    unsigned MemOp = OpTbl1[i][1];
445    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
446      assert(false && "Duplicated entries?");
447    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
448    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
449                                               std::make_pair(RegOp, AuxInfo))))
450      AmbEntries.push_back(MemOp);
451  }
452
453  static const unsigned OpTbl2[][2] = {
454    { X86::ADC32rr,         X86::ADC32rm },
455    { X86::ADC64rr,         X86::ADC64rm },
456    { X86::ADD16rr,         X86::ADD16rm },
457    { X86::ADD32rr,         X86::ADD32rm },
458    { X86::ADD64rr,         X86::ADD64rm },
459    { X86::ADD8rr,          X86::ADD8rm },
460    { X86::ADDPDrr,         X86::ADDPDrm },
461    { X86::ADDPSrr,         X86::ADDPSrm },
462    { X86::ADDSDrr,         X86::ADDSDrm },
463    { X86::ADDSSrr,         X86::ADDSSrm },
464    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
465    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
466    { X86::AND16rr,         X86::AND16rm },
467    { X86::AND32rr,         X86::AND32rm },
468    { X86::AND64rr,         X86::AND64rm },
469    { X86::AND8rr,          X86::AND8rm },
470    { X86::ANDNPDrr,        X86::ANDNPDrm },
471    { X86::ANDNPSrr,        X86::ANDNPSrm },
472    { X86::ANDPDrr,         X86::ANDPDrm },
473    { X86::ANDPSrr,         X86::ANDPSrm },
474    { X86::CMOVA16rr,       X86::CMOVA16rm },
475    { X86::CMOVA32rr,       X86::CMOVA32rm },
476    { X86::CMOVA64rr,       X86::CMOVA64rm },
477    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
478    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
479    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
480    { X86::CMOVB16rr,       X86::CMOVB16rm },
481    { X86::CMOVB32rr,       X86::CMOVB32rm },
482    { X86::CMOVB64rr,       X86::CMOVB64rm },
483    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
484    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
485    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
486    { X86::CMOVE16rr,       X86::CMOVE16rm },
487    { X86::CMOVE32rr,       X86::CMOVE32rm },
488    { X86::CMOVE64rr,       X86::CMOVE64rm },
489    { X86::CMOVG16rr,       X86::CMOVG16rm },
490    { X86::CMOVG32rr,       X86::CMOVG32rm },
491    { X86::CMOVG64rr,       X86::CMOVG64rm },
492    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
493    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
494    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
495    { X86::CMOVL16rr,       X86::CMOVL16rm },
496    { X86::CMOVL32rr,       X86::CMOVL32rm },
497    { X86::CMOVL64rr,       X86::CMOVL64rm },
498    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
499    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
500    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
501    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
502    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
503    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
504    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
505    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
506    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
507    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
508    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
509    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
510    { X86::CMOVP16rr,       X86::CMOVP16rm },
511    { X86::CMOVP32rr,       X86::CMOVP32rm },
512    { X86::CMOVP64rr,       X86::CMOVP64rm },
513    { X86::CMOVS16rr,       X86::CMOVS16rm },
514    { X86::CMOVS32rr,       X86::CMOVS32rm },
515    { X86::CMOVS64rr,       X86::CMOVS64rm },
516    { X86::CMPPDrri,        X86::CMPPDrmi },
517    { X86::CMPPSrri,        X86::CMPPSrmi },
518    { X86::CMPSDrr,         X86::CMPSDrm },
519    { X86::CMPSSrr,         X86::CMPSSrm },
520    { X86::DIVPDrr,         X86::DIVPDrm },
521    { X86::DIVPSrr,         X86::DIVPSrm },
522    { X86::DIVSDrr,         X86::DIVSDrm },
523    { X86::DIVSSrr,         X86::DIVSSrm },
524    { X86::HADDPDrr,        X86::HADDPDrm },
525    { X86::HADDPSrr,        X86::HADDPSrm },
526    { X86::HSUBPDrr,        X86::HSUBPDrm },
527    { X86::HSUBPSrr,        X86::HSUBPSrm },
528    { X86::IMUL16rr,        X86::IMUL16rm },
529    { X86::IMUL32rr,        X86::IMUL32rm },
530    { X86::IMUL64rr,        X86::IMUL64rm },
531    { X86::MAXPDrr,         X86::MAXPDrm },
532    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
533    { X86::MAXPSrr,         X86::MAXPSrm },
534    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
535    { X86::MAXSDrr,         X86::MAXSDrm },
536    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
537    { X86::MAXSSrr,         X86::MAXSSrm },
538    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
539    { X86::MINPDrr,         X86::MINPDrm },
540    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
541    { X86::MINPSrr,         X86::MINPSrm },
542    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
543    { X86::MINSDrr,         X86::MINSDrm },
544    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
545    { X86::MINSSrr,         X86::MINSSrm },
546    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
547    { X86::MULPDrr,         X86::MULPDrm },
548    { X86::MULPSrr,         X86::MULPSrm },
549    { X86::MULSDrr,         X86::MULSDrm },
550    { X86::MULSSrr,         X86::MULSSrm },
551    { X86::OR16rr,          X86::OR16rm },
552    { X86::OR32rr,          X86::OR32rm },
553    { X86::OR64rr,          X86::OR64rm },
554    { X86::OR8rr,           X86::OR8rm },
555    { X86::ORPDrr,          X86::ORPDrm },
556    { X86::ORPSrr,          X86::ORPSrm },
557    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
558    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
559    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
560    { X86::PADDBrr,         X86::PADDBrm },
561    { X86::PADDDrr,         X86::PADDDrm },
562    { X86::PADDQrr,         X86::PADDQrm },
563    { X86::PADDSBrr,        X86::PADDSBrm },
564    { X86::PADDSWrr,        X86::PADDSWrm },
565    { X86::PADDWrr,         X86::PADDWrm },
566    { X86::PANDNrr,         X86::PANDNrm },
567    { X86::PANDrr,          X86::PANDrm },
568    { X86::PAVGBrr,         X86::PAVGBrm },
569    { X86::PAVGWrr,         X86::PAVGWrm },
570    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
571    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
572    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
573    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
574    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
575    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
576    { X86::PINSRWrri,       X86::PINSRWrmi },
577    { X86::PMADDWDrr,       X86::PMADDWDrm },
578    { X86::PMAXSWrr,        X86::PMAXSWrm },
579    { X86::PMAXUBrr,        X86::PMAXUBrm },
580    { X86::PMINSWrr,        X86::PMINSWrm },
581    { X86::PMINUBrr,        X86::PMINUBrm },
582    { X86::PMULHUWrr,       X86::PMULHUWrm },
583    { X86::PMULHWrr,        X86::PMULHWrm },
584    { X86::PMULLWrr,        X86::PMULLWrm },
585    { X86::PMULUDQrr,       X86::PMULUDQrm },
586    { X86::PORrr,           X86::PORrm },
587    { X86::PSADBWrr,        X86::PSADBWrm },
588    { X86::PSLLDrr,         X86::PSLLDrm },
589    { X86::PSLLQrr,         X86::PSLLQrm },
590    { X86::PSLLWrr,         X86::PSLLWrm },
591    { X86::PSRADrr,         X86::PSRADrm },
592    { X86::PSRAWrr,         X86::PSRAWrm },
593    { X86::PSRLDrr,         X86::PSRLDrm },
594    { X86::PSRLQrr,         X86::PSRLQrm },
595    { X86::PSRLWrr,         X86::PSRLWrm },
596    { X86::PSUBBrr,         X86::PSUBBrm },
597    { X86::PSUBDrr,         X86::PSUBDrm },
598    { X86::PSUBSBrr,        X86::PSUBSBrm },
599    { X86::PSUBSWrr,        X86::PSUBSWrm },
600    { X86::PSUBWrr,         X86::PSUBWrm },
601    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
602    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
603    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
604    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
605    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
606    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
607    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
608    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
609    { X86::PXORrr,          X86::PXORrm },
610    { X86::SBB32rr,         X86::SBB32rm },
611    { X86::SBB64rr,         X86::SBB64rm },
612    { X86::SHUFPDrri,       X86::SHUFPDrmi },
613    { X86::SHUFPSrri,       X86::SHUFPSrmi },
614    { X86::SUB16rr,         X86::SUB16rm },
615    { X86::SUB32rr,         X86::SUB32rm },
616    { X86::SUB64rr,         X86::SUB64rm },
617    { X86::SUB8rr,          X86::SUB8rm },
618    { X86::SUBPDrr,         X86::SUBPDrm },
619    { X86::SUBPSrr,         X86::SUBPSrm },
620    { X86::SUBSDrr,         X86::SUBSDrm },
621    { X86::SUBSSrr,         X86::SUBSSrm },
622    // FIXME: TEST*rr -> swapped operand of TEST*mr.
623    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
624    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
625    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
626    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
627    { X86::XOR16rr,         X86::XOR16rm },
628    { X86::XOR32rr,         X86::XOR32rm },
629    { X86::XOR64rr,         X86::XOR64rm },
630    { X86::XOR8rr,          X86::XOR8rm },
631    { X86::XORPDrr,         X86::XORPDrm },
632    { X86::XORPSrr,         X86::XORPSrm }
633  };
634
635  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
636    unsigned RegOp = OpTbl2[i][0];
637    unsigned MemOp = OpTbl2[i][1];
638    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
639      assert(false && "Duplicated entries?");
640    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
641    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
642                                               std::make_pair(RegOp, AuxInfo))))
643      AmbEntries.push_back(MemOp);
644  }
645
646  // Remove ambiguous entries.
647  for (unsigned i = 0, e = AmbEntries.size(); i != e; ++i)
648    MemOp2RegOpTable.erase((unsigned*)AmbEntries[i]);
649}
650
651// getX86RegNum - This function maps LLVM register identifiers to their X86
652// specific numbering, which is used in various places encoding instructions.
653//
654unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
655  switch(RegNo) {
656  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
657  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
658  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
659  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
660  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
661    return N86::ESP;
662  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
663    return N86::EBP;
664  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
665    return N86::ESI;
666  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
667    return N86::EDI;
668
669  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
670    return N86::EAX;
671  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
672    return N86::ECX;
673  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
674    return N86::EDX;
675  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
676    return N86::EBX;
677  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
678    return N86::ESP;
679  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
680    return N86::EBP;
681  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
682    return N86::ESI;
683  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
684    return N86::EDI;
685
686  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
687  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
688    return RegNo-X86::ST0;
689
690  case X86::XMM0:  case X86::XMM1:  case X86::XMM2:  case X86::XMM3:
691  case X86::XMM4:  case X86::XMM5:  case X86::XMM6:  case X86::XMM7:
692    return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM0);
693  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
694  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
695    return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM8);
696
697  default:
698    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
699    assert(0 && "Register allocator hasn't allocated reg correctly yet!");
700    return 0;
701  }
702}
703
704bool X86RegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
705                                                MachineBasicBlock::iterator MI,
706                                const std::vector<CalleeSavedInfo> &CSI) const {
707  if (CSI.empty())
708    return false;
709
710  MachineFunction &MF = *MBB.getParent();
711  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
712  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
713  unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
714  for (unsigned i = CSI.size(); i != 0; --i) {
715    unsigned Reg = CSI[i-1].getReg();
716    // Add the callee-saved register as live-in. It's killed at the spill.
717    MBB.addLiveIn(Reg);
718    BuildMI(MBB, MI, TII.get(Opc)).addReg(Reg);
719  }
720  return true;
721}
722
723bool X86RegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
724                                                 MachineBasicBlock::iterator MI,
725                                const std::vector<CalleeSavedInfo> &CSI) const {
726  if (CSI.empty())
727    return false;
728
729  unsigned Opc = Is64Bit ? X86::POP64r : X86::POP32r;
730  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
731    unsigned Reg = CSI[i].getReg();
732    BuildMI(MBB, MI, TII.get(Opc), Reg);
733  }
734  return true;
735}
736
737static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
738                                                     MachineOperand &MO) {
739  if (MO.isRegister())
740    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit());
741  else if (MO.isImmediate())
742    MIB = MIB.addImm(MO.getImm());
743  else if (MO.isFrameIndex())
744    MIB = MIB.addFrameIndex(MO.getFrameIndex());
745  else if (MO.isGlobalAddress())
746    MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
747  else if (MO.isConstantPoolIndex())
748    MIB = MIB.addConstantPoolIndex(MO.getConstantPoolIndex(), MO.getOffset());
749  else if (MO.isJumpTableIndex())
750    MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex());
751  else if (MO.isExternalSymbol())
752    MIB = MIB.addExternalSymbol(MO.getSymbolName());
753  else
754    assert(0 && "Unknown operand for X86InstrAddOperand!");
755
756  return MIB;
757}
758
759static unsigned getStoreRegOpcode(const TargetRegisterClass *RC) {
760  unsigned Opc = 0;
761  if (RC == &X86::GR64RegClass) {
762    Opc = X86::MOV64mr;
763  } else if (RC == &X86::GR32RegClass) {
764    Opc = X86::MOV32mr;
765  } else if (RC == &X86::GR16RegClass) {
766    Opc = X86::MOV16mr;
767  } else if (RC == &X86::GR8RegClass) {
768    Opc = X86::MOV8mr;
769  } else if (RC == &X86::GR32_RegClass) {
770    Opc = X86::MOV32_mr;
771  } else if (RC == &X86::GR16_RegClass) {
772    Opc = X86::MOV16_mr;
773  } else if (RC == &X86::RFP80RegClass) {
774    Opc = X86::ST_FpP80m;   // pops
775  } else if (RC == &X86::RFP64RegClass) {
776    Opc = X86::ST_Fp64m;
777  } else if (RC == &X86::RFP32RegClass) {
778    Opc = X86::ST_Fp32m;
779  } else if (RC == &X86::FR32RegClass) {
780    Opc = X86::MOVSSmr;
781  } else if (RC == &X86::FR64RegClass) {
782    Opc = X86::MOVSDmr;
783  } else if (RC == &X86::VR128RegClass) {
784    Opc = X86::MOVAPSmr;
785  } else if (RC == &X86::VR64RegClass) {
786    Opc = X86::MMX_MOVQ64mr;
787  } else {
788    assert(0 && "Unknown regclass");
789    abort();
790  }
791
792  return Opc;
793}
794
795void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
796                                          MachineBasicBlock::iterator MI,
797                                          unsigned SrcReg, int FrameIdx,
798                                          const TargetRegisterClass *RC) const {
799  unsigned Opc = getStoreRegOpcode(RC);
800  addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx)
801    .addReg(SrcReg, false, false, true);
802}
803
804void X86RegisterInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
805                                     SmallVector<MachineOperand,4> Addr,
806                                     const TargetRegisterClass *RC,
807                                   SmallVector<MachineInstr*,4> &NewMIs) const {
808  unsigned Opc = getStoreRegOpcode(RC);
809  MachineInstrBuilder MIB = BuildMI(TII.get(Opc));
810  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
811    MIB = X86InstrAddOperand(MIB, Addr[i]);
812  MIB.addReg(SrcReg, false, false, true);
813  NewMIs.push_back(MIB);
814}
815
816static unsigned getLoadRegOpcode(const TargetRegisterClass *RC) {
817  unsigned Opc = 0;
818  if (RC == &X86::GR64RegClass) {
819    Opc = X86::MOV64rm;
820  } else if (RC == &X86::GR32RegClass) {
821    Opc = X86::MOV32rm;
822  } else if (RC == &X86::GR16RegClass) {
823    Opc = X86::MOV16rm;
824  } else if (RC == &X86::GR8RegClass) {
825    Opc = X86::MOV8rm;
826  } else if (RC == &X86::GR32_RegClass) {
827    Opc = X86::MOV32_rm;
828  } else if (RC == &X86::GR16_RegClass) {
829    Opc = X86::MOV16_rm;
830  } else if (RC == &X86::RFP80RegClass) {
831    Opc = X86::LD_Fp80m;
832  } else if (RC == &X86::RFP64RegClass) {
833    Opc = X86::LD_Fp64m;
834  } else if (RC == &X86::RFP32RegClass) {
835    Opc = X86::LD_Fp32m;
836  } else if (RC == &X86::FR32RegClass) {
837    Opc = X86::MOVSSrm;
838  } else if (RC == &X86::FR64RegClass) {
839    Opc = X86::MOVSDrm;
840  } else if (RC == &X86::VR128RegClass) {
841    Opc = X86::MOVAPSrm;
842  } else if (RC == &X86::VR64RegClass) {
843    Opc = X86::MMX_MOVQ64rm;
844  } else {
845    assert(0 && "Unknown regclass");
846    abort();
847  }
848
849  return Opc;
850}
851
852void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
853                                           MachineBasicBlock::iterator MI,
854                                           unsigned DestReg, int FrameIdx,
855                                           const TargetRegisterClass *RC) const{
856  unsigned Opc = getLoadRegOpcode(RC);
857  addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx);
858}
859
860void X86RegisterInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
861                                      SmallVector<MachineOperand,4> Addr,
862                                      const TargetRegisterClass *RC,
863                                      SmallVector<MachineInstr*,4> &NewMIs) const {
864  unsigned Opc = getLoadRegOpcode(RC);
865  MachineInstrBuilder MIB = BuildMI(TII.get(Opc), DestReg);
866  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
867    MIB = X86InstrAddOperand(MIB, Addr[i]);
868  NewMIs.push_back(MIB);
869}
870
871void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
872                                   MachineBasicBlock::iterator MI,
873                                   unsigned DestReg, unsigned SrcReg,
874                                   const TargetRegisterClass *DestRC,
875                                   const TargetRegisterClass *SrcRC) const {
876  if (DestRC != SrcRC) {
877    // Moving EFLAGS to / from another register requires a push and a pop.
878    if (SrcRC == &X86::CCRRegClass) {
879      assert(SrcReg == X86::EFLAGS);
880      if (DestRC == &X86::GR64RegClass) {
881        BuildMI(MBB, MI, TII.get(X86::PUSHFQ));
882        BuildMI(MBB, MI, TII.get(X86::POP64r), DestReg);
883        return;
884      } else if (DestRC == &X86::GR32RegClass) {
885        BuildMI(MBB, MI, TII.get(X86::PUSHFD));
886        BuildMI(MBB, MI, TII.get(X86::POP32r), DestReg);
887        return;
888      }
889    } else if (DestRC == &X86::CCRRegClass) {
890      assert(DestReg == X86::EFLAGS);
891      if (SrcRC == &X86::GR64RegClass) {
892        BuildMI(MBB, MI, TII.get(X86::PUSH64r)).addReg(SrcReg);
893        BuildMI(MBB, MI, TII.get(X86::POPFQ));
894        return;
895      } else if (SrcRC == &X86::GR32RegClass) {
896        BuildMI(MBB, MI, TII.get(X86::PUSH32r)).addReg(SrcReg);
897        BuildMI(MBB, MI, TII.get(X86::POPFD));
898        return;
899      }
900    }
901    cerr << "Not yet supported!";
902    abort();
903  }
904
905  unsigned Opc;
906  if (DestRC == &X86::GR64RegClass) {
907    Opc = X86::MOV64rr;
908  } else if (DestRC == &X86::GR32RegClass) {
909    Opc = X86::MOV32rr;
910  } else if (DestRC == &X86::GR16RegClass) {
911    Opc = X86::MOV16rr;
912  } else if (DestRC == &X86::GR8RegClass) {
913    Opc = X86::MOV8rr;
914  } else if (DestRC == &X86::GR32_RegClass) {
915    Opc = X86::MOV32_rr;
916  } else if (DestRC == &X86::GR16_RegClass) {
917    Opc = X86::MOV16_rr;
918  } else if (DestRC == &X86::RFP32RegClass) {
919    Opc = X86::MOV_Fp3232;
920  } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
921    Opc = X86::MOV_Fp6464;
922  } else if (DestRC == &X86::RFP80RegClass) {
923    Opc = X86::MOV_Fp8080;
924  } else if (DestRC == &X86::FR32RegClass) {
925    Opc = X86::FsMOVAPSrr;
926  } else if (DestRC == &X86::FR64RegClass) {
927    Opc = X86::FsMOVAPDrr;
928  } else if (DestRC == &X86::VR128RegClass) {
929    Opc = X86::MOVAPSrr;
930  } else if (DestRC == &X86::VR64RegClass) {
931    Opc = X86::MMX_MOVQ64rr;
932  } else {
933    assert(0 && "Unknown regclass");
934    abort();
935  }
936  BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg);
937}
938
939const TargetRegisterClass *
940X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
941  if (RC == &X86::CCRRegClass)
942    if (Is64Bit)
943      return &X86::GR64RegClass;
944    else
945      return &X86::GR32RegClass;
946  return NULL;
947}
948
949void X86RegisterInfo::reMaterialize(MachineBasicBlock &MBB,
950                                    MachineBasicBlock::iterator I,
951                                    unsigned DestReg,
952                                    const MachineInstr *Orig) const {
953  // MOV32r0 etc. are implemented with xor which clobbers condition code.
954  // Re-materialize them as movri instructions to avoid side effects.
955  switch (Orig->getOpcode()) {
956  case X86::MOV8r0:
957    BuildMI(MBB, I, TII.get(X86::MOV8ri), DestReg).addImm(0);
958    break;
959  case X86::MOV16r0:
960    BuildMI(MBB, I, TII.get(X86::MOV16ri), DestReg).addImm(0);
961    break;
962  case X86::MOV32r0:
963    BuildMI(MBB, I, TII.get(X86::MOV32ri), DestReg).addImm(0);
964    break;
965  case X86::MOV64r0:
966    BuildMI(MBB, I, TII.get(X86::MOV64ri32), DestReg).addImm(0);
967    break;
968  default: {
969    MachineInstr *MI = Orig->clone();
970    MI->getOperand(0).setReg(DestReg);
971    MBB.insert(I, MI);
972    break;
973  }
974  }
975}
976
977static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
978                                     SmallVector<MachineOperand,4> &MOs,
979                                 MachineInstr *MI, const TargetInstrInfo &TII) {
980  unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2;
981
982  // Create the base instruction with the memory operand as the first part.
983  MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
984  unsigned NumAddrOps = MOs.size();
985  for (unsigned i = 0; i != NumAddrOps; ++i)
986    MIB = X86InstrAddOperand(MIB, MOs[i]);
987  if (NumAddrOps < 4)  // FrameIndex only
988    MIB.addImm(1).addReg(0).addImm(0);
989
990  // Loop over the rest of the ri operands, converting them over.
991  for (unsigned i = 0; i != NumOps; ++i) {
992    MachineOperand &MO = MI->getOperand(i+2);
993    MIB = X86InstrAddOperand(MIB, MO);
994  }
995  return MIB;
996}
997
998static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
999                              SmallVector<MachineOperand,4> &MOs,
1000                              MachineInstr *MI, const TargetInstrInfo &TII) {
1001  MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1002
1003  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1004    MachineOperand &MO = MI->getOperand(i);
1005    if (i == OpNo) {
1006      assert(MO.isRegister() && "Expected to fold into reg operand!");
1007      unsigned NumAddrOps = MOs.size();
1008      for (unsigned i = 0; i != NumAddrOps; ++i)
1009        MIB = X86InstrAddOperand(MIB, MOs[i]);
1010      if (NumAddrOps < 4)  // FrameIndex only
1011        MIB.addImm(1).addReg(0).addImm(0);
1012    } else {
1013      MIB = X86InstrAddOperand(MIB, MO);
1014    }
1015  }
1016  return MIB;
1017}
1018
1019static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1020                                SmallVector<MachineOperand,4> &MOs,
1021                                MachineInstr *MI) {
1022  MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1023
1024  unsigned NumAddrOps = MOs.size();
1025  for (unsigned i = 0; i != NumAddrOps; ++i)
1026    MIB = X86InstrAddOperand(MIB, MOs[i]);
1027  if (NumAddrOps < 4)  // FrameIndex only
1028    MIB.addImm(1).addReg(0).addImm(0);
1029  return MIB.addImm(0);
1030}
1031
1032MachineInstr*
1033X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
1034                                   SmallVector<MachineOperand,4> &MOs) const {
1035  // Table (and size) to search
1036  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1037  bool isTwoAddrFold = false;
1038  unsigned NumOps = TII.getNumOperands(MI->getOpcode());
1039  bool isTwoAddr = NumOps > 1 &&
1040    MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1;
1041
1042  MachineInstr *NewMI = NULL;
1043  // Folding a memory location into the two-address part of a two-address
1044  // instruction is different than folding it other places.  It requires
1045  // replacing the *two* registers with the memory location.
1046  if (isTwoAddr && NumOps >= 2 && i < 2 &&
1047      MI->getOperand(0).isRegister() &&
1048      MI->getOperand(1).isRegister() &&
1049      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1050    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1051    isTwoAddrFold = true;
1052  } else if (i == 0) { // If operand 0
1053    if (MI->getOpcode() == X86::MOV16r0)
1054      NewMI = MakeM0Inst(TII, X86::MOV16mi, MOs, MI);
1055    else if (MI->getOpcode() == X86::MOV32r0)
1056      NewMI = MakeM0Inst(TII, X86::MOV32mi, MOs, MI);
1057    else if (MI->getOpcode() == X86::MOV64r0)
1058      NewMI = MakeM0Inst(TII, X86::MOV64mi32, MOs, MI);
1059    else if (MI->getOpcode() == X86::MOV8r0)
1060      NewMI = MakeM0Inst(TII, X86::MOV8mi, MOs, MI);
1061    if (NewMI) {
1062      NewMI->copyKillDeadInfo(MI);
1063      return NewMI;
1064    }
1065
1066    OpcodeTablePtr = &RegOp2MemOpTable0;
1067  } else if (i == 1) {
1068    OpcodeTablePtr = &RegOp2MemOpTable1;
1069  } else if (i == 2) {
1070    OpcodeTablePtr = &RegOp2MemOpTable2;
1071  }
1072
1073  // If table selected...
1074  if (OpcodeTablePtr) {
1075    // Find the Opcode to fuse
1076    DenseMap<unsigned*, unsigned>::iterator I =
1077      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1078    if (I != OpcodeTablePtr->end()) {
1079      if (isTwoAddrFold)
1080        NewMI = FuseTwoAddrInst(I->second, MOs, MI, TII);
1081      else
1082        NewMI = FuseInst(I->second, i, MOs, MI, TII);
1083      NewMI->copyKillDeadInfo(MI);
1084      return NewMI;
1085    }
1086  }
1087
1088  // No fusion
1089  if (PrintFailedFusing)
1090    cerr << "We failed to fuse ("
1091         << ((i == 1) ? "r" : "s") << "): " << *MI;
1092  return NULL;
1093}
1094
1095
1096MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum,
1097                                                 int FrameIndex) const {
1098  // Check switch flag
1099  if (NoFusing) return NULL;
1100  SmallVector<MachineOperand,4> MOs;
1101  MOs.push_back(MachineOperand::CreateFrameIndex(FrameIndex));
1102  return foldMemoryOperand(MI, OpNum, MOs);
1103}
1104
1105MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum,
1106                                                 MachineInstr *LoadMI) const {
1107  // Check switch flag
1108  if (NoFusing) return NULL;
1109  SmallVector<MachineOperand,4> MOs;
1110  unsigned NumOps = TII.getNumOperands(LoadMI->getOpcode());
1111  for (unsigned i = NumOps - 4; i != NumOps; ++i)
1112    MOs.push_back(LoadMI->getOperand(i));
1113  return foldMemoryOperand(MI, OpNum, MOs);
1114}
1115
1116bool X86RegisterInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
1117                                          SSARegMap *RegMap,
1118                                  SmallVector<MachineInstr*, 4> &NewMIs) const {
1119  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1120    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
1121  if (I == MemOp2RegOpTable.end())
1122    return false;
1123  unsigned Opc = I->second.first;
1124  unsigned Index = I->second.second & 0xf;
1125  bool HasLoad = I->second.second & (1 << 4);
1126  bool HasStore = I->second.second & (1 << 5);
1127  const TargetInstrDescriptor &TID = TII.get(Opc);
1128  const TargetOperandInfo &TOI = TID.OpInfo[Index];
1129  const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1130    ? TII.getPointerRegClass() : getRegClass(TOI.RegClass);
1131  SmallVector<MachineOperand,4> AddrOps;
1132  SmallVector<MachineOperand,2> BeforeOps;
1133  SmallVector<MachineOperand,2> AfterOps;
1134  SmallVector<MachineOperand,4> ImpOps;
1135  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1136    MachineOperand &Op = MI->getOperand(i);
1137    if (i >= Index && i < Index+4)
1138      AddrOps.push_back(Op);
1139    else if (Op.isRegister() && Op.isImplicit())
1140      ImpOps.push_back(Op);
1141    else if (i < Index)
1142      BeforeOps.push_back(Op);
1143    else if (i > Index)
1144      AfterOps.push_back(Op);
1145  }
1146
1147  // Emit the load instruction.
1148  unsigned LoadReg = 0;
1149  if (HasLoad) {
1150    LoadReg = RegMap->createVirtualRegister(RC);
1151    loadRegFromAddr(MF, LoadReg, AddrOps, RC, NewMIs);
1152    if (HasStore) {
1153      // Address operands cannot be marked isKill.
1154      for (unsigned i = 1; i != 5; ++i) {
1155        MachineOperand &MO = NewMIs[0]->getOperand(i);
1156        if (MO.isRegister())
1157          MO.unsetIsKill();
1158      }
1159    }
1160  }
1161
1162  // Emit the data processing instruction.
1163  MachineInstrBuilder MIB = BuildMI(TII.get(Opc));
1164  unsigned StoreReg = 0;
1165  const TargetRegisterClass *DstRC = 0;
1166  if (HasStore) {
1167    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
1168    DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1169      ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass);
1170    StoreReg = RegMap->createVirtualRegister(RC);
1171    MIB.addReg(StoreReg, true);
1172  }
1173  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
1174    MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
1175  if (LoadReg)
1176    MIB.addReg(LoadReg);
1177  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
1178    MIB = X86InstrAddOperand(MIB, AfterOps[i]);
1179  NewMIs.push_back(MIB);
1180
1181  // Emit the store instruction.
1182  if (HasStore)
1183    storeRegToAddr(MF, StoreReg, AddrOps, DstRC, NewMIs);
1184
1185  return true;
1186}
1187
1188
1189bool
1190X86RegisterInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1191                                     SmallVector<SDNode*, 4> &NewNodes) const {
1192  if (!N->isTargetOpcode())
1193    return false;
1194
1195  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1196    MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
1197  if (I == MemOp2RegOpTable.end())
1198    return false;
1199  unsigned Opc = I->second.first;
1200  unsigned Index = I->second.second & 0xf;
1201  bool HasLoad = I->second.second & (1 << 4);
1202  bool HasStore = I->second.second & (1 << 5);
1203  const TargetInstrDescriptor &TID = TII.get(Opc);
1204  const TargetOperandInfo &TOI = TID.OpInfo[Index];
1205  const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1206    ? TII.getPointerRegClass() : getRegClass(TOI.RegClass);
1207  std::vector<SDOperand> AddrOps;
1208  std::vector<SDOperand> BeforeOps;
1209  std::vector<SDOperand> AfterOps;
1210  unsigned NumOps = N->getNumOperands();
1211  for (unsigned i = 0; i != NumOps-1; ++i) {
1212    SDOperand Op = N->getOperand(i);
1213    if (i >= Index && i < Index+4)
1214      AddrOps.push_back(Op);
1215    else if (i < Index)
1216      BeforeOps.push_back(Op);
1217    else if (i > Index)
1218      AfterOps.push_back(Op);
1219  }
1220  SDOperand Chain = N->getOperand(NumOps-1);
1221  AddrOps.push_back(Chain);
1222
1223  // Emit the load instruction.
1224  SDNode *Load = 0;
1225  if (HasLoad) {
1226    MVT::ValueType VT = *RC->vt_begin();
1227    Load = DAG.getTargetNode(getLoadRegOpcode(RC), VT, MVT::Other,
1228                             &AddrOps[0], AddrOps.size());
1229    NewNodes.push_back(Load);
1230  }
1231
1232  // Emit the data processing instruction.
1233  std::vector<MVT::ValueType> VTs;
1234  const TargetRegisterClass *DstRC = 0;
1235  if (TID.numDefs > 0) {
1236    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
1237    DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1238      ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass);
1239    VTs.push_back(*DstRC->vt_begin());
1240  }
1241  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1242    MVT::ValueType VT = N->getValueType(i);
1243    if (VT != MVT::Other && i >= TID.numDefs)
1244      VTs.push_back(VT);
1245  }
1246  if (Load)
1247    BeforeOps.push_back(SDOperand(Load, 0));
1248  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
1249  SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
1250  NewNodes.push_back(NewNode);
1251
1252  // Emit the store instruction.
1253  if (HasStore) {
1254    AddrOps.pop_back();
1255    AddrOps.push_back(SDOperand(NewNode, 0));
1256    AddrOps.push_back(Chain);
1257    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC),
1258                                      MVT::Other, &AddrOps[0], AddrOps.size());
1259    NewNodes.push_back(Store);
1260  }
1261
1262  return true;
1263}
1264
1265
1266const unsigned *
1267X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
1268  static const unsigned CalleeSavedRegs32Bit[] = {
1269    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
1270  };
1271
1272  static const unsigned CalleeSavedRegs32EHRet[] = {
1273    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
1274  };
1275
1276  static const unsigned CalleeSavedRegs64Bit[] = {
1277    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
1278  };
1279
1280  if (Is64Bit)
1281    return CalleeSavedRegs64Bit;
1282  else {
1283    if (MF) {
1284        MachineFrameInfo *MFI = MF->getFrameInfo();
1285        MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1286        if (MMI && MMI->callsEHReturn())
1287          return CalleeSavedRegs32EHRet;
1288    }
1289    return CalleeSavedRegs32Bit;
1290  }
1291}
1292
1293const TargetRegisterClass* const*
1294X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
1295  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
1296    &X86::GR32RegClass, &X86::GR32RegClass,
1297    &X86::GR32RegClass, &X86::GR32RegClass,  0
1298  };
1299  static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
1300    &X86::GR32RegClass, &X86::GR32RegClass,
1301    &X86::GR32RegClass, &X86::GR32RegClass,
1302    &X86::GR32RegClass, &X86::GR32RegClass,  0
1303  };
1304  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
1305    &X86::GR64RegClass, &X86::GR64RegClass,
1306    &X86::GR64RegClass, &X86::GR64RegClass,
1307    &X86::GR64RegClass, &X86::GR64RegClass, 0
1308  };
1309
1310  if (Is64Bit)
1311    return CalleeSavedRegClasses64Bit;
1312  else {
1313    if (MF) {
1314        MachineFrameInfo *MFI = MF->getFrameInfo();
1315        MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1316        if (MMI && MMI->callsEHReturn())
1317          return CalleeSavedRegClasses32EHRet;
1318    }
1319    return CalleeSavedRegClasses32Bit;
1320  }
1321
1322}
1323
1324BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
1325  BitVector Reserved(getNumRegs());
1326  Reserved.set(X86::RSP);
1327  Reserved.set(X86::ESP);
1328  Reserved.set(X86::SP);
1329  Reserved.set(X86::SPL);
1330  if (hasFP(MF)) {
1331    Reserved.set(X86::RBP);
1332    Reserved.set(X86::EBP);
1333    Reserved.set(X86::BP);
1334    Reserved.set(X86::BPL);
1335  }
1336  return Reserved;
1337}
1338
1339//===----------------------------------------------------------------------===//
1340// Stack Frame Processing methods
1341//===----------------------------------------------------------------------===//
1342
1343// hasFP - Return true if the specified function should have a dedicated frame
1344// pointer register.  This is true if the function has variable sized allocas or
1345// if frame pointer elimination is disabled.
1346//
1347bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
1348  MachineFrameInfo *MFI = MF.getFrameInfo();
1349  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1350
1351  return (NoFramePointerElim ||
1352          MFI->hasVarSizedObjects() ||
1353          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
1354          (MMI && MMI->callsUnwindInit()));
1355}
1356
1357bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
1358  return !MF.getFrameInfo()->hasVarSizedObjects();
1359}
1360
1361void X86RegisterInfo::
1362eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
1363                              MachineBasicBlock::iterator I) const {
1364  if (!hasReservedCallFrame(MF)) {
1365    // If the stack pointer can be changed after prologue, turn the
1366    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
1367    // adjcallstackdown instruction into 'add ESP, <amt>'
1368    // TODO: consider using push / pop instead of sub + store / add
1369    MachineInstr *Old = I;
1370    uint64_t Amount = Old->getOperand(0).getImm();
1371    if (Amount != 0) {
1372      // We need to keep the stack aligned properly.  To do this, we round the
1373      // amount of space needed for the outgoing arguments up to the next
1374      // alignment boundary.
1375      unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1376      Amount = (Amount+Align-1)/Align*Align;
1377
1378      MachineInstr *New = 0;
1379      if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
1380        New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr)
1381          .addReg(StackPtr).addImm(Amount);
1382      } else {
1383        assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
1384        // factor out the amount the callee already popped.
1385        uint64_t CalleeAmt = Old->getOperand(1).getImm();
1386        Amount -= CalleeAmt;
1387        if (Amount) {
1388          unsigned Opc = (Amount < 128) ?
1389            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
1390            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
1391          New = BuildMI(TII.get(Opc),  StackPtr)
1392                        .addReg(StackPtr).addImm(Amount);
1393        }
1394      }
1395
1396      // Replace the pseudo instruction with a new instruction...
1397      if (New) MBB.insert(I, New);
1398    }
1399  } else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
1400    // If we are performing frame pointer elimination and if the callee pops
1401    // something off the stack pointer, add it back.  We do this until we have
1402    // more advanced stack pointer tracking ability.
1403    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
1404      unsigned Opc = (CalleeAmt < 128) ?
1405        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
1406        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
1407      MachineInstr *New =
1408        BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt);
1409      MBB.insert(I, New);
1410    }
1411  }
1412
1413  MBB.erase(I);
1414}
1415
1416void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1417                                          int SPAdj, RegScavenger *RS) const{
1418  assert(SPAdj == 0 && "Unexpected");
1419
1420  unsigned i = 0;
1421  MachineInstr &MI = *II;
1422  MachineFunction &MF = *MI.getParent()->getParent();
1423  while (!MI.getOperand(i).isFrameIndex()) {
1424    ++i;
1425    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
1426  }
1427
1428  int FrameIndex = MI.getOperand(i).getFrameIndex();
1429  // This must be part of a four operand memory reference.  Replace the
1430  // FrameIndex with base register with EBP.  Add an offset to the offset.
1431  MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false);
1432
1433  // Now add the frame object offset to the offset from EBP.
1434  int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
1435                   MI.getOperand(i+3).getImm()+SlotSize;
1436
1437  if (!hasFP(MF))
1438    Offset += MF.getFrameInfo()->getStackSize();
1439  else {
1440    Offset += SlotSize;  // Skip the saved EBP
1441    // Skip the RETADDR move area
1442    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1443    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1444    if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
1445  }
1446
1447  MI.getOperand(i+3).ChangeToImmediate(Offset);
1448}
1449
1450void
1451X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
1452  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1453  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1454  if (TailCallReturnAddrDelta < 0) {
1455    // create RETURNADDR area
1456    //   arg
1457    //   arg
1458    //   RETADDR
1459    //   { ...
1460    //     RETADDR area
1461    //     ...
1462    //   }
1463    //   [EBP]
1464    MF.getFrameInfo()->
1465      CreateFixedObject(-TailCallReturnAddrDelta,
1466                        (-1*SlotSize)+TailCallReturnAddrDelta);
1467  }
1468  if (hasFP(MF)) {
1469    assert((TailCallReturnAddrDelta <= 0) &&
1470           "The Delta should always be zero or negative");
1471    // Create a frame entry for the EBP register that must be saved.
1472    int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1473                                                        (int)SlotSize * -2+
1474                                                       TailCallReturnAddrDelta);
1475    assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
1476           "Slot for EBP register must be last in order to be found!");
1477  }
1478}
1479
1480/// emitSPUpdate - Emit a series of instructions to increment / decrement the
1481/// stack pointer by a constant value.
1482static
1483void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
1484                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
1485                  const TargetInstrInfo &TII) {
1486  bool isSub = NumBytes < 0;
1487  uint64_t Offset = isSub ? -NumBytes : NumBytes;
1488  unsigned Opc = isSub
1489    ? ((Offset < 128) ?
1490       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
1491       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
1492    : ((Offset < 128) ?
1493       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
1494       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
1495  uint64_t Chunk = (1LL << 31) - 1;
1496
1497  while (Offset) {
1498    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
1499    BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal);
1500    Offset -= ThisVal;
1501  }
1502}
1503
1504// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
1505static
1506void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
1507                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
1508  if (MBBI == MBB.begin()) return;
1509
1510  MachineBasicBlock::iterator PI = prior(MBBI);
1511  unsigned Opc = PI->getOpcode();
1512  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1513       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1514      PI->getOperand(0).getReg() == StackPtr) {
1515    if (NumBytes)
1516      *NumBytes += PI->getOperand(2).getImm();
1517    MBB.erase(PI);
1518  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1519              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1520             PI->getOperand(0).getReg() == StackPtr) {
1521    if (NumBytes)
1522      *NumBytes -= PI->getOperand(2).getImm();
1523    MBB.erase(PI);
1524  }
1525}
1526
1527// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
1528static
1529void mergeSPUpdatesDown(MachineBasicBlock &MBB,
1530                        MachineBasicBlock::iterator &MBBI,
1531                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
1532  return;
1533
1534  if (MBBI == MBB.end()) return;
1535
1536  MachineBasicBlock::iterator NI = next(MBBI);
1537  if (NI == MBB.end()) return;
1538
1539  unsigned Opc = NI->getOpcode();
1540  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1541       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1542      NI->getOperand(0).getReg() == StackPtr) {
1543    if (NumBytes)
1544      *NumBytes -= NI->getOperand(2).getImm();
1545    MBB.erase(NI);
1546    MBBI = NI;
1547  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1548              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1549             NI->getOperand(0).getReg() == StackPtr) {
1550    if (NumBytes)
1551      *NumBytes += NI->getOperand(2).getImm();
1552    MBB.erase(NI);
1553    MBBI = NI;
1554  }
1555}
1556
1557/// mergeSPUpdates - Checks the instruction before/after the passed
1558/// instruction. If it is an ADD/SUB instruction it is deleted
1559/// argument and the stack adjustment is returned as a positive value for ADD
1560/// and a negative for SUB.
1561static int mergeSPUpdates(MachineBasicBlock &MBB,
1562                           MachineBasicBlock::iterator &MBBI,
1563                           unsigned StackPtr,
1564                           bool doMergeWithPrevious) {
1565
1566  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
1567      (!doMergeWithPrevious && MBBI == MBB.end()))
1568    return 0;
1569
1570  int Offset = 0;
1571
1572  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
1573  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
1574  unsigned Opc = PI->getOpcode();
1575  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1576       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1577      PI->getOperand(0).getReg() == StackPtr){
1578    Offset += PI->getOperand(2).getImm();
1579    MBB.erase(PI);
1580    if (!doMergeWithPrevious) MBBI = NI;
1581  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1582              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1583             PI->getOperand(0).getReg() == StackPtr) {
1584    Offset -= PI->getOperand(2).getImm();
1585    MBB.erase(PI);
1586    if (!doMergeWithPrevious) MBBI = NI;
1587  }
1588
1589  return Offset;
1590}
1591
1592void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
1593  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
1594  MachineFrameInfo *MFI = MF.getFrameInfo();
1595  unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1596  const Function* Fn = MF.getFunction();
1597  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
1598  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1599  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1600  MachineBasicBlock::iterator MBBI = MBB.begin();
1601
1602  // Prepare for frame info.
1603  unsigned FrameLabelId = 0;
1604
1605  // Get the number of bytes to allocate from the FrameInfo.
1606  uint64_t StackSize = MFI->getStackSize();
1607  // Add RETADDR move area to callee saved frame size.
1608  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1609  if (TailCallReturnAddrDelta < 0)
1610    X86FI->setCalleeSavedFrameSize(
1611          X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
1612  uint64_t NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1613
1614  // Insert stack pointer adjustment for later moving of return addr.  Only
1615  // applies to tail call optimized functions where the callee argument stack
1616  // size is bigger than the callers.
1617  if (TailCallReturnAddrDelta < 0) {
1618    BuildMI(MBB, MBBI, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
1619            StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
1620  }
1621
1622  if (hasFP(MF)) {
1623    // Get the offset of the stack slot for the EBP register... which is
1624    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1625    // Update the frame offset adjustment.
1626    MFI->setOffsetAdjustment(SlotSize-NumBytes);
1627
1628    // Save EBP into the appropriate stack slot...
1629    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1630      .addReg(FramePtr);
1631    NumBytes -= SlotSize;
1632
1633    if (MMI && MMI->needsFrameInfo()) {
1634      // Mark effective beginning of when frame pointer becomes valid.
1635      FrameLabelId = MMI->NextLabelID();
1636      BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(FrameLabelId);
1637    }
1638
1639    // Update EBP with the new base value...
1640    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
1641      .addReg(StackPtr);
1642  }
1643
1644  unsigned ReadyLabelId = 0;
1645  if (MMI && MMI->needsFrameInfo()) {
1646    // Mark effective beginning of when frame pointer is ready.
1647    ReadyLabelId = MMI->NextLabelID();
1648    BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(ReadyLabelId);
1649  }
1650
1651  // Skip the callee-saved push instructions.
1652  while (MBBI != MBB.end() &&
1653         (MBBI->getOpcode() == X86::PUSH32r ||
1654          MBBI->getOpcode() == X86::PUSH64r))
1655    ++MBBI;
1656
1657  if (NumBytes) {   // adjust stack pointer: ESP -= numbytes
1658    if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1659      // Check, whether EAX is livein for this function
1660      bool isEAXAlive = false;
1661      for (MachineFunction::livein_iterator II = MF.livein_begin(),
1662             EE = MF.livein_end(); (II != EE) && !isEAXAlive; ++II) {
1663        unsigned Reg = II->first;
1664        isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1665                      Reg == X86::AH || Reg == X86::AL);
1666      }
1667
1668      // Function prologue calls _alloca to probe the stack when allocating
1669      // more than 4k bytes in one go. Touching the stack at 4K increments is
1670      // necessary to ensure that the guard pages used by the OS virtual memory
1671      // manager are allocated in correct sequence.
1672      if (!isEAXAlive) {
1673        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes);
1674        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
1675          .addExternalSymbol("_alloca");
1676      } else {
1677        // Save EAX
1678        BuildMI(MBB, MBBI, TII.get(X86::PUSH32r), X86::EAX);
1679        // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1680        // allocated bytes for EAX.
1681        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4);
1682        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
1683          .addExternalSymbol("_alloca");
1684        // Restore EAX
1685        MachineInstr *MI = addRegOffset(BuildMI(TII.get(X86::MOV32rm),X86::EAX),
1686                                        StackPtr, NumBytes-4);
1687        MBB.insert(MBBI, MI);
1688      }
1689    } else {
1690      // If there is an SUB32ri of ESP immediately before this instruction,
1691      // merge the two. This can be the case when tail call elimination is
1692      // enabled and the callee has more arguments then the caller.
1693      NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
1694      // If there is an ADD32ri or SUB32ri of ESP immediately after this
1695      // instruction, merge the two instructions.
1696      mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
1697
1698      if (NumBytes)
1699        emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1700    }
1701  }
1702
1703  if (MMI && MMI->needsFrameInfo()) {
1704    std::vector<MachineMove> &Moves = MMI->getFrameMoves();
1705    const TargetData *TD = MF.getTarget().getTargetData();
1706
1707    // Calculate amount of bytes used for return address storing
1708    int stackGrowth =
1709      (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
1710       TargetFrameInfo::StackGrowsUp ?
1711       TD->getPointerSize() : -TD->getPointerSize());
1712
1713    if (StackSize) {
1714      // Show update of SP.
1715      if (hasFP(MF)) {
1716        // Adjust SP
1717        MachineLocation SPDst(MachineLocation::VirtualFP);
1718        MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth);
1719        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1720      } else {
1721        MachineLocation SPDst(MachineLocation::VirtualFP);
1722        MachineLocation SPSrc(MachineLocation::VirtualFP, -StackSize+stackGrowth);
1723        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1724      }
1725    } else {
1726      //FIXME: Verify & implement for FP
1727      MachineLocation SPDst(StackPtr);
1728      MachineLocation SPSrc(StackPtr, stackGrowth);
1729      Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1730    }
1731
1732    // Add callee saved registers to move list.
1733    const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
1734
1735    // FIXME: This is dirty hack. The code itself is pretty mess right now.
1736    // It should be rewritten from scratch and generalized sometimes.
1737
1738    // Determine maximum offset (minumum due to stack growth)
1739    int64_t MaxOffset = 0;
1740    for (unsigned I = 0, E = CSI.size(); I!=E; ++I)
1741      MaxOffset = std::min(MaxOffset,
1742                           MFI->getObjectOffset(CSI[I].getFrameIdx()));
1743
1744    // Calculate offsets
1745    for (unsigned I = 0, E = CSI.size(); I!=E; ++I) {
1746      int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
1747      unsigned Reg = CSI[I].getReg();
1748      Offset = (MaxOffset-Offset+3*stackGrowth);
1749      MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
1750      MachineLocation CSSrc(Reg);
1751      Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc));
1752    }
1753
1754    if (hasFP(MF)) {
1755      // Save FP
1756      MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth);
1757      MachineLocation FPSrc(FramePtr);
1758      Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1759    }
1760
1761    MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr);
1762    MachineLocation FPSrc(MachineLocation::VirtualFP);
1763    Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1764  }
1765
1766  // If it's main() on Cygwin\Mingw32 we should align stack as well
1767  if (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
1768      Subtarget->isTargetCygMing()) {
1769    BuildMI(MBB, MBBI, TII.get(X86::AND32ri), X86::ESP)
1770                .addReg(X86::ESP).addImm(-Align);
1771
1772    // Probe the stack
1773    BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(Align);
1774    BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca");
1775  }
1776}
1777
1778void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1779                                   MachineBasicBlock &MBB) const {
1780  const MachineFrameInfo *MFI = MF.getFrameInfo();
1781  const Function* Fn = MF.getFunction();
1782  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1783  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
1784  MachineBasicBlock::iterator MBBI = prior(MBB.end());
1785  unsigned RetOpcode = MBBI->getOpcode();
1786
1787  switch (RetOpcode) {
1788  case X86::RET:
1789  case X86::RETI:
1790  case X86::TCRETURNdi:
1791  case X86::TCRETURNri:
1792  case X86::TCRETURNri64:
1793  case X86::TCRETURNdi64:
1794  case X86::EH_RETURN:
1795  case X86::TAILJMPd:
1796  case X86::TAILJMPr:
1797  case X86::TAILJMPm: break;  // These are ok
1798  default:
1799    assert(0 && "Can only insert epilog into returning blocks");
1800  }
1801
1802  // Get the number of bytes to allocate from the FrameInfo
1803  uint64_t StackSize = MFI->getStackSize();
1804  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1805  uint64_t NumBytes = StackSize - CSSize;
1806
1807  if (hasFP(MF)) {
1808    // pop EBP.
1809    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1810    NumBytes -= SlotSize;
1811  }
1812
1813  // Skip the callee-saved pop instructions.
1814  while (MBBI != MBB.begin()) {
1815    MachineBasicBlock::iterator PI = prior(MBBI);
1816    unsigned Opc = PI->getOpcode();
1817    if (Opc != X86::POP32r && Opc != X86::POP64r && !TII.isTerminatorInstr(Opc))
1818      break;
1819    --MBBI;
1820  }
1821
1822  // If there is an ADD32ri or SUB32ri of ESP immediately before this
1823  // instruction, merge the two instructions.
1824  if (NumBytes || MFI->hasVarSizedObjects())
1825    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1826
1827  // If dynamic alloca is used, then reset esp to point to the last callee-saved
1828  // slot before popping them off!  Also, if it's main() on Cygwin/Mingw32 we
1829  // aligned stack in the prologue, - revert stack changes back. Note: we're
1830  // assuming, that frame pointer was forced for main()
1831  if (MFI->hasVarSizedObjects() ||
1832      (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
1833       Subtarget->isTargetCygMing())) {
1834    unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1835    if (CSSize) {
1836      MachineInstr *MI = addRegOffset(BuildMI(TII.get(Opc), StackPtr),
1837                                      FramePtr, -CSSize);
1838      MBB.insert(MBBI, MI);
1839    } else
1840      BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
1841        addReg(FramePtr);
1842
1843    NumBytes = 0;
1844  }
1845
1846  // adjust stack pointer back: ESP += numbytes
1847  if (NumBytes)
1848    emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1849
1850  // We're returning from function via eh_return.
1851  if (RetOpcode == X86::EH_RETURN) {
1852    MBBI = prior(MBB.end());
1853    MachineOperand &DestAddr  = MBBI->getOperand(0);
1854    assert(DestAddr.isRegister() && "Offset should be in register!");
1855    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
1856      addReg(DestAddr.getReg());
1857  // Tail call return: adjust the stack pointer and jump to callee
1858  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1859             RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
1860    MBBI = prior(MBB.end());
1861    MachineOperand &JumpTarget = MBBI->getOperand(0);
1862    MachineOperand &StackAdjust = MBBI->getOperand(1);
1863    assert( StackAdjust.isImmediate() && "Expecting immediate value.");
1864
1865    // Adjust stack pointer.
1866    int StackAdj = StackAdjust.getImm();
1867    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1868    int Offset = 0;
1869    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1870    // Incoporate the retaddr area.
1871    Offset = StackAdj-MaxTCDelta;
1872    assert(Offset >= 0 && "Offset should never be negative");
1873    if (Offset) {
1874      // Check for possible merge with preceeding ADD instruction.
1875      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1876      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
1877    }
1878    // Jump to label or value in register.
1879    if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
1880      BuildMI(MBB, MBBI, TII.get(X86::TAILJMPd)).
1881        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1882    else if (RetOpcode== X86::TCRETURNri64) {
1883      BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
1884    } else
1885       BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr), JumpTarget.getReg());
1886    // Delete the pseudo instruction TCRETURN.
1887    MBB.erase(MBBI);
1888  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1889             (X86FI->getTCReturnAddrDelta() < 0)) {
1890    // Add the return addr area delta back since we are not tail calling.
1891    int delta = -1*X86FI->getTCReturnAddrDelta();
1892    MBBI = prior(MBB.end());
1893    // Check for possible merge with preceeding ADD instruction.
1894    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1895    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
1896  }
1897}
1898
1899unsigned X86RegisterInfo::getRARegister() const {
1900  if (Is64Bit)
1901    return X86::RIP;  // Should have dwarf #16
1902  else
1903    return X86::EIP;  // Should have dwarf #8
1904}
1905
1906unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
1907  return hasFP(MF) ? FramePtr : StackPtr;
1908}
1909
1910void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
1911                                                                         const {
1912  // Calculate amount of bytes used for return address storing
1913  int stackGrowth = (Is64Bit ? -8 : -4);
1914
1915  // Initial state of the frame pointer is esp+4.
1916  MachineLocation Dst(MachineLocation::VirtualFP);
1917  MachineLocation Src(StackPtr, stackGrowth);
1918  Moves.push_back(MachineMove(0, Dst, Src));
1919
1920  // Add return address to move list
1921  MachineLocation CSDst(StackPtr, stackGrowth);
1922  MachineLocation CSSrc(getRARegister());
1923  Moves.push_back(MachineMove(0, CSDst, CSSrc));
1924}
1925
1926unsigned X86RegisterInfo::getEHExceptionRegister() const {
1927  assert(0 && "What is the exception register");
1928  return 0;
1929}
1930
1931unsigned X86RegisterInfo::getEHHandlerRegister() const {
1932  assert(0 && "What is the exception handler register");
1933  return 0;
1934}
1935
1936namespace llvm {
1937unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) {
1938  switch (VT) {
1939  default: return Reg;
1940  case MVT::i8:
1941    if (High) {
1942      switch (Reg) {
1943      default: return 0;
1944      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1945        return X86::AH;
1946      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1947        return X86::DH;
1948      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1949        return X86::CH;
1950      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1951        return X86::BH;
1952      }
1953    } else {
1954      switch (Reg) {
1955      default: return 0;
1956      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1957        return X86::AL;
1958      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1959        return X86::DL;
1960      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1961        return X86::CL;
1962      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1963        return X86::BL;
1964      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1965        return X86::SIL;
1966      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1967        return X86::DIL;
1968      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1969        return X86::BPL;
1970      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1971        return X86::SPL;
1972      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1973        return X86::R8B;
1974      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1975        return X86::R9B;
1976      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1977        return X86::R10B;
1978      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1979        return X86::R11B;
1980      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1981        return X86::R12B;
1982      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1983        return X86::R13B;
1984      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1985        return X86::R14B;
1986      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1987        return X86::R15B;
1988      }
1989    }
1990  case MVT::i16:
1991    switch (Reg) {
1992    default: return Reg;
1993    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1994      return X86::AX;
1995    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1996      return X86::DX;
1997    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1998      return X86::CX;
1999    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2000      return X86::BX;
2001    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2002      return X86::SI;
2003    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2004      return X86::DI;
2005    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2006      return X86::BP;
2007    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2008      return X86::SP;
2009    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2010      return X86::R8W;
2011    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2012      return X86::R9W;
2013    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2014      return X86::R10W;
2015    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2016      return X86::R11W;
2017    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2018      return X86::R12W;
2019    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2020      return X86::R13W;
2021    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2022      return X86::R14W;
2023    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2024      return X86::R15W;
2025    }
2026  case MVT::i32:
2027    switch (Reg) {
2028    default: return Reg;
2029    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2030      return X86::EAX;
2031    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2032      return X86::EDX;
2033    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2034      return X86::ECX;
2035    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2036      return X86::EBX;
2037    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2038      return X86::ESI;
2039    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2040      return X86::EDI;
2041    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2042      return X86::EBP;
2043    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2044      return X86::ESP;
2045    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2046      return X86::R8D;
2047    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2048      return X86::R9D;
2049    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2050      return X86::R10D;
2051    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2052      return X86::R11D;
2053    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2054      return X86::R12D;
2055    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2056      return X86::R13D;
2057    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2058      return X86::R14D;
2059    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2060      return X86::R15D;
2061    }
2062  case MVT::i64:
2063    switch (Reg) {
2064    default: return Reg;
2065    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2066      return X86::RAX;
2067    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2068      return X86::RDX;
2069    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2070      return X86::RCX;
2071    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2072      return X86::RBX;
2073    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2074      return X86::RSI;
2075    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2076      return X86::RDI;
2077    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2078      return X86::RBP;
2079    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2080      return X86::RSP;
2081    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2082      return X86::R8;
2083    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2084      return X86::R9;
2085    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2086      return X86::R10;
2087    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2088      return X86::R11;
2089    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2090      return X86::R12;
2091    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2092      return X86::R13;
2093    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2094      return X86::R14;
2095    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2096      return X86::R15;
2097    }
2098  }
2099
2100  return Reg;
2101}
2102}
2103
2104#include "X86GenRegisterInfo.inc"
2105
2106