X86RegisterInfo.cpp revision dd93f5eb7196e0235db72c7bac49912410c37a51
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetRegisterInfo class.
11// This file is responsible for the frame pointer elimination optimization
12// on X86.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86RegisterInfo.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineLocation.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/Target/TargetAsmInfo.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/BitVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/Support/ErrorHandling.h"
43using namespace llvm;
44
45static cl::opt<bool>
46StrictIndexRegclass("strict-index-regclass",
47                    cl::desc("Use a special register class to avoid letting SP "
48                             "be used as an index"));
49
50X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
51                                 const TargetInstrInfo &tii)
52  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
53                         X86::ADJCALLSTACKDOWN64 :
54                         X86::ADJCALLSTACKDOWN32,
55                       tm.getSubtarget<X86Subtarget>().is64Bit() ?
56                         X86::ADJCALLSTACKUP64 :
57                         X86::ADJCALLSTACKUP32),
58    TM(tm), TII(tii) {
59  // Cache some information.
60  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
61  Is64Bit = Subtarget->is64Bit();
62  IsWin64 = Subtarget->isTargetWin64();
63  StackAlign = TM.getFrameInfo()->getStackAlignment();
64  if (Is64Bit) {
65    SlotSize = 8;
66    StackPtr = X86::RSP;
67    FramePtr = X86::RBP;
68  } else {
69    SlotSize = 4;
70    StackPtr = X86::ESP;
71    FramePtr = X86::EBP;
72  }
73}
74
75// getDwarfRegNum - This function maps LLVM register identifiers to the
76// Dwarf specific numbering, used in debug info and exception tables.
77
78int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
79  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
80  unsigned Flavour = DWARFFlavour::X86_64;
81  if (!Subtarget->is64Bit()) {
82    if (Subtarget->isTargetDarwin()) {
83      if (isEH)
84        Flavour = DWARFFlavour::X86_32_DarwinEH;
85      else
86        Flavour = DWARFFlavour::X86_32_Generic;
87    } else if (Subtarget->isTargetCygMing()) {
88      // Unsupported by now, just quick fallback
89      Flavour = DWARFFlavour::X86_32_Generic;
90    } else {
91      Flavour = DWARFFlavour::X86_32_Generic;
92    }
93  }
94
95  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
96}
97
98// getX86RegNum - This function maps LLVM register identifiers to their X86
99// specific numbering, which is used in various places encoding instructions.
100//
101unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
102  switch(RegNo) {
103  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
104  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
105  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
106  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
107  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
108    return N86::ESP;
109  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
110    return N86::EBP;
111  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
112    return N86::ESI;
113  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
114    return N86::EDI;
115
116  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
117    return N86::EAX;
118  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
119    return N86::ECX;
120  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
121    return N86::EDX;
122  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
123    return N86::EBX;
124  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
125    return N86::ESP;
126  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
127    return N86::EBP;
128  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
129    return N86::ESI;
130  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
131    return N86::EDI;
132
133  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
134  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
135    return RegNo-X86::ST0;
136
137  case X86::XMM0: case X86::XMM8: case X86::MM0:
138    return 0;
139  case X86::XMM1: case X86::XMM9: case X86::MM1:
140    return 1;
141  case X86::XMM2: case X86::XMM10: case X86::MM2:
142    return 2;
143  case X86::XMM3: case X86::XMM11: case X86::MM3:
144    return 3;
145  case X86::XMM4: case X86::XMM12: case X86::MM4:
146    return 4;
147  case X86::XMM5: case X86::XMM13: case X86::MM5:
148    return 5;
149  case X86::XMM6: case X86::XMM14: case X86::MM6:
150    return 6;
151  case X86::XMM7: case X86::XMM15: case X86::MM7:
152    return 7;
153
154  default:
155    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
156    llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
157    return 0;
158  }
159}
160
161const TargetRegisterClass *
162X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
163                                          const TargetRegisterClass *B,
164                                          unsigned SubIdx) const {
165  switch (SubIdx) {
166  default: return 0;
167  case 1:
168    // 8-bit
169    if (B == &X86::GR8RegClass) {
170      if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
171        return A;
172    } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
173      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
174          A == &X86::GR64_NOREXRegClass ||
175          A == &X86::GR64_NOSPRegClass ||
176          A == &X86::GR64_NOREX_NOSPRegClass)
177        return &X86::GR64_ABCDRegClass;
178      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
179               A == &X86::GR32_NOREXRegClass ||
180               A == &X86::GR32_NOSPRegClass)
181        return &X86::GR32_ABCDRegClass;
182      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
183               A == &X86::GR16_NOREXRegClass)
184        return &X86::GR16_ABCDRegClass;
185    } else if (B == &X86::GR8_NOREXRegClass) {
186      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
187          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
188        return &X86::GR64_NOREXRegClass;
189      else if (A == &X86::GR64_ABCDRegClass)
190        return &X86::GR64_ABCDRegClass;
191      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
192               A == &X86::GR32_NOSPRegClass)
193        return &X86::GR32_NOREXRegClass;
194      else if (A == &X86::GR32_ABCDRegClass)
195        return &X86::GR32_ABCDRegClass;
196      else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
197        return &X86::GR16_NOREXRegClass;
198      else if (A == &X86::GR16_ABCDRegClass)
199        return &X86::GR16_ABCDRegClass;
200    }
201    break;
202  case 2:
203    // 8-bit hi
204    if (B == &X86::GR8_ABCD_HRegClass) {
205      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
206          A == &X86::GR64_NOREXRegClass ||
207          A == &X86::GR64_NOSPRegClass ||
208          A == &X86::GR64_NOREX_NOSPRegClass)
209        return &X86::GR64_ABCDRegClass;
210      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
211               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
212        return &X86::GR32_ABCDRegClass;
213      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
214               A == &X86::GR16_NOREXRegClass)
215        return &X86::GR16_ABCDRegClass;
216    }
217    break;
218  case 3:
219    // 16-bit
220    if (B == &X86::GR16RegClass) {
221      if (A->getSize() == 4 || A->getSize() == 8)
222        return A;
223    } else if (B == &X86::GR16_ABCDRegClass) {
224      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
225          A == &X86::GR64_NOREXRegClass ||
226          A == &X86::GR64_NOSPRegClass ||
227          A == &X86::GR64_NOREX_NOSPRegClass)
228        return &X86::GR64_ABCDRegClass;
229      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
230               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
231        return &X86::GR32_ABCDRegClass;
232    } else if (B == &X86::GR16_NOREXRegClass) {
233      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
234          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
235        return &X86::GR64_NOREXRegClass;
236      else if (A == &X86::GR64_ABCDRegClass)
237        return &X86::GR64_ABCDRegClass;
238      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
239               A == &X86::GR32_NOSPRegClass)
240        return &X86::GR32_NOREXRegClass;
241      else if (A == &X86::GR32_ABCDRegClass)
242        return &X86::GR64_ABCDRegClass;
243    }
244    break;
245  case 4:
246    // 32-bit
247    if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) {
248      if (A->getSize() == 8)
249        return A;
250    } else if (B == &X86::GR32_ABCDRegClass) {
251      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
252          A == &X86::GR64_NOREXRegClass ||
253          A == &X86::GR64_NOSPRegClass ||
254          A == &X86::GR64_NOREX_NOSPRegClass)
255        return &X86::GR64_ABCDRegClass;
256    } else if (B == &X86::GR32_NOREXRegClass) {
257      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
258          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
259        return &X86::GR64_NOREXRegClass;
260      else if (A == &X86::GR64_ABCDRegClass)
261        return &X86::GR64_ABCDRegClass;
262    }
263    break;
264  }
265  return 0;
266}
267
268const TargetRegisterClass *X86RegisterInfo::
269getPointerRegClass(unsigned Kind) const {
270  switch (Kind) {
271  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
272  case 0: // Normal GPRs.
273    if (TM.getSubtarget<X86Subtarget>().is64Bit())
274      return &X86::GR64RegClass;
275    return &X86::GR32RegClass;
276  case 1: // Normal GRPs except the stack pointer (for encoding reasons).
277    if (!StrictIndexRegclass) {
278      if (TM.getSubtarget<X86Subtarget>().is64Bit())
279        return &X86::GR64RegClass;
280      return &X86::GR32RegClass;
281    } else {
282      if (TM.getSubtarget<X86Subtarget>().is64Bit())
283        return &X86::GR64_NOSPRegClass;
284      return &X86::GR32_NOSPRegClass;
285    }
286  }
287}
288
289const TargetRegisterClass *
290X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
291  if (RC == &X86::CCRRegClass) {
292    if (Is64Bit)
293      return &X86::GR64RegClass;
294    else
295      return &X86::GR32RegClass;
296  }
297  return NULL;
298}
299
300const unsigned *
301X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
302  bool callsEHReturn = false;
303
304  if (MF) {
305    const MachineFrameInfo *MFI = MF->getFrameInfo();
306    const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
307    callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
308  }
309
310  static const unsigned CalleeSavedRegs32Bit[] = {
311    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
312  };
313
314  static const unsigned CalleeSavedRegs32EHRet[] = {
315    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
316  };
317
318  static const unsigned CalleeSavedRegs64Bit[] = {
319    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
320  };
321
322  static const unsigned CalleeSavedRegs64EHRet[] = {
323    X86::RAX, X86::RDX, X86::RBX, X86::R12,
324    X86::R13, X86::R14, X86::R15, X86::RBP, 0
325  };
326
327  static const unsigned CalleeSavedRegsWin64[] = {
328    X86::RBX,   X86::RBP,   X86::RDI,   X86::RSI,
329    X86::R12,   X86::R13,   X86::R14,   X86::R15,
330    X86::XMM6,  X86::XMM7,  X86::XMM8,  X86::XMM9,
331    X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
332    X86::XMM14, X86::XMM15, 0
333  };
334
335  if (Is64Bit) {
336    if (IsWin64)
337      return CalleeSavedRegsWin64;
338    else
339      return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
340  } else {
341    return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
342  }
343}
344
345const TargetRegisterClass* const*
346X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
347  bool callsEHReturn = false;
348
349  if (MF) {
350    const MachineFrameInfo *MFI = MF->getFrameInfo();
351    const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
352    callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
353  }
354
355  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
356    &X86::GR32RegClass, &X86::GR32RegClass,
357    &X86::GR32RegClass, &X86::GR32RegClass,  0
358  };
359  static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
360    &X86::GR32RegClass, &X86::GR32RegClass,
361    &X86::GR32RegClass, &X86::GR32RegClass,
362    &X86::GR32RegClass, &X86::GR32RegClass,  0
363  };
364  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
365    &X86::GR64RegClass, &X86::GR64RegClass,
366    &X86::GR64RegClass, &X86::GR64RegClass,
367    &X86::GR64RegClass, &X86::GR64RegClass, 0
368  };
369  static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = {
370    &X86::GR64RegClass, &X86::GR64RegClass,
371    &X86::GR64RegClass, &X86::GR64RegClass,
372    &X86::GR64RegClass, &X86::GR64RegClass,
373    &X86::GR64RegClass, &X86::GR64RegClass, 0
374  };
375  static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = {
376    &X86::GR64RegClass,  &X86::GR64RegClass,
377    &X86::GR64RegClass,  &X86::GR64RegClass,
378    &X86::GR64RegClass,  &X86::GR64RegClass,
379    &X86::GR64RegClass,  &X86::GR64RegClass,
380    &X86::VR128RegClass, &X86::VR128RegClass,
381    &X86::VR128RegClass, &X86::VR128RegClass,
382    &X86::VR128RegClass, &X86::VR128RegClass,
383    &X86::VR128RegClass, &X86::VR128RegClass,
384    &X86::VR128RegClass, &X86::VR128RegClass, 0
385  };
386
387  if (Is64Bit) {
388    if (IsWin64)
389      return CalleeSavedRegClassesWin64;
390    else
391      return (callsEHReturn ?
392              CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit);
393  } else {
394    return (callsEHReturn ?
395            CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit);
396  }
397}
398
399BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
400  BitVector Reserved(getNumRegs());
401  // Set the stack-pointer register and its aliases as reserved.
402  Reserved.set(X86::RSP);
403  Reserved.set(X86::ESP);
404  Reserved.set(X86::SP);
405  Reserved.set(X86::SPL);
406  // Set the frame-pointer register and its aliases as reserved if needed.
407  if (hasFP(MF)) {
408    Reserved.set(X86::RBP);
409    Reserved.set(X86::EBP);
410    Reserved.set(X86::BP);
411    Reserved.set(X86::BPL);
412  }
413  // Mark the x87 stack registers as reserved, since they don't
414  // behave normally with respect to liveness. We don't fully
415  // model the effects of x87 stack pushes and pops after
416  // stackification.
417  Reserved.set(X86::ST0);
418  Reserved.set(X86::ST1);
419  Reserved.set(X86::ST2);
420  Reserved.set(X86::ST3);
421  Reserved.set(X86::ST4);
422  Reserved.set(X86::ST5);
423  Reserved.set(X86::ST6);
424  Reserved.set(X86::ST7);
425  return Reserved;
426}
427
428//===----------------------------------------------------------------------===//
429// Stack Frame Processing methods
430//===----------------------------------------------------------------------===//
431
432static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) {
433  unsigned MaxAlign = 0;
434  for (int i = FFI->getObjectIndexBegin(),
435         e = FFI->getObjectIndexEnd(); i != e; ++i) {
436    if (FFI->isDeadObjectIndex(i))
437      continue;
438    unsigned Align = FFI->getObjectAlignment(i);
439    MaxAlign = std::max(MaxAlign, Align);
440  }
441
442  return MaxAlign;
443}
444
445// hasFP - Return true if the specified function should have a dedicated frame
446// pointer register.  This is true if the function has variable sized allocas or
447// if frame pointer elimination is disabled.
448//
449bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
450  const MachineFrameInfo *MFI = MF.getFrameInfo();
451  const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
452
453  return (NoFramePointerElim ||
454          needsStackRealignment(MF) ||
455          MFI->hasVarSizedObjects() ||
456          MFI->isFrameAddressTaken() ||
457          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
458          (MMI && MMI->callsUnwindInit()));
459}
460
461bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
462  const MachineFrameInfo *MFI = MF.getFrameInfo();
463
464  // FIXME: Currently we don't support stack realignment for functions with
465  // variable-sized allocas
466  return (RealignStack &&
467          (MFI->getMaxAlignment() > StackAlign &&
468           !MFI->hasVarSizedObjects()));
469}
470
471bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
472  return !MF.getFrameInfo()->hasVarSizedObjects();
473}
474
475bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
476                                           int &FrameIdx) const {
477  if (Reg == FramePtr && hasFP(MF)) {
478    FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
479    return true;
480  }
481  return false;
482}
483
484
485int
486X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
487  const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
488  MachineFrameInfo *MFI = MF.getFrameInfo();
489
490  int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea();
491  uint64_t StackSize = MFI->getStackSize();
492
493  if (needsStackRealignment(MF)) {
494    if (FI < 0)
495      // Skip the saved EBP
496      Offset += SlotSize;
497    else {
498      unsigned Align = MFI->getObjectAlignment(FI);
499      assert( (-(Offset + StackSize)) % Align == 0);
500      Align = 0;
501      return Offset + StackSize;
502    }
503
504    // FIXME: Support tail calls
505  } else {
506    if (!hasFP(MF))
507      return Offset + StackSize;
508
509    // Skip the saved EBP
510    Offset += SlotSize;
511
512    // Skip the RETADDR move area
513    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
514    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
515    if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
516  }
517
518  return Offset;
519}
520
521void X86RegisterInfo::
522eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
523                              MachineBasicBlock::iterator I) const {
524  if (!hasReservedCallFrame(MF)) {
525    // If the stack pointer can be changed after prologue, turn the
526    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
527    // adjcallstackdown instruction into 'add ESP, <amt>'
528    // TODO: consider using push / pop instead of sub + store / add
529    MachineInstr *Old = I;
530    uint64_t Amount = Old->getOperand(0).getImm();
531    if (Amount != 0) {
532      // We need to keep the stack aligned properly.  To do this, we round the
533      // amount of space needed for the outgoing arguments up to the next
534      // alignment boundary.
535      Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
536
537      MachineInstr *New = 0;
538      if (Old->getOpcode() == getCallFrameSetupOpcode()) {
539        New = BuildMI(MF, Old->getDebugLoc(),
540                      TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri),
541                      StackPtr).addReg(StackPtr).addImm(Amount);
542      } else {
543        assert(Old->getOpcode() == getCallFrameDestroyOpcode());
544        // factor out the amount the callee already popped.
545        uint64_t CalleeAmt = Old->getOperand(1).getImm();
546        Amount -= CalleeAmt;
547        if (Amount) {
548          unsigned Opc = (Amount < 128) ?
549            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
550            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
551          New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
552            .addReg(StackPtr).addImm(Amount);
553        }
554      }
555
556      if (New) {
557        // The EFLAGS implicit def is dead.
558        New->getOperand(3).setIsDead();
559
560        // Replace the pseudo instruction with a new instruction...
561        MBB.insert(I, New);
562      }
563    }
564  } else if (I->getOpcode() == getCallFrameDestroyOpcode()) {
565    // If we are performing frame pointer elimination and if the callee pops
566    // something off the stack pointer, add it back.  We do this until we have
567    // more advanced stack pointer tracking ability.
568    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
569      unsigned Opc = (CalleeAmt < 128) ?
570        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
571        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
572      MachineInstr *Old = I;
573      MachineInstr *New =
574        BuildMI(MF, Old->getDebugLoc(), TII.get(Opc),
575                StackPtr).addReg(StackPtr).addImm(CalleeAmt);
576      // The EFLAGS implicit def is dead.
577      New->getOperand(3).setIsDead();
578
579      MBB.insert(I, New);
580    }
581  }
582
583  MBB.erase(I);
584}
585
586void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
587                                          int SPAdj, RegScavenger *RS) const{
588  assert(SPAdj == 0 && "Unexpected");
589
590  unsigned i = 0;
591  MachineInstr &MI = *II;
592  MachineFunction &MF = *MI.getParent()->getParent();
593  while (!MI.getOperand(i).isFI()) {
594    ++i;
595    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
596  }
597
598  int FrameIndex = MI.getOperand(i).getIndex();
599
600  unsigned BasePtr;
601  if (needsStackRealignment(MF))
602    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
603  else
604    BasePtr = (hasFP(MF) ? FramePtr : StackPtr);
605
606  // This must be part of a four operand memory reference.  Replace the
607  // FrameIndex with base register with EBP.  Add an offset to the offset.
608  MI.getOperand(i).ChangeToRegister(BasePtr, false);
609
610  // Now add the frame object offset to the offset from EBP.
611  if (MI.getOperand(i+3).isImm()) {
612    // Offset is a 32-bit integer.
613    int Offset = getFrameIndexOffset(MF, FrameIndex) +
614      (int)(MI.getOperand(i+3).getImm());
615
616     MI.getOperand(i+3).ChangeToImmediate(Offset);
617  } else {
618    // Offset is symbolic. This is extremely rare.
619    uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) +
620                      (uint64_t)MI.getOperand(i+3).getOffset();
621    MI.getOperand(i+3).setOffset(Offset);
622  }
623}
624
625void
626X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
627                                                      RegScavenger *RS) const {
628  MachineFrameInfo *MFI = MF.getFrameInfo();
629
630  // Calculate and set max stack object alignment early, so we can decide
631  // whether we will need stack realignment (and thus FP).
632  unsigned MaxAlign = std::max(MFI->getMaxAlignment(),
633                               calculateMaxStackAlignment(MFI));
634
635  MFI->setMaxAlignment(MaxAlign);
636
637  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
638  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
639  if (TailCallReturnAddrDelta < 0) {
640    // create RETURNADDR area
641    //   arg
642    //   arg
643    //   RETADDR
644    //   { ...
645    //     RETADDR area
646    //     ...
647    //   }
648    //   [EBP]
649    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
650                           (-1*SlotSize)+TailCallReturnAddrDelta);
651  }
652
653  if (hasFP(MF)) {
654    assert((TailCallReturnAddrDelta <= 0) &&
655           "The Delta should always be zero or negative");
656    const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
657    // Create a frame entry for the EBP register that must be saved.
658    int FrameIdx = MFI->CreateFixedObject(SlotSize,
659                                          -(int)SlotSize +
660                                          TFI.getOffsetOfLocalArea() +
661                                          TailCallReturnAddrDelta);
662    assert(FrameIdx == MFI->getObjectIndexBegin() &&
663           "Slot for EBP register must be last in order to be found!");
664    FrameIdx = 0;
665  }
666}
667
668/// emitSPUpdate - Emit a series of instructions to increment / decrement the
669/// stack pointer by a constant value.
670static
671void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
672                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
673                  const TargetInstrInfo &TII) {
674  bool isSub = NumBytes < 0;
675  uint64_t Offset = isSub ? -NumBytes : NumBytes;
676  unsigned Opc = isSub
677    ? ((Offset < 128) ?
678       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
679       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
680    : ((Offset < 128) ?
681       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
682       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
683  uint64_t Chunk = (1LL << 31) - 1;
684  DebugLoc DL = (MBBI != MBB.end() ? MBBI->getDebugLoc() :
685                 DebugLoc::getUnknownLoc());
686
687  while (Offset) {
688    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
689    MachineInstr *MI =
690      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
691         .addReg(StackPtr).addImm(ThisVal);
692    // The EFLAGS implicit def is dead.
693    MI->getOperand(3).setIsDead();
694    Offset -= ThisVal;
695  }
696}
697
698// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
699static
700void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
701                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
702  if (MBBI == MBB.begin()) return;
703
704  MachineBasicBlock::iterator PI = prior(MBBI);
705  unsigned Opc = PI->getOpcode();
706  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
707       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
708      PI->getOperand(0).getReg() == StackPtr) {
709    if (NumBytes)
710      *NumBytes += PI->getOperand(2).getImm();
711    MBB.erase(PI);
712  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
713              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
714             PI->getOperand(0).getReg() == StackPtr) {
715    if (NumBytes)
716      *NumBytes -= PI->getOperand(2).getImm();
717    MBB.erase(PI);
718  }
719}
720
721// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
722static
723void mergeSPUpdatesDown(MachineBasicBlock &MBB,
724                        MachineBasicBlock::iterator &MBBI,
725                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
726  return;
727
728  if (MBBI == MBB.end()) return;
729
730  MachineBasicBlock::iterator NI = next(MBBI);
731  if (NI == MBB.end()) return;
732
733  unsigned Opc = NI->getOpcode();
734  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
735       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
736      NI->getOperand(0).getReg() == StackPtr) {
737    if (NumBytes)
738      *NumBytes -= NI->getOperand(2).getImm();
739    MBB.erase(NI);
740    MBBI = NI;
741  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
742              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
743             NI->getOperand(0).getReg() == StackPtr) {
744    if (NumBytes)
745      *NumBytes += NI->getOperand(2).getImm();
746    MBB.erase(NI);
747    MBBI = NI;
748  }
749}
750
751/// mergeSPUpdates - Checks the instruction before/after the passed
752/// instruction. If it is an ADD/SUB instruction it is deleted
753/// argument and the stack adjustment is returned as a positive value for ADD
754/// and a negative for SUB.
755static int mergeSPUpdates(MachineBasicBlock &MBB,
756                           MachineBasicBlock::iterator &MBBI,
757                           unsigned StackPtr,
758                           bool doMergeWithPrevious) {
759
760  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
761      (!doMergeWithPrevious && MBBI == MBB.end()))
762    return 0;
763
764  int Offset = 0;
765
766  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
767  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
768  unsigned Opc = PI->getOpcode();
769  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
770       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
771      PI->getOperand(0).getReg() == StackPtr){
772    Offset += PI->getOperand(2).getImm();
773    MBB.erase(PI);
774    if (!doMergeWithPrevious) MBBI = NI;
775  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
776              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
777             PI->getOperand(0).getReg() == StackPtr) {
778    Offset -= PI->getOperand(2).getImm();
779    MBB.erase(PI);
780    if (!doMergeWithPrevious) MBBI = NI;
781  }
782
783  return Offset;
784}
785
786void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF,
787                                                unsigned LabelId,
788                                                unsigned FramePtr) const {
789  MachineFrameInfo *MFI = MF.getFrameInfo();
790  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
791  if (!MMI) return;
792
793  // Add callee saved registers to move list.
794  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
795  if (CSI.empty()) return;
796
797  std::vector<MachineMove> &Moves = MMI->getFrameMoves();
798  const TargetData *TD = MF.getTarget().getTargetData();
799  bool HasFP = hasFP(MF);
800
801  // Calculate amount of bytes used for return address storing
802  int stackGrowth =
803    (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
804     TargetFrameInfo::StackGrowsUp ?
805     TD->getPointerSize() : -TD->getPointerSize());
806
807  // FIXME: This is dirty hack. The code itself is pretty mess right now.
808  // It should be rewritten from scratch and generalized sometimes.
809
810  // Determine maximum offset (minumum due to stack growth)
811  int64_t MaxOffset = 0;
812  for (std::vector<CalleeSavedInfo>::const_iterator
813         I = CSI.begin(), E = CSI.end(); I != E; ++I)
814    MaxOffset = std::min(MaxOffset,
815                         MFI->getObjectOffset(I->getFrameIdx()));
816
817  // Calculate offsets.
818  int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
819  for (std::vector<CalleeSavedInfo>::const_iterator
820         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
821    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
822    unsigned Reg = I->getReg();
823    Offset = MaxOffset - Offset + saveAreaOffset;
824
825    // Don't output a new machine move if we're re-saving the frame
826    // pointer. This happens when the PrologEpilogInserter has inserted an extra
827    // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
828    // generates one when frame pointers are used. If we generate a "machine
829    // move" for this extra "PUSH", the linker will lose track of the fact that
830    // the frame pointer should have the value of the first "PUSH" when it's
831    // trying to unwind.
832    //
833    // FIXME: This looks inelegant. It's possibly correct, but it's covering up
834    //        another bug. I.e., one where we generate a prolog like this:
835    //
836    //          pushl  %ebp
837    //          movl   %esp, %ebp
838    //          pushl  %ebp
839    //          pushl  %esi
840    //           ...
841    //
842    //        The immediate re-push of EBP is unnecessary. At the least, it's an
843    //        optimization bug. EBP can be used as a scratch register in certain
844    //        cases, but probably not when we have a frame pointer.
845    if (HasFP && FramePtr == Reg)
846      continue;
847
848    MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
849    MachineLocation CSSrc(Reg);
850    Moves.push_back(MachineMove(LabelId, CSDst, CSSrc));
851  }
852}
853
854void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
855  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
856  MachineFrameInfo *MFI = MF.getFrameInfo();
857  const Function* Fn = MF.getFunction();
858  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
859  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
860  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
861  MachineBasicBlock::iterator MBBI = MBB.begin();
862  bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) ||
863                          !Fn->doesNotThrow() ||
864                          UnwindTablesMandatory;
865  bool HasFP = hasFP(MF);
866  DebugLoc DL;
867
868  // Get the number of bytes to allocate from the FrameInfo.
869  uint64_t StackSize = MFI->getStackSize();
870
871  // Get desired stack alignment
872  uint64_t MaxAlign  = MFI->getMaxAlignment();
873
874  // Add RETADDR move area to callee saved frame size.
875  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
876  if (TailCallReturnAddrDelta < 0)
877    X86FI->setCalleeSavedFrameSize(
878          X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
879
880  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
881  // function, and use up to 128 bytes of stack space, don't have a frame
882  // pointer, calls, or dynamic alloca then we do not need to adjust the
883  // stack pointer (we fit in the Red Zone).
884  bool DisableRedZone = Fn->hasFnAttr(Attribute::NoRedZone);
885  if (Is64Bit && !DisableRedZone &&
886      !needsStackRealignment(MF) &&
887      !MFI->hasVarSizedObjects() &&                // No dynamic alloca.
888      !MFI->hasCalls() &&                          // No calls.
889      !Subtarget->isTargetWin64()) {               // Win64 has no Red Zone
890    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
891    if (HasFP) MinSize += SlotSize;
892    StackSize = std::max(MinSize,
893                         StackSize > 128 ? StackSize - 128 : 0);
894    MFI->setStackSize(StackSize);
895  } else if (Subtarget->isTargetWin64()) {
896    // We need to always allocate 32 bytes as register spill area.
897    // FIXME: we might reuse these 32 bytes for leaf functions.
898    StackSize += 32;
899    MFI->setStackSize(StackSize);
900  }
901
902  // Insert stack pointer adjustment for later moving of return addr.  Only
903  // applies to tail call optimized functions where the callee argument stack
904  // size is bigger than the callers.
905  if (TailCallReturnAddrDelta < 0) {
906    MachineInstr *MI =
907      BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
908              StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
909    // The EFLAGS implicit def is dead.
910    MI->getOperand(3).setIsDead();
911  }
912
913  //  uint64_t StackSize = MFI->getStackSize();
914  std::vector<MachineMove> &Moves = MMI->getFrameMoves();
915  const TargetData *TD = MF.getTarget().getTargetData();
916  int stackGrowth =
917    (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
918     TargetFrameInfo::StackGrowsUp ?
919     TD->getPointerSize() : -TD->getPointerSize());
920
921  uint64_t NumBytes = 0;
922  if (HasFP) {
923    // Calculate required stack adjustment
924    uint64_t FrameSize = StackSize - SlotSize;
925    if (needsStackRealignment(MF))
926      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
927
928    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
929
930    // Get the offset of the stack slot for the EBP register, which is
931    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
932    // Update the frame offset adjustment.
933    MFI->setOffsetAdjustment(-NumBytes);
934
935    // Save EBP/RBP into the appropriate stack slot...
936    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
937      .addReg(FramePtr, RegState::Kill);
938
939    if (needsFrameMoves) {
940      // Mark effective beginning of when frame pointer becomes valid.
941      unsigned FrameLabelId = MMI->NextLabelID();
942      BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
943
944      // Define the current CFA rule to use the provided offset.
945      if (StackSize) {
946        MachineLocation SPDst(MachineLocation::VirtualFP);
947        MachineLocation SPSrc(MachineLocation::VirtualFP,
948                              HasFP ? 2 * stackGrowth :
949                                      -StackSize + stackGrowth);
950        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
951      } else {
952        // FIXME: Verify & implement for FP
953        MachineLocation SPDst(StackPtr);
954        MachineLocation SPSrc(StackPtr, stackGrowth);
955        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
956      }
957
958      // Change the rule for the FramePtr to be an "offset" rule.
959      MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
960      MachineLocation FPSrc(FramePtr);
961      Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
962    }
963
964    // Update EBP with the new base value...
965    BuildMI(MBB, MBBI, DL,
966            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
967        .addReg(StackPtr);
968
969    if (needsFrameMoves) {
970      unsigned FrameLabelId = MMI->NextLabelID();
971      BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
972
973      // Define the current CFA to use the EBP/RBP register.
974      MachineLocation FPDst(FramePtr);
975      MachineLocation FPSrc(MachineLocation::VirtualFP);
976      Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
977    }
978
979    // Mark the FramePtr as live-in in every block except the entry.
980    for (MachineFunction::iterator I = next(MF.begin()), E = MF.end();
981         I != E; ++I)
982      I->addLiveIn(FramePtr);
983
984    // Realign stack
985    if (needsStackRealignment(MF)) {
986      MachineInstr *MI =
987        BuildMI(MBB, MBBI, DL,
988                TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
989                StackPtr).addReg(StackPtr).addImm(-MaxAlign);
990
991      // The EFLAGS implicit def is dead.
992      MI->getOperand(3).setIsDead();
993    }
994  } else {
995    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
996  }
997
998  // Skip the callee-saved push instructions.
999  bool RegsSaved = false;
1000  while (MBBI != MBB.end() &&
1001         (MBBI->getOpcode() == X86::PUSH32r ||
1002          MBBI->getOpcode() == X86::PUSH64r)) {
1003    RegsSaved = true;
1004    ++MBBI;
1005  }
1006
1007  if (RegsSaved && needsFrameMoves) {
1008    // Mark end of callee-saved push instructions.
1009    unsigned LabelId = MMI->NextLabelID();
1010    BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
1011
1012    // Emit DWARF info specifying the offsets of the callee-saved registers.
1013    emitCalleeSavedFrameMoves(MF, LabelId, HasFP ? FramePtr : StackPtr);
1014  }
1015
1016  if (MBBI != MBB.end())
1017    DL = MBBI->getDebugLoc();
1018
1019  // Adjust stack pointer: ESP -= numbytes.
1020  if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1021    // Check, whether EAX is livein for this function.
1022    bool isEAXAlive = false;
1023    for (MachineRegisterInfo::livein_iterator
1024           II = MF.getRegInfo().livein_begin(),
1025           EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
1026      unsigned Reg = II->first;
1027      isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1028                    Reg == X86::AH || Reg == X86::AL);
1029    }
1030
1031    // Function prologue calls _alloca to probe the stack when allocating more
1032    // than 4k bytes in one go. Touching the stack at 4K increments is necessary
1033    // to ensure that the guard pages used by the OS virtual memory manager are
1034    // allocated in correct sequence.
1035    if (!isEAXAlive) {
1036      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1037        .addImm(NumBytes);
1038      BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1039        .addExternalSymbol("_alloca");
1040    } else {
1041      // Save EAX
1042      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1043        .addReg(X86::EAX, RegState::Kill);
1044
1045      // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1046      // allocated bytes for EAX.
1047      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1048        .addImm(NumBytes - 4);
1049      BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1050        .addExternalSymbol("_alloca");
1051
1052      // Restore EAX
1053      MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
1054                                              X86::EAX),
1055                                      StackPtr, false, NumBytes - 4);
1056      MBB.insert(MBBI, MI);
1057    }
1058  } else if (NumBytes) {
1059    // If there is an SUB32ri of ESP immediately before this instruction, merge
1060    // the two. This can be the case when tail call elimination is enabled and
1061    // the callee has more arguments then the caller.
1062    NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
1063
1064    // If there is an ADD32ri or SUB32ri of ESP immediately after this
1065    // instruction, merge the two instructions.
1066    mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
1067
1068    if (NumBytes)
1069      emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1070  }
1071
1072  if (!HasFP && needsFrameMoves) {
1073    // Mark end of stack pointer adjustment.
1074    unsigned LabelId = MMI->NextLabelID();
1075    BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
1076
1077    // Define the current CFA rule to use the provided offset.
1078    if (StackSize) {
1079      MachineLocation SPDst(MachineLocation::VirtualFP);
1080      MachineLocation SPSrc(MachineLocation::VirtualFP,
1081                            -StackSize + stackGrowth);
1082      Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
1083    } else {
1084      // FIXME: Verify & implement for FP
1085      MachineLocation SPDst(StackPtr);
1086      MachineLocation SPSrc(StackPtr, stackGrowth);
1087      Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
1088    }
1089  }
1090}
1091
1092void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1093                                   MachineBasicBlock &MBB) const {
1094  const MachineFrameInfo *MFI = MF.getFrameInfo();
1095  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1096  MachineBasicBlock::iterator MBBI = prior(MBB.end());
1097  unsigned RetOpcode = MBBI->getOpcode();
1098  DebugLoc DL = MBBI->getDebugLoc();
1099
1100  switch (RetOpcode) {
1101  case X86::RET:
1102  case X86::RETI:
1103  case X86::TCRETURNdi:
1104  case X86::TCRETURNri:
1105  case X86::TCRETURNri64:
1106  case X86::TCRETURNdi64:
1107  case X86::EH_RETURN:
1108  case X86::EH_RETURN64:
1109  case X86::TAILJMPd:
1110  case X86::TAILJMPr:
1111  case X86::TAILJMPm: break;  // These are ok
1112  default:
1113    llvm_unreachable("Can only insert epilog into returning blocks");
1114  }
1115
1116  // Get the number of bytes to allocate from the FrameInfo
1117  uint64_t StackSize = MFI->getStackSize();
1118  uint64_t MaxAlign  = MFI->getMaxAlignment();
1119  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1120  uint64_t NumBytes = 0;
1121
1122  if (hasFP(MF)) {
1123    // Calculate required stack adjustment
1124    uint64_t FrameSize = StackSize - SlotSize;
1125    if (needsStackRealignment(MF))
1126      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
1127
1128    NumBytes = FrameSize - CSSize;
1129
1130    // pop EBP.
1131    BuildMI(MBB, MBBI, DL,
1132            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1133  } else {
1134    NumBytes = StackSize - CSSize;
1135  }
1136
1137  // Skip the callee-saved pop instructions.
1138  MachineBasicBlock::iterator LastCSPop = MBBI;
1139  while (MBBI != MBB.begin()) {
1140    MachineBasicBlock::iterator PI = prior(MBBI);
1141    unsigned Opc = PI->getOpcode();
1142    if (Opc != X86::POP32r && Opc != X86::POP64r &&
1143        !PI->getDesc().isTerminator())
1144      break;
1145    --MBBI;
1146  }
1147
1148  DL = MBBI->getDebugLoc();
1149
1150  // If there is an ADD32ri or SUB32ri of ESP immediately before this
1151  // instruction, merge the two instructions.
1152  if (NumBytes || MFI->hasVarSizedObjects())
1153    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1154
1155  // If dynamic alloca is used, then reset esp to point to the last callee-saved
1156  // slot before popping them off! Same applies for the case, when stack was
1157  // realigned
1158  if (needsStackRealignment(MF)) {
1159    // We cannot use LEA here, because stack pointer was realigned. We need to
1160    // deallocate local frame back
1161    if (CSSize) {
1162      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1163      MBBI = prior(LastCSPop);
1164    }
1165
1166    BuildMI(MBB, MBBI, DL,
1167            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1168            StackPtr).addReg(FramePtr);
1169  } else if (MFI->hasVarSizedObjects()) {
1170    if (CSSize) {
1171      unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1172      MachineInstr *MI = addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
1173                                         FramePtr, false, -CSSize);
1174      MBB.insert(MBBI, MI);
1175    } else
1176      BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1177              StackPtr).addReg(FramePtr);
1178
1179  } else {
1180    // adjust stack pointer back: ESP += numbytes
1181    if (NumBytes)
1182      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1183  }
1184
1185  // We're returning from function via eh_return.
1186  if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1187    MBBI = prior(MBB.end());
1188    MachineOperand &DestAddr  = MBBI->getOperand(0);
1189    assert(DestAddr.isReg() && "Offset should be in register!");
1190    BuildMI(MBB, MBBI, DL,
1191            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1192            StackPtr).addReg(DestAddr.getReg());
1193  // Tail call return: adjust the stack pointer and jump to callee
1194  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1195             RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
1196    MBBI = prior(MBB.end());
1197    MachineOperand &JumpTarget = MBBI->getOperand(0);
1198    MachineOperand &StackAdjust = MBBI->getOperand(1);
1199    assert(StackAdjust.isImm() && "Expecting immediate value.");
1200
1201    // Adjust stack pointer.
1202    int StackAdj = StackAdjust.getImm();
1203    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1204    int Offset = 0;
1205    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1206    // Incoporate the retaddr area.
1207    Offset = StackAdj-MaxTCDelta;
1208    assert(Offset >= 0 && "Offset should never be negative");
1209
1210    if (Offset) {
1211      // Check for possible merge with preceeding ADD instruction.
1212      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1213      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
1214    }
1215
1216    // Jump to label or value in register.
1217    if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
1218      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPd)).
1219        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1220    else if (RetOpcode== X86::TCRETURNri64)
1221      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
1222    else
1223       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg());
1224
1225    // Delete the pseudo instruction TCRETURN.
1226    MBB.erase(MBBI);
1227  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1228             (X86FI->getTCReturnAddrDelta() < 0)) {
1229    // Add the return addr area delta back since we are not tail calling.
1230    int delta = -1*X86FI->getTCReturnAddrDelta();
1231    MBBI = prior(MBB.end());
1232    // Check for possible merge with preceeding ADD instruction.
1233    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1234    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
1235  }
1236}
1237
1238unsigned X86RegisterInfo::getRARegister() const {
1239  if (Is64Bit)
1240    return X86::RIP;  // Should have dwarf #16
1241  else
1242    return X86::EIP;  // Should have dwarf #8
1243}
1244
1245unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
1246  return hasFP(MF) ? FramePtr : StackPtr;
1247}
1248
1249void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
1250                                                                         const {
1251  // Calculate amount of bytes used for return address storing
1252  int stackGrowth = (Is64Bit ? -8 : -4);
1253
1254  // Initial state of the frame pointer is esp+4.
1255  MachineLocation Dst(MachineLocation::VirtualFP);
1256  MachineLocation Src(StackPtr, stackGrowth);
1257  Moves.push_back(MachineMove(0, Dst, Src));
1258
1259  // Add return address to move list
1260  MachineLocation CSDst(StackPtr, stackGrowth);
1261  MachineLocation CSSrc(getRARegister());
1262  Moves.push_back(MachineMove(0, CSDst, CSSrc));
1263}
1264
1265unsigned X86RegisterInfo::getEHExceptionRegister() const {
1266  llvm_unreachable("What is the exception register");
1267  return 0;
1268}
1269
1270unsigned X86RegisterInfo::getEHHandlerRegister() const {
1271  llvm_unreachable("What is the exception handler register");
1272  return 0;
1273}
1274
1275namespace llvm {
1276unsigned getX86SubSuperRegister(unsigned Reg, MVT VT, bool High) {
1277  switch (VT.getSimpleVT()) {
1278  default: return Reg;
1279  case MVT::i8:
1280    if (High) {
1281      switch (Reg) {
1282      default: return 0;
1283      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1284        return X86::AH;
1285      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1286        return X86::DH;
1287      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1288        return X86::CH;
1289      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1290        return X86::BH;
1291      }
1292    } else {
1293      switch (Reg) {
1294      default: return 0;
1295      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1296        return X86::AL;
1297      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1298        return X86::DL;
1299      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1300        return X86::CL;
1301      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1302        return X86::BL;
1303      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1304        return X86::SIL;
1305      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1306        return X86::DIL;
1307      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1308        return X86::BPL;
1309      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1310        return X86::SPL;
1311      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1312        return X86::R8B;
1313      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1314        return X86::R9B;
1315      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1316        return X86::R10B;
1317      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1318        return X86::R11B;
1319      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1320        return X86::R12B;
1321      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1322        return X86::R13B;
1323      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1324        return X86::R14B;
1325      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1326        return X86::R15B;
1327      }
1328    }
1329  case MVT::i16:
1330    switch (Reg) {
1331    default: return Reg;
1332    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1333      return X86::AX;
1334    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1335      return X86::DX;
1336    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1337      return X86::CX;
1338    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1339      return X86::BX;
1340    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1341      return X86::SI;
1342    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1343      return X86::DI;
1344    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1345      return X86::BP;
1346    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1347      return X86::SP;
1348    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1349      return X86::R8W;
1350    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1351      return X86::R9W;
1352    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1353      return X86::R10W;
1354    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1355      return X86::R11W;
1356    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1357      return X86::R12W;
1358    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1359      return X86::R13W;
1360    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1361      return X86::R14W;
1362    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1363      return X86::R15W;
1364    }
1365  case MVT::i32:
1366    switch (Reg) {
1367    default: return Reg;
1368    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1369      return X86::EAX;
1370    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1371      return X86::EDX;
1372    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1373      return X86::ECX;
1374    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1375      return X86::EBX;
1376    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1377      return X86::ESI;
1378    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1379      return X86::EDI;
1380    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1381      return X86::EBP;
1382    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1383      return X86::ESP;
1384    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1385      return X86::R8D;
1386    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1387      return X86::R9D;
1388    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1389      return X86::R10D;
1390    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1391      return X86::R11D;
1392    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1393      return X86::R12D;
1394    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1395      return X86::R13D;
1396    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1397      return X86::R14D;
1398    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1399      return X86::R15D;
1400    }
1401  case MVT::i64:
1402    switch (Reg) {
1403    default: return Reg;
1404    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1405      return X86::RAX;
1406    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1407      return X86::RDX;
1408    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1409      return X86::RCX;
1410    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1411      return X86::RBX;
1412    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1413      return X86::RSI;
1414    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1415      return X86::RDI;
1416    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1417      return X86::RBP;
1418    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1419      return X86::RSP;
1420    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1421      return X86::R8;
1422    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1423      return X86::R9;
1424    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1425      return X86::R10;
1426    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1427      return X86::R11;
1428    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1429      return X86::R12;
1430    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1431      return X86::R13;
1432    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1433      return X86::R14;
1434    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1435      return X86::R15;
1436    }
1437  }
1438
1439  return Reg;
1440}
1441}
1442
1443#include "X86GenRegisterInfo.inc"
1444
1445namespace {
1446  struct VISIBILITY_HIDDEN MSAC : public MachineFunctionPass {
1447    static char ID;
1448    MSAC() : MachineFunctionPass(&ID) {}
1449
1450    virtual bool runOnMachineFunction(MachineFunction &MF) {
1451      MachineFrameInfo *FFI = MF.getFrameInfo();
1452      MachineRegisterInfo &RI = MF.getRegInfo();
1453
1454      // Calculate max stack alignment of all already allocated stack objects.
1455      unsigned MaxAlign = calculateMaxStackAlignment(FFI);
1456
1457      // Be over-conservative: scan over all vreg defs and find, whether vector
1458      // registers are used. If yes - there is probability, that vector register
1459      // will be spilled and thus stack needs to be aligned properly.
1460      for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
1461           RegNum < RI.getLastVirtReg(); ++RegNum)
1462        MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment());
1463
1464      if (FFI->getMaxAlignment() == MaxAlign)
1465        return false;
1466
1467      FFI->setMaxAlignment(MaxAlign);
1468      return true;
1469    }
1470
1471    virtual const char *getPassName() const {
1472      return "X86 Maximal Stack Alignment Calculator";
1473    }
1474
1475    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1476      AU.setPreservesCFG();
1477      MachineFunctionPass::getAnalysisUsage(AU);
1478    }
1479  };
1480
1481  char MSAC::ID = 0;
1482}
1483
1484FunctionPass*
1485llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); }
1486