X86RegisterInfo.cpp revision ee465749313579ccd91575ca8acf70b75c221a2c
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the MRegisterInfo class.  This
11// file is responsible for the frame pointer elimination optimization on X86.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86RegisterInfo.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/Type.h"
24#include "llvm/CodeGen/ValueTypes.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineLocation.h"
29#include "llvm/Target/TargetAsmInfo.h"
30#include "llvm/Target/TargetFrameInfo.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37using namespace llvm;
38
39namespace {
40  cl::opt<bool>
41  NoFusing("disable-spill-fusing",
42           cl::desc("Disable fusing of spill code into instructions"));
43  cl::opt<bool>
44  PrintFailedFusing("print-failed-fuse-candidates",
45                    cl::desc("Print instructions that the allocator wants to"
46                             " fuse, but the X86 backend currently can't"),
47                    cl::Hidden);
48}
49
50X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
51                                 const TargetInstrInfo &tii)
52  : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP),
53    TM(tm), TII(tii) {
54  // Cache some information.
55  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
56  Is64Bit = Subtarget->is64Bit();
57  if (Is64Bit) {
58    SlotSize = 8;
59    StackPtr = X86::RSP;
60    FramePtr = X86::RBP;
61  } else {
62    SlotSize = 4;
63    StackPtr = X86::ESP;
64    FramePtr = X86::EBP;
65  }
66}
67
68// getX86RegNum - This function maps LLVM register identifiers to their X86
69// specific numbering, which is used in various places encoding instructions.
70//
71unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
72  switch(RegNo) {
73  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
74  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
75  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
76  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
77  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
78    return N86::ESP;
79  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
80    return N86::EBP;
81  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
82    return N86::ESI;
83  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
84    return N86::EDI;
85
86  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
87    return N86::EAX;
88  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
89    return N86::ECX;
90  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
91    return N86::EDX;
92  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
93    return N86::EBX;
94  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
95    return N86::ESP;
96  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
97    return N86::EBP;
98  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
99    return N86::ESI;
100  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
101    return N86::EDI;
102
103  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
104  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
105    return RegNo-X86::ST0;
106
107  case X86::XMM0:  case X86::XMM1:  case X86::XMM2:  case X86::XMM3:
108  case X86::XMM4:  case X86::XMM5:  case X86::XMM6:  case X86::XMM7:
109    return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM0);
110  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
111  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
112    return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM8);
113
114  default:
115    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
116    assert(0 && "Register allocator hasn't allocated reg correctly yet!");
117    return 0;
118  }
119}
120
121bool X86RegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
122                                                MachineBasicBlock::iterator MI,
123                                const std::vector<CalleeSavedInfo> &CSI) const {
124  if (CSI.empty())
125    return false;
126
127  MachineFunction &MF = *MBB.getParent();
128  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
129  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
130  unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
131  for (unsigned i = CSI.size(); i != 0; --i) {
132    unsigned Reg = CSI[i-1].getReg();
133    // Add the callee-saved register as live-in. It's killed at the spill.
134    MBB.addLiveIn(Reg);
135    BuildMI(MBB, MI, TII.get(Opc)).addReg(Reg);
136  }
137  return true;
138}
139
140bool X86RegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
141                                                 MachineBasicBlock::iterator MI,
142                                const std::vector<CalleeSavedInfo> &CSI) const {
143  if (CSI.empty())
144    return false;
145
146  unsigned Opc = Is64Bit ? X86::POP64r : X86::POP32r;
147  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
148    unsigned Reg = CSI[i].getReg();
149    BuildMI(MBB, MI, TII.get(Opc), Reg);
150  }
151  return true;
152}
153
154void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
155                                          MachineBasicBlock::iterator MI,
156                                          unsigned SrcReg, int FrameIdx,
157                                          const TargetRegisterClass *RC) const {
158  unsigned Opc;
159  if (RC == &X86::GR64RegClass) {
160    Opc = X86::MOV64mr;
161  } else if (RC == &X86::GR32RegClass) {
162    Opc = X86::MOV32mr;
163  } else if (RC == &X86::GR16RegClass) {
164    Opc = X86::MOV16mr;
165  } else if (RC == &X86::GR8RegClass) {
166    Opc = X86::MOV8mr;
167  } else if (RC == &X86::GR32_RegClass) {
168    Opc = X86::MOV32_mr;
169  } else if (RC == &X86::GR16_RegClass) {
170    Opc = X86::MOV16_mr;
171  } else if (RC == &X86::RFP64RegClass || RC == &X86::RSTRegClass) {
172    Opc = X86::ST_Fp64m;
173  } else if (RC == &X86::RFP32RegClass) {
174    Opc = X86::ST_Fp32m;
175  } else if (RC == &X86::FR32RegClass) {
176    Opc = X86::MOVSSmr;
177  } else if (RC == &X86::FR64RegClass) {
178    Opc = X86::MOVSDmr;
179  } else if (RC == &X86::VR128RegClass) {
180    Opc = X86::MOVAPSmr;
181  } else if (RC == &X86::VR64RegClass) {
182    Opc = X86::MMX_MOVQ64mr;
183  } else {
184    assert(0 && "Unknown regclass");
185    abort();
186  }
187  addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx)
188    .addReg(SrcReg, false, false, true);
189}
190
191void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
192                                           MachineBasicBlock::iterator MI,
193                                           unsigned DestReg, int FrameIdx,
194                                           const TargetRegisterClass *RC) const{
195  unsigned Opc;
196  if (RC == &X86::GR64RegClass) {
197    Opc = X86::MOV64rm;
198  } else if (RC == &X86::GR32RegClass) {
199    Opc = X86::MOV32rm;
200  } else if (RC == &X86::GR16RegClass) {
201    Opc = X86::MOV16rm;
202  } else if (RC == &X86::GR8RegClass) {
203    Opc = X86::MOV8rm;
204  } else if (RC == &X86::GR32_RegClass) {
205    Opc = X86::MOV32_rm;
206  } else if (RC == &X86::GR16_RegClass) {
207    Opc = X86::MOV16_rm;
208  } else if (RC == &X86::RFP64RegClass || RC == &X86::RSTRegClass) {
209    Opc = X86::LD_Fp64m;
210  } else if (RC == &X86::RFP32RegClass) {
211    Opc = X86::LD_Fp32m;
212  } else if (RC == &X86::FR32RegClass) {
213    Opc = X86::MOVSSrm;
214  } else if (RC == &X86::FR64RegClass) {
215    Opc = X86::MOVSDrm;
216  } else if (RC == &X86::VR128RegClass) {
217    Opc = X86::MOVAPSrm;
218  } else if (RC == &X86::VR64RegClass) {
219    Opc = X86::MMX_MOVQ64rm;
220  } else {
221    assert(0 && "Unknown regclass");
222    abort();
223  }
224  addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx);
225}
226
227void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
228                                   MachineBasicBlock::iterator MI,
229                                   unsigned DestReg, unsigned SrcReg,
230                                   const TargetRegisterClass *RC) const {
231  unsigned Opc;
232  if (RC == &X86::GR64RegClass) {
233    Opc = X86::MOV64rr;
234  } else if (RC == &X86::GR32RegClass) {
235    Opc = X86::MOV32rr;
236  } else if (RC == &X86::GR16RegClass) {
237    Opc = X86::MOV16rr;
238  } else if (RC == &X86::GR8RegClass) {
239    Opc = X86::MOV8rr;
240  } else if (RC == &X86::GR32_RegClass) {
241    Opc = X86::MOV32_rr;
242  } else if (RC == &X86::GR16_RegClass) {
243    Opc = X86::MOV16_rr;
244  } else if (RC == &X86::RFP32RegClass) {
245    Opc = X86::MOV_Fp3232;
246  } else if (RC == &X86::RFP64RegClass || RC == &X86::RSTRegClass) {
247    Opc = X86::MOV_Fp6464;
248  } else if (RC == &X86::FR32RegClass) {
249    Opc = X86::FsMOVAPSrr;
250  } else if (RC == &X86::FR64RegClass) {
251    Opc = X86::FsMOVAPDrr;
252  } else if (RC == &X86::VR128RegClass) {
253    Opc = X86::MOVAPSrr;
254  } else if (RC == &X86::VR64RegClass) {
255    Opc = X86::MMX_MOVQ64rr;
256  } else {
257    assert(0 && "Unknown regclass");
258    abort();
259  }
260  BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg);
261}
262
263
264void X86RegisterInfo::reMaterialize(MachineBasicBlock &MBB,
265                                    MachineBasicBlock::iterator I,
266                                    unsigned DestReg,
267                                    const MachineInstr *Orig) const {
268  MachineInstr *MI = Orig->clone();
269  MI->getOperand(0).setReg(DestReg);
270  MBB.insert(I, MI);
271}
272
273static MachineInstr *FuseTwoAddrInst(unsigned Opcode, unsigned FrameIndex,
274                                     MachineInstr *MI,
275                                     const TargetInstrInfo &TII) {
276  unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2;
277  // Create the base instruction with the memory operand as the first part.
278  MachineInstrBuilder MIB = addFrameReference(BuildMI(TII.get(Opcode)),
279                                              FrameIndex);
280
281  // Loop over the rest of the ri operands, converting them over.
282  for (unsigned i = 0; i != NumOps; ++i) {
283    MachineOperand &MO = MI->getOperand(i+2);
284    if (MO.isReg())
285      MIB = MIB.addReg(MO.getReg(), false, MO.isImplicit());
286    else if (MO.isImm())
287      MIB = MIB.addImm(MO.getImm());
288    else if (MO.isGlobalAddress())
289      MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
290    else if (MO.isJumpTableIndex())
291      MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex());
292    else if (MO.isExternalSymbol())
293      MIB = MIB.addExternalSymbol(MO.getSymbolName());
294    else
295      assert(0 && "Unknown operand type!");
296  }
297  return MIB;
298}
299
300static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
301                              unsigned FrameIndex, MachineInstr *MI,
302                              const TargetInstrInfo &TII) {
303  MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
304
305  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
306    MachineOperand &MO = MI->getOperand(i);
307    if (i == OpNo) {
308      assert(MO.isReg() && "Expected to fold into reg operand!");
309      MIB = addFrameReference(MIB, FrameIndex);
310    } else if (MO.isReg())
311      MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit());
312    else if (MO.isImm())
313      MIB = MIB.addImm(MO.getImm());
314    else if (MO.isGlobalAddress())
315      MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
316    else if (MO.isJumpTableIndex())
317      MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex());
318    else if (MO.isExternalSymbol())
319      MIB = MIB.addExternalSymbol(MO.getSymbolName());
320    else
321      assert(0 && "Unknown operand for FuseInst!");
322  }
323  return MIB;
324}
325
326static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII,
327                                unsigned Opcode, unsigned FrameIndex,
328                                MachineInstr *MI) {
329  return addFrameReference(BuildMI(TII.get(Opcode)), FrameIndex).addImm(0);
330}
331
332
333//===----------------------------------------------------------------------===//
334// Efficient Lookup Table Support
335//===----------------------------------------------------------------------===//
336
337namespace {
338  /// TableEntry - Maps the 'from' opcode to a fused form of the 'to' opcode.
339  ///
340  struct TableEntry {
341    unsigned from;                      // Original opcode.
342    unsigned to;                        // New opcode.
343
344    // less operators used by STL search.
345    bool operator<(const TableEntry &TE) const { return from < TE.from; }
346    friend bool operator<(const TableEntry &TE, unsigned V) {
347      return TE.from < V;
348    }
349    friend bool operator<(unsigned V, const TableEntry &TE) {
350      return V < TE.from;
351    }
352  };
353}
354
355/// TableIsSorted - Return true if the table is in 'from' opcode order.
356///
357static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
358  for (unsigned i = 1; i != NumEntries; ++i)
359    if (!(Table[i-1] < Table[i])) {
360      cerr << "Entries out of order " << Table[i-1].from
361           << " " << Table[i].from << "\n";
362      return false;
363    }
364  return true;
365}
366
367/// TableLookup - Return the table entry matching the specified opcode.
368/// Otherwise return NULL.
369static const TableEntry *TableLookup(const TableEntry *Table, unsigned N,
370                                unsigned Opcode) {
371  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
372  if (I != Table+N && I->from == Opcode)
373    return I;
374  return NULL;
375}
376
377#define ARRAY_SIZE(TABLE)  \
378   (sizeof(TABLE)/sizeof(TABLE[0]))
379
380#ifdef NDEBUG
381#define ASSERT_SORTED(TABLE)
382#else
383#define ASSERT_SORTED(TABLE)                                              \
384  { static bool TABLE##Checked = false;                                   \
385    if (!TABLE##Checked) {                                                \
386       assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) &&                  \
387              "All lookup tables must be sorted for efficient access!");  \
388       TABLE##Checked = true;                                             \
389    }                                                                     \
390  }
391#endif
392
393
394MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI,
395                                                 unsigned i,
396                                                 int FrameIndex) const {
397  // Check switch flag
398  if (NoFusing) return NULL;
399
400  // Table (and size) to search
401  const TableEntry *OpcodeTablePtr = NULL;
402  unsigned OpcodeTableSize = 0;
403  bool isTwoAddrFold = false;
404  unsigned NumOps = TII.getNumOperands(MI->getOpcode());
405  bool isTwoAddr = NumOps > 1 &&
406    MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1;
407
408  MachineInstr *NewMI = NULL;
409  // Folding a memory location into the two-address part of a two-address
410  // instruction is different than folding it other places.  It requires
411  // replacing the *two* registers with the memory location.
412  if (isTwoAddr && NumOps >= 2 && i < 2 &&
413      MI->getOperand(0).isReg() &&
414      MI->getOperand(1).isReg() &&
415      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
416    static const TableEntry OpcodeTable[] = {
417      { X86::ADC32ri,     X86::ADC32mi },
418      { X86::ADC32ri8,    X86::ADC32mi8 },
419      { X86::ADC32rr,     X86::ADC32mr },
420      { X86::ADC64ri32,   X86::ADC64mi32 },
421      { X86::ADC64ri8,    X86::ADC64mi8 },
422      { X86::ADC64rr,     X86::ADC64mr },
423      { X86::ADD16ri,     X86::ADD16mi },
424      { X86::ADD16ri8,    X86::ADD16mi8 },
425      { X86::ADD16rr,     X86::ADD16mr },
426      { X86::ADD32ri,     X86::ADD32mi },
427      { X86::ADD32ri8,    X86::ADD32mi8 },
428      { X86::ADD32rr,     X86::ADD32mr },
429      { X86::ADD64ri32,   X86::ADD64mi32 },
430      { X86::ADD64ri8,    X86::ADD64mi8 },
431      { X86::ADD64rr,     X86::ADD64mr },
432      { X86::ADD8ri,      X86::ADD8mi },
433      { X86::ADD8rr,      X86::ADD8mr },
434      { X86::AND16ri,     X86::AND16mi },
435      { X86::AND16ri8,    X86::AND16mi8 },
436      { X86::AND16rr,     X86::AND16mr },
437      { X86::AND32ri,     X86::AND32mi },
438      { X86::AND32ri8,    X86::AND32mi8 },
439      { X86::AND32rr,     X86::AND32mr },
440      { X86::AND64ri32,   X86::AND64mi32 },
441      { X86::AND64ri8,    X86::AND64mi8 },
442      { X86::AND64rr,     X86::AND64mr },
443      { X86::AND8ri,      X86::AND8mi },
444      { X86::AND8rr,      X86::AND8mr },
445      { X86::DEC16r,      X86::DEC16m },
446      { X86::DEC32r,      X86::DEC32m },
447      { X86::DEC64_16r,   X86::DEC16m },
448      { X86::DEC64_32r,   X86::DEC32m },
449      { X86::DEC64r,      X86::DEC64m },
450      { X86::DEC8r,       X86::DEC8m },
451      { X86::INC16r,      X86::INC16m },
452      { X86::INC32r,      X86::INC32m },
453      { X86::INC64_16r,   X86::INC16m },
454      { X86::INC64_32r,   X86::INC32m },
455      { X86::INC64r,      X86::INC64m },
456      { X86::INC8r,       X86::INC8m },
457      { X86::NEG16r,      X86::NEG16m },
458      { X86::NEG32r,      X86::NEG32m },
459      { X86::NEG64r,      X86::NEG64m },
460      { X86::NEG8r,       X86::NEG8m },
461      { X86::NOT16r,      X86::NOT16m },
462      { X86::NOT32r,      X86::NOT32m },
463      { X86::NOT64r,      X86::NOT64m },
464      { X86::NOT8r,       X86::NOT8m },
465      { X86::OR16ri,      X86::OR16mi },
466      { X86::OR16ri8,     X86::OR16mi8 },
467      { X86::OR16rr,      X86::OR16mr },
468      { X86::OR32ri,      X86::OR32mi },
469      { X86::OR32ri8,     X86::OR32mi8 },
470      { X86::OR32rr,      X86::OR32mr },
471      { X86::OR64ri32,    X86::OR64mi32 },
472      { X86::OR64ri8,     X86::OR64mi8 },
473      { X86::OR64rr,      X86::OR64mr },
474      { X86::OR8ri,       X86::OR8mi },
475      { X86::OR8rr,       X86::OR8mr },
476      { X86::ROL16r1,     X86::ROL16m1 },
477      { X86::ROL16rCL,    X86::ROL16mCL },
478      { X86::ROL16ri,     X86::ROL16mi },
479      { X86::ROL32r1,     X86::ROL32m1 },
480      { X86::ROL32rCL,    X86::ROL32mCL },
481      { X86::ROL32ri,     X86::ROL32mi },
482      { X86::ROL64r1,     X86::ROL64m1 },
483      { X86::ROL64rCL,    X86::ROL64mCL },
484      { X86::ROL64ri,     X86::ROL64mi },
485      { X86::ROL8r1,      X86::ROL8m1 },
486      { X86::ROL8rCL,     X86::ROL8mCL },
487      { X86::ROL8ri,      X86::ROL8mi },
488      { X86::ROR16r1,     X86::ROR16m1 },
489      { X86::ROR16rCL,    X86::ROR16mCL },
490      { X86::ROR16ri,     X86::ROR16mi },
491      { X86::ROR32r1,     X86::ROR32m1 },
492      { X86::ROR32rCL,    X86::ROR32mCL },
493      { X86::ROR32ri,     X86::ROR32mi },
494      { X86::ROR64r1,     X86::ROR64m1 },
495      { X86::ROR64rCL,    X86::ROR64mCL },
496      { X86::ROR64ri,     X86::ROR64mi },
497      { X86::ROR8r1,      X86::ROR8m1 },
498      { X86::ROR8rCL,     X86::ROR8mCL },
499      { X86::ROR8ri,      X86::ROR8mi },
500      { X86::SAR16r1,     X86::SAR16m1 },
501      { X86::SAR16rCL,    X86::SAR16mCL },
502      { X86::SAR16ri,     X86::SAR16mi },
503      { X86::SAR32r1,     X86::SAR32m1 },
504      { X86::SAR32rCL,    X86::SAR32mCL },
505      { X86::SAR32ri,     X86::SAR32mi },
506      { X86::SAR64r1,     X86::SAR64m1 },
507      { X86::SAR64rCL,    X86::SAR64mCL },
508      { X86::SAR64ri,     X86::SAR64mi },
509      { X86::SAR8r1,      X86::SAR8m1 },
510      { X86::SAR8rCL,     X86::SAR8mCL },
511      { X86::SAR8ri,      X86::SAR8mi },
512      { X86::SBB32ri,     X86::SBB32mi },
513      { X86::SBB32ri8,    X86::SBB32mi8 },
514      { X86::SBB32rr,     X86::SBB32mr },
515      { X86::SBB64ri32,   X86::SBB64mi32 },
516      { X86::SBB64ri8,    X86::SBB64mi8 },
517      { X86::SBB64rr,     X86::SBB64mr },
518      { X86::SHL16r1,     X86::SHL16m1 },
519      { X86::SHL16rCL,    X86::SHL16mCL },
520      { X86::SHL16ri,     X86::SHL16mi },
521      { X86::SHL32r1,     X86::SHL32m1 },
522      { X86::SHL32rCL,    X86::SHL32mCL },
523      { X86::SHL32ri,     X86::SHL32mi },
524      { X86::SHL64r1,     X86::SHL64m1 },
525      { X86::SHL64rCL,    X86::SHL64mCL },
526      { X86::SHL64ri,     X86::SHL64mi },
527      { X86::SHL8r1,      X86::SHL8m1 },
528      { X86::SHL8rCL,     X86::SHL8mCL },
529      { X86::SHL8ri,      X86::SHL8mi },
530      { X86::SHLD16rrCL,  X86::SHLD16mrCL },
531      { X86::SHLD16rri8,  X86::SHLD16mri8 },
532      { X86::SHLD32rrCL,  X86::SHLD32mrCL },
533      { X86::SHLD32rri8,  X86::SHLD32mri8 },
534      { X86::SHLD64rrCL,  X86::SHLD64mrCL },
535      { X86::SHLD64rri8,  X86::SHLD64mri8 },
536      { X86::SHR16r1,     X86::SHR16m1 },
537      { X86::SHR16rCL,    X86::SHR16mCL },
538      { X86::SHR16ri,     X86::SHR16mi },
539      { X86::SHR32r1,     X86::SHR32m1 },
540      { X86::SHR32rCL,    X86::SHR32mCL },
541      { X86::SHR32ri,     X86::SHR32mi },
542      { X86::SHR64r1,     X86::SHR64m1 },
543      { X86::SHR64rCL,    X86::SHR64mCL },
544      { X86::SHR64ri,     X86::SHR64mi },
545      { X86::SHR8r1,      X86::SHR8m1 },
546      { X86::SHR8rCL,     X86::SHR8mCL },
547      { X86::SHR8ri,      X86::SHR8mi },
548      { X86::SHRD16rrCL,  X86::SHRD16mrCL },
549      { X86::SHRD16rri8,  X86::SHRD16mri8 },
550      { X86::SHRD32rrCL,  X86::SHRD32mrCL },
551      { X86::SHRD32rri8,  X86::SHRD32mri8 },
552      { X86::SHRD64rrCL,  X86::SHRD64mrCL },
553      { X86::SHRD64rri8,  X86::SHRD64mri8 },
554      { X86::SUB16ri,     X86::SUB16mi },
555      { X86::SUB16ri8,    X86::SUB16mi8 },
556      { X86::SUB16rr,     X86::SUB16mr },
557      { X86::SUB32ri,     X86::SUB32mi },
558      { X86::SUB32ri8,    X86::SUB32mi8 },
559      { X86::SUB32rr,     X86::SUB32mr },
560      { X86::SUB64ri32,   X86::SUB64mi32 },
561      { X86::SUB64ri8,    X86::SUB64mi8 },
562      { X86::SUB64rr,     X86::SUB64mr },
563      { X86::SUB8ri,      X86::SUB8mi },
564      { X86::SUB8rr,      X86::SUB8mr },
565      { X86::XOR16ri,     X86::XOR16mi },
566      { X86::XOR16ri8,    X86::XOR16mi8 },
567      { X86::XOR16rr,     X86::XOR16mr },
568      { X86::XOR32ri,     X86::XOR32mi },
569      { X86::XOR32ri8,    X86::XOR32mi8 },
570      { X86::XOR32rr,     X86::XOR32mr },
571      { X86::XOR64ri32,   X86::XOR64mi32 },
572      { X86::XOR64ri8,    X86::XOR64mi8 },
573      { X86::XOR64rr,     X86::XOR64mr },
574      { X86::XOR8ri,      X86::XOR8mi },
575      { X86::XOR8rr,      X86::XOR8mr }
576    };
577    ASSERT_SORTED(OpcodeTable);
578    OpcodeTablePtr = OpcodeTable;
579    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
580    isTwoAddrFold = true;
581  } else if (i == 0) { // If operand 0
582    if (MI->getOpcode() == X86::MOV16r0)
583      NewMI = MakeM0Inst(TII, X86::MOV16mi, FrameIndex, MI);
584    else if (MI->getOpcode() == X86::MOV32r0)
585      NewMI = MakeM0Inst(TII, X86::MOV32mi, FrameIndex, MI);
586    else if (MI->getOpcode() == X86::MOV64r0)
587      NewMI = MakeM0Inst(TII, X86::MOV64mi32, FrameIndex, MI);
588    else if (MI->getOpcode() == X86::MOV8r0)
589      NewMI = MakeM0Inst(TII, X86::MOV8mi, FrameIndex, MI);
590    if (NewMI) {
591      NewMI->copyKillDeadInfo(MI);
592      return NewMI;
593    }
594
595    static const TableEntry OpcodeTable[] = {
596      { X86::CMP16ri,     X86::CMP16mi },
597      { X86::CMP16ri8,    X86::CMP16mi8 },
598      { X86::CMP32ri,     X86::CMP32mi },
599      { X86::CMP32ri8,    X86::CMP32mi8 },
600      { X86::CMP8ri,      X86::CMP8mi },
601      { X86::DIV16r,      X86::DIV16m },
602      { X86::DIV32r,      X86::DIV32m },
603      { X86::DIV64r,      X86::DIV64m },
604      { X86::DIV8r,       X86::DIV8m },
605      { X86::FsMOVAPDrr,  X86::MOVSDmr },
606      { X86::FsMOVAPSrr,  X86::MOVSSmr },
607      { X86::IDIV16r,     X86::IDIV16m },
608      { X86::IDIV32r,     X86::IDIV32m },
609      { X86::IDIV64r,     X86::IDIV64m },
610      { X86::IDIV8r,      X86::IDIV8m },
611      { X86::IMUL16r,     X86::IMUL16m },
612      { X86::IMUL32r,     X86::IMUL32m },
613      { X86::IMUL64r,     X86::IMUL64m },
614      { X86::IMUL8r,      X86::IMUL8m },
615      { X86::MOV16ri,     X86::MOV16mi },
616      { X86::MOV16rr,     X86::MOV16mr },
617      { X86::MOV32ri,     X86::MOV32mi },
618      { X86::MOV32rr,     X86::MOV32mr },
619      { X86::MOV64ri32,   X86::MOV64mi32 },
620      { X86::MOV64rr,     X86::MOV64mr },
621      { X86::MOV8ri,      X86::MOV8mi },
622      { X86::MOV8rr,      X86::MOV8mr },
623      { X86::MOVAPDrr,    X86::MOVAPDmr },
624      { X86::MOVAPSrr,    X86::MOVAPSmr },
625      { X86::MOVPDI2DIrr, X86::MOVPDI2DImr },
626      { X86::MOVPQIto64rr,X86::MOVPQIto64mr },
627      { X86::MOVPS2SSrr,  X86::MOVPS2SSmr },
628      { X86::MOVSDrr,     X86::MOVSDmr },
629      { X86::MOVSDto64rr, X86::MOVSDto64mr },
630      { X86::MOVSS2DIrr,  X86::MOVSS2DImr },
631      { X86::MOVSSrr,     X86::MOVSSmr },
632      { X86::MOVUPDrr,    X86::MOVUPDmr },
633      { X86::MOVUPSrr,    X86::MOVUPSmr },
634      { X86::MUL16r,      X86::MUL16m },
635      { X86::MUL32r,      X86::MUL32m },
636      { X86::MUL64r,      X86::MUL64m },
637      { X86::MUL8r,       X86::MUL8m },
638      { X86::SETAEr,      X86::SETAEm },
639      { X86::SETAr,       X86::SETAm },
640      { X86::SETBEr,      X86::SETBEm },
641      { X86::SETBr,       X86::SETBm },
642      { X86::SETEr,       X86::SETEm },
643      { X86::SETGEr,      X86::SETGEm },
644      { X86::SETGr,       X86::SETGm },
645      { X86::SETLEr,      X86::SETLEm },
646      { X86::SETLr,       X86::SETLm },
647      { X86::SETNEr,      X86::SETNEm },
648      { X86::SETNPr,      X86::SETNPm },
649      { X86::SETNSr,      X86::SETNSm },
650      { X86::SETPr,       X86::SETPm },
651      { X86::SETSr,       X86::SETSm },
652      { X86::TEST16ri,    X86::TEST16mi },
653      { X86::TEST32ri,    X86::TEST32mi },
654      { X86::TEST64ri32,  X86::TEST64mi32 },
655      { X86::TEST8ri,     X86::TEST8mi },
656      { X86::XCHG16rr,    X86::XCHG16mr },
657      { X86::XCHG32rr,    X86::XCHG32mr },
658      { X86::XCHG64rr,    X86::XCHG64mr },
659      { X86::XCHG8rr,     X86::XCHG8mr }
660    };
661    ASSERT_SORTED(OpcodeTable);
662    OpcodeTablePtr = OpcodeTable;
663    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
664  } else if (i == 1) {
665    static const TableEntry OpcodeTable[] = {
666      { X86::CMP16rr,         X86::CMP16rm },
667      { X86::CMP32rr,         X86::CMP32rm },
668      { X86::CMP64ri32,       X86::CMP64mi32 },
669      { X86::CMP64ri8,        X86::CMP64mi8 },
670      { X86::CMP64rr,         X86::CMP64rm },
671      { X86::CMP8rr,          X86::CMP8rm },
672      { X86::CMPPDrri,        X86::CMPPDrmi },
673      { X86::CMPPSrri,        X86::CMPPSrmi },
674      { X86::CMPSDrr,         X86::CMPSDrm },
675      { X86::CMPSSrr,         X86::CMPSSrm },
676      { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
677      { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
678      { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
679      { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
680      { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
681      { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
682      { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
683      { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
684      { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
685      { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
686      { X86::FsMOVAPDrr,      X86::MOVSDrm },
687      { X86::FsMOVAPSrr,      X86::MOVSSrm },
688      { X86::IMUL16rri,       X86::IMUL16rmi },
689      { X86::IMUL16rri8,      X86::IMUL16rmi8 },
690      { X86::IMUL32rri,       X86::IMUL32rmi },
691      { X86::IMUL32rri8,      X86::IMUL32rmi8 },
692      { X86::IMUL64rr,        X86::IMUL64rm },
693      { X86::IMUL64rri32,     X86::IMUL64rmi32 },
694      { X86::IMUL64rri8,      X86::IMUL64rmi8 },
695      { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
696      { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
697      { X86::Int_COMISDrr,    X86::Int_COMISDrm },
698      { X86::Int_COMISSrr,    X86::Int_COMISSrm },
699      { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
700      { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
701      { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
702      { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
703      { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
704      { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
705      { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
706      { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
707      { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
708      { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
709      { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
710      { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
711      { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
712      { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
713      { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
714      { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
715      { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
716      { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
717      { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
718      { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
719      { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
720      { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
721      { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
722      { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
723      { X86::MOV16rr,         X86::MOV16rm },
724      { X86::MOV32rr,         X86::MOV32rm },
725      { X86::MOV64rr,         X86::MOV64rm },
726      { X86::MOV64toPQIrr,    X86::MOV64toPQIrm },
727      { X86::MOV64toSDrr,     X86::MOV64toSDrm },
728      { X86::MOV8rr,          X86::MOV8rm },
729      { X86::MOVAPDrr,        X86::MOVAPDrm },
730      { X86::MOVAPSrr,        X86::MOVAPSrm },
731      { X86::MOVDDUPrr,       X86::MOVDDUPrm },
732      { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
733      { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
734      { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
735      { X86::MOVSDrr,         X86::MOVSDrm },
736      { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
737      { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
738      { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
739      { X86::MOVSSrr,         X86::MOVSSrm },
740      { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
741      { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
742      { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
743      { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
744      { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
745      { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
746      { X86::MOVUPDrr,        X86::MOVUPDrm },
747      { X86::MOVUPSrr,        X86::MOVUPSrm },
748      { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
749      { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
750      { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
751      { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
752      { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
753      { X86::PSHUFDri,        X86::PSHUFDmi },
754      { X86::PSHUFHWri,       X86::PSHUFHWmi },
755      { X86::PSHUFLWri,       X86::PSHUFLWmi },
756      { X86::PsMOVZX64rr32,   X86::PsMOVZX64rm32 },
757      { X86::TEST16rr,        X86::TEST16rm },
758      { X86::TEST32rr,        X86::TEST32rm },
759      { X86::TEST64rr,        X86::TEST64rm },
760      { X86::TEST8rr,         X86::TEST8rm },
761      // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
762      { X86::UCOMISDrr,       X86::UCOMISDrm },
763      { X86::UCOMISSrr,       X86::UCOMISSrm },
764      { X86::XCHG16rr,        X86::XCHG16rm },
765      { X86::XCHG32rr,        X86::XCHG32rm },
766      { X86::XCHG64rr,        X86::XCHG64rm },
767      { X86::XCHG8rr,         X86::XCHG8rm }
768    };
769    ASSERT_SORTED(OpcodeTable);
770    OpcodeTablePtr = OpcodeTable;
771    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
772  } else if (i == 2) {
773    static const TableEntry OpcodeTable[] = {
774      { X86::ADC32rr,         X86::ADC32rm },
775      { X86::ADC64rr,         X86::ADC64rm },
776      { X86::ADD16rr,         X86::ADD16rm },
777      { X86::ADD32rr,         X86::ADD32rm },
778      { X86::ADD64rr,         X86::ADD64rm },
779      { X86::ADD8rr,          X86::ADD8rm },
780      { X86::ADDPDrr,         X86::ADDPDrm },
781      { X86::ADDPSrr,         X86::ADDPSrm },
782      { X86::ADDSDrr,         X86::ADDSDrm },
783      { X86::ADDSSrr,         X86::ADDSSrm },
784      { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
785      { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
786      { X86::AND16rr,         X86::AND16rm },
787      { X86::AND32rr,         X86::AND32rm },
788      { X86::AND64rr,         X86::AND64rm },
789      { X86::AND8rr,          X86::AND8rm },
790      { X86::ANDNPDrr,        X86::ANDNPDrm },
791      { X86::ANDNPSrr,        X86::ANDNPSrm },
792      { X86::ANDPDrr,         X86::ANDPDrm },
793      { X86::ANDPSrr,         X86::ANDPSrm },
794      { X86::CMOVA16rr,       X86::CMOVA16rm },
795      { X86::CMOVA32rr,       X86::CMOVA32rm },
796      { X86::CMOVA64rr,       X86::CMOVA64rm },
797      { X86::CMOVAE16rr,      X86::CMOVAE16rm },
798      { X86::CMOVAE32rr,      X86::CMOVAE32rm },
799      { X86::CMOVAE64rr,      X86::CMOVAE64rm },
800      { X86::CMOVB16rr,       X86::CMOVB16rm },
801      { X86::CMOVB32rr,       X86::CMOVB32rm },
802      { X86::CMOVB64rr,       X86::CMOVB64rm },
803      { X86::CMOVBE16rr,      X86::CMOVBE16rm },
804      { X86::CMOVBE32rr,      X86::CMOVBE32rm },
805      { X86::CMOVBE64rr,      X86::CMOVBE64rm },
806      { X86::CMOVE16rr,       X86::CMOVE16rm },
807      { X86::CMOVE32rr,       X86::CMOVE32rm },
808      { X86::CMOVE64rr,       X86::CMOVE64rm },
809      { X86::CMOVG16rr,       X86::CMOVG16rm },
810      { X86::CMOVG32rr,       X86::CMOVG32rm },
811      { X86::CMOVG64rr,       X86::CMOVG64rm },
812      { X86::CMOVGE16rr,      X86::CMOVGE16rm },
813      { X86::CMOVGE32rr,      X86::CMOVGE32rm },
814      { X86::CMOVGE64rr,      X86::CMOVGE64rm },
815      { X86::CMOVL16rr,       X86::CMOVL16rm },
816      { X86::CMOVL32rr,       X86::CMOVL32rm },
817      { X86::CMOVL64rr,       X86::CMOVL64rm },
818      { X86::CMOVLE16rr,      X86::CMOVLE16rm },
819      { X86::CMOVLE32rr,      X86::CMOVLE32rm },
820      { X86::CMOVLE64rr,      X86::CMOVLE64rm },
821      { X86::CMOVNE16rr,      X86::CMOVNE16rm },
822      { X86::CMOVNE32rr,      X86::CMOVNE32rm },
823      { X86::CMOVNE64rr,      X86::CMOVNE64rm },
824      { X86::CMOVNP16rr,      X86::CMOVNP16rm },
825      { X86::CMOVNP32rr,      X86::CMOVNP32rm },
826      { X86::CMOVNP64rr,      X86::CMOVNP64rm },
827      { X86::CMOVNS16rr,      X86::CMOVNS16rm },
828      { X86::CMOVNS32rr,      X86::CMOVNS32rm },
829      { X86::CMOVNS64rr,      X86::CMOVNS64rm },
830      { X86::CMOVP16rr,       X86::CMOVP16rm },
831      { X86::CMOVP32rr,       X86::CMOVP32rm },
832      { X86::CMOVP64rr,       X86::CMOVP64rm },
833      { X86::CMOVS16rr,       X86::CMOVS16rm },
834      { X86::CMOVS32rr,       X86::CMOVS32rm },
835      { X86::CMOVS64rr,       X86::CMOVS64rm },
836      { X86::DIVPDrr,         X86::DIVPDrm },
837      { X86::DIVPSrr,         X86::DIVPSrm },
838      { X86::DIVSDrr,         X86::DIVSDrm },
839      { X86::DIVSSrr,         X86::DIVSSrm },
840      { X86::HADDPDrr,        X86::HADDPDrm },
841      { X86::HADDPSrr,        X86::HADDPSrm },
842      { X86::HSUBPDrr,        X86::HSUBPDrm },
843      { X86::HSUBPSrr,        X86::HSUBPSrm },
844      { X86::IMUL16rr,        X86::IMUL16rm },
845      { X86::IMUL32rr,        X86::IMUL32rm },
846      { X86::MAXPDrr,         X86::MAXPDrm },
847      { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
848      { X86::MAXPSrr,         X86::MAXPSrm },
849      { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
850      { X86::MAXSDrr,         X86::MAXSDrm },
851      { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
852      { X86::MAXSSrr,         X86::MAXSSrm },
853      { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
854      { X86::MINPDrr,         X86::MINPDrm },
855      { X86::MINPDrr_Int,     X86::MINPDrm_Int },
856      { X86::MINPSrr,         X86::MINPSrm },
857      { X86::MINPSrr_Int,     X86::MINPSrm_Int },
858      { X86::MINSDrr,         X86::MINSDrm },
859      { X86::MINSDrr_Int,     X86::MINSDrm_Int },
860      { X86::MINSSrr,         X86::MINSSrm },
861      { X86::MINSSrr_Int,     X86::MINSSrm_Int },
862      { X86::MULPDrr,         X86::MULPDrm },
863      { X86::MULPSrr,         X86::MULPSrm },
864      { X86::MULSDrr,         X86::MULSDrm },
865      { X86::MULSSrr,         X86::MULSSrm },
866      { X86::OR16rr,          X86::OR16rm },
867      { X86::OR32rr,          X86::OR32rm },
868      { X86::OR64rr,          X86::OR64rm },
869      { X86::OR8rr,           X86::OR8rm },
870      { X86::ORPDrr,          X86::ORPDrm },
871      { X86::ORPSrr,          X86::ORPSrm },
872      { X86::PACKSSDWrr,      X86::PACKSSDWrm },
873      { X86::PACKSSWBrr,      X86::PACKSSWBrm },
874      { X86::PACKUSWBrr,      X86::PACKUSWBrm },
875      { X86::PADDBrr,         X86::PADDBrm },
876      { X86::PADDDrr,         X86::PADDDrm },
877      { X86::PADDQrr,         X86::PADDQrm },
878      { X86::PADDSBrr,        X86::PADDSBrm },
879      { X86::PADDSWrr,        X86::PADDSWrm },
880      { X86::PADDWrr,         X86::PADDWrm },
881      { X86::PANDNrr,         X86::PANDNrm },
882      { X86::PANDrr,          X86::PANDrm },
883      { X86::PAVGBrr,         X86::PAVGBrm },
884      { X86::PAVGWrr,         X86::PAVGWrm },
885      { X86::PCMPEQBrr,       X86::PCMPEQBrm },
886      { X86::PCMPEQDrr,       X86::PCMPEQDrm },
887      { X86::PCMPEQWrr,       X86::PCMPEQWrm },
888      { X86::PCMPGTBrr,       X86::PCMPGTBrm },
889      { X86::PCMPGTDrr,       X86::PCMPGTDrm },
890      { X86::PCMPGTWrr,       X86::PCMPGTWrm },
891      { X86::PINSRWrri,       X86::PINSRWrmi },
892      { X86::PMADDWDrr,       X86::PMADDWDrm },
893      { X86::PMAXSWrr,        X86::PMAXSWrm },
894      { X86::PMAXUBrr,        X86::PMAXUBrm },
895      { X86::PMINSWrr,        X86::PMINSWrm },
896      { X86::PMINUBrr,        X86::PMINUBrm },
897      { X86::PMULHUWrr,       X86::PMULHUWrm },
898      { X86::PMULHWrr,        X86::PMULHWrm },
899      { X86::PMULLWrr,        X86::PMULLWrm },
900      { X86::PMULUDQrr,       X86::PMULUDQrm },
901      { X86::PORrr,           X86::PORrm },
902      { X86::PSADBWrr,        X86::PSADBWrm },
903      { X86::PSLLDrr,         X86::PSLLDrm },
904      { X86::PSLLQrr,         X86::PSLLQrm },
905      { X86::PSLLWrr,         X86::PSLLWrm },
906      { X86::PSRADrr,         X86::PSRADrm },
907      { X86::PSRAWrr,         X86::PSRAWrm },
908      { X86::PSRLDrr,         X86::PSRLDrm },
909      { X86::PSRLQrr,         X86::PSRLQrm },
910      { X86::PSRLWrr,         X86::PSRLWrm },
911      { X86::PSUBBrr,         X86::PSUBBrm },
912      { X86::PSUBDrr,         X86::PSUBDrm },
913      { X86::PSUBSBrr,        X86::PSUBSBrm },
914      { X86::PSUBSWrr,        X86::PSUBSWrm },
915      { X86::PSUBWrr,         X86::PSUBWrm },
916      { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
917      { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
918      { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
919      { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
920      { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
921      { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
922      { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
923      { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
924      { X86::PXORrr,          X86::PXORrm },
925      { X86::RCPPSr,          X86::RCPPSm },
926      { X86::RCPPSr_Int,      X86::RCPPSm_Int },
927      { X86::RSQRTPSr,        X86::RSQRTPSm },
928      { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
929      { X86::RSQRTSSr,        X86::RSQRTSSm },
930      { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
931      { X86::SBB32rr,         X86::SBB32rm },
932      { X86::SBB64rr,         X86::SBB64rm },
933      { X86::SHUFPDrri,       X86::SHUFPDrmi },
934      { X86::SHUFPSrri,       X86::SHUFPSrmi },
935      { X86::SQRTPDr,         X86::SQRTPDm },
936      { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
937      { X86::SQRTPSr,         X86::SQRTPSm },
938      { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
939      { X86::SQRTSDr,         X86::SQRTSDm },
940      { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
941      { X86::SQRTSSr,         X86::SQRTSSm },
942      { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
943      { X86::SUB16rr,         X86::SUB16rm },
944      { X86::SUB32rr,         X86::SUB32rm },
945      { X86::SUB64rr,         X86::SUB64rm },
946      { X86::SUB8rr,          X86::SUB8rm },
947      { X86::SUBPDrr,         X86::SUBPDrm },
948      { X86::SUBPSrr,         X86::SUBPSrm },
949      { X86::SUBSDrr,         X86::SUBSDrm },
950      { X86::SUBSSrr,         X86::SUBSSrm },
951      // FIXME: TEST*rr -> swapped operand of TEST*mr.
952      { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
953      { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
954      { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
955      { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
956      { X86::XOR16rr,         X86::XOR16rm },
957      { X86::XOR32rr,         X86::XOR32rm },
958      { X86::XOR64rr,         X86::XOR64rm },
959      { X86::XOR8rr,          X86::XOR8rm },
960      { X86::XORPDrr,         X86::XORPDrm },
961      { X86::XORPSrr,         X86::XORPSrm }
962    };
963    ASSERT_SORTED(OpcodeTable);
964    OpcodeTablePtr = OpcodeTable;
965    OpcodeTableSize = ARRAY_SIZE(OpcodeTable);
966  }
967
968  // If table selected...
969  if (OpcodeTablePtr) {
970    // Find the Opcode to fuse
971    unsigned fromOpcode = MI->getOpcode();
972    // Lookup fromOpcode in table
973    if (const TableEntry *Entry = TableLookup(OpcodeTablePtr, OpcodeTableSize,
974                                              fromOpcode)) {
975      if (isTwoAddrFold)
976        NewMI = FuseTwoAddrInst(Entry->to, FrameIndex, MI, TII);
977      else
978        NewMI = FuseInst(Entry->to, i, FrameIndex, MI, TII);
979      NewMI->copyKillDeadInfo(MI);
980      return NewMI;
981    }
982  }
983
984  // No fusion
985  if (PrintFailedFusing)
986    cerr << "We failed to fuse ("
987         << ((i == 1) ? "r" : "s") << "): " << *MI;
988  return NULL;
989}
990
991
992const unsigned *
993X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
994  static const unsigned CalleeSavedRegs32Bit[] = {
995    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
996  };
997
998  static const unsigned CalleeSavedRegs32EHRet[] = {
999    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
1000  };
1001
1002  static const unsigned CalleeSavedRegs64Bit[] = {
1003    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
1004  };
1005
1006  if (Is64Bit)
1007    return CalleeSavedRegs64Bit;
1008  else {
1009    if (MF) {
1010        MachineFrameInfo *MFI = MF->getFrameInfo();
1011        MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1012        if (MMI && MMI->callsEHReturn())
1013          return CalleeSavedRegs32EHRet;
1014    }
1015    return CalleeSavedRegs32Bit;
1016  }
1017}
1018
1019const TargetRegisterClass* const*
1020X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
1021  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
1022    &X86::GR32RegClass, &X86::GR32RegClass,
1023    &X86::GR32RegClass, &X86::GR32RegClass,  0
1024  };
1025  static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
1026    &X86::GR32RegClass, &X86::GR32RegClass,
1027    &X86::GR32RegClass, &X86::GR32RegClass,
1028    &X86::GR32RegClass, &X86::GR32RegClass,  0
1029  };
1030  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
1031    &X86::GR64RegClass, &X86::GR64RegClass,
1032    &X86::GR64RegClass, &X86::GR64RegClass,
1033    &X86::GR64RegClass, &X86::GR64RegClass, 0
1034  };
1035
1036  if (Is64Bit)
1037    return CalleeSavedRegClasses64Bit;
1038  else {
1039    if (MF) {
1040        MachineFrameInfo *MFI = MF->getFrameInfo();
1041        MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1042        if (MMI && MMI->callsEHReturn())
1043          return CalleeSavedRegClasses32EHRet;
1044    }
1045    return CalleeSavedRegClasses32Bit;
1046  }
1047
1048}
1049
1050BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
1051  BitVector Reserved(getNumRegs());
1052  Reserved.set(X86::RSP);
1053  Reserved.set(X86::ESP);
1054  Reserved.set(X86::SP);
1055  Reserved.set(X86::SPL);
1056  if (hasFP(MF)) {
1057    Reserved.set(X86::RBP);
1058    Reserved.set(X86::EBP);
1059    Reserved.set(X86::BP);
1060    Reserved.set(X86::BPL);
1061  }
1062  return Reserved;
1063}
1064
1065//===----------------------------------------------------------------------===//
1066// Stack Frame Processing methods
1067//===----------------------------------------------------------------------===//
1068
1069// hasFP - Return true if the specified function should have a dedicated frame
1070// pointer register.  This is true if the function has variable sized allocas or
1071// if frame pointer elimination is disabled.
1072//
1073bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
1074  MachineFrameInfo *MFI = MF.getFrameInfo();
1075  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1076
1077  return (NoFramePointerElim ||
1078          MFI->hasVarSizedObjects() ||
1079          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
1080          (MMI && MMI->callsUnwindInit()));
1081}
1082
1083bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
1084  return !MF.getFrameInfo()->hasVarSizedObjects();
1085}
1086
1087void X86RegisterInfo::
1088eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
1089                              MachineBasicBlock::iterator I) const {
1090  if (!hasReservedCallFrame(MF)) {
1091    // If the stack pointer can be changed after prologue, turn the
1092    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
1093    // adjcallstackdown instruction into 'add ESP, <amt>'
1094    // TODO: consider using push / pop instead of sub + store / add
1095    MachineInstr *Old = I;
1096    uint64_t Amount = Old->getOperand(0).getImm();
1097    if (Amount != 0) {
1098      // We need to keep the stack aligned properly.  To do this, we round the
1099      // amount of space needed for the outgoing arguments up to the next
1100      // alignment boundary.
1101      unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1102      Amount = (Amount+Align-1)/Align*Align;
1103
1104      MachineInstr *New = 0;
1105      if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
1106        New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr)
1107          .addReg(StackPtr).addImm(Amount);
1108      } else {
1109        assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
1110        // factor out the amount the callee already popped.
1111        uint64_t CalleeAmt = Old->getOperand(1).getImm();
1112        Amount -= CalleeAmt;
1113        if (Amount) {
1114          unsigned Opc = (Amount < 128) ?
1115            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
1116            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
1117          New = BuildMI(TII.get(Opc),  StackPtr)
1118                        .addReg(StackPtr).addImm(Amount);
1119        }
1120      }
1121
1122      // Replace the pseudo instruction with a new instruction...
1123      if (New) MBB.insert(I, New);
1124    }
1125  } else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
1126    // If we are performing frame pointer elimination and if the callee pops
1127    // something off the stack pointer, add it back.  We do this until we have
1128    // more advanced stack pointer tracking ability.
1129    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
1130      unsigned Opc = (CalleeAmt < 128) ?
1131        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
1132        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
1133      MachineInstr *New =
1134        BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt);
1135      MBB.insert(I, New);
1136    }
1137  }
1138
1139  MBB.erase(I);
1140}
1141
1142void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1143                                          int SPAdj, RegScavenger *RS) const{
1144  assert(SPAdj == 0 && "Unexpected");
1145
1146  unsigned i = 0;
1147  MachineInstr &MI = *II;
1148  MachineFunction &MF = *MI.getParent()->getParent();
1149  while (!MI.getOperand(i).isFrameIndex()) {
1150    ++i;
1151    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
1152  }
1153
1154  int FrameIndex = MI.getOperand(i).getFrameIndex();
1155  // This must be part of a four operand memory reference.  Replace the
1156  // FrameIndex with base register with EBP.  Add an offset to the offset.
1157  MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false);
1158
1159  // Now add the frame object offset to the offset from EBP.
1160  int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
1161                   MI.getOperand(i+3).getImm()+SlotSize;
1162
1163  if (!hasFP(MF))
1164    Offset += MF.getFrameInfo()->getStackSize();
1165  else
1166    Offset += SlotSize;  // Skip the saved EBP
1167
1168  MI.getOperand(i+3).ChangeToImmediate(Offset);
1169}
1170
1171void
1172X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
1173  if (hasFP(MF)) {
1174    // Create a frame entry for the EBP register that must be saved.
1175    int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1176                                                        (int)SlotSize * -2);
1177    assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
1178           "Slot for EBP register must be last in order to be found!");
1179  }
1180}
1181
1182/// emitSPUpdate - Emit a series of instructions to increment / decrement the
1183/// stack pointer by a constant value.
1184static
1185void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
1186                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
1187                  const TargetInstrInfo &TII) {
1188  bool isSub = NumBytes < 0;
1189  uint64_t Offset = isSub ? -NumBytes : NumBytes;
1190  unsigned Opc = isSub
1191    ? ((Offset < 128) ?
1192       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
1193       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
1194    : ((Offset < 128) ?
1195       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
1196       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
1197  uint64_t Chunk = (1LL << 31) - 1;
1198
1199  while (Offset) {
1200    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
1201    BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal);
1202    Offset -= ThisVal;
1203  }
1204}
1205
1206void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
1207  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
1208  MachineFrameInfo *MFI = MF.getFrameInfo();
1209  unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1210  const Function* Fn = MF.getFunction();
1211  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
1212  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1213  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1214  MachineBasicBlock::iterator MBBI = MBB.begin();
1215
1216  // Prepare for frame info.
1217  unsigned FrameLabelId = 0, StartLabelId = 0;
1218
1219  // Get the number of bytes to allocate from the FrameInfo
1220  uint64_t StackSize = MFI->getStackSize();
1221  uint64_t NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1222
1223  if (MMI && MMI->needsFrameInfo()) {
1224    // Mark function start
1225    StartLabelId = MMI->NextLabelID();
1226    BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(StartLabelId);
1227  }
1228
1229  if (hasFP(MF)) {
1230    // Get the offset of the stack slot for the EBP register... which is
1231    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1232    // Update the frame offset adjustment.
1233    MFI->setOffsetAdjustment(SlotSize-NumBytes);
1234
1235    // Save EBP into the appropriate stack slot...
1236    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1237      .addReg(FramePtr);
1238    NumBytes -= SlotSize;
1239
1240    if (MMI && MMI->needsFrameInfo()) {
1241      // Mark effective beginning of when frame pointer becomes valid.
1242      FrameLabelId = MMI->NextLabelID();
1243      BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(FrameLabelId);
1244    }
1245
1246    // Update EBP with the new base value...
1247    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
1248      .addReg(StackPtr);
1249  }
1250
1251  unsigned ReadyLabelId = 0;
1252  if (MMI && MMI->needsFrameInfo()) {
1253    // Mark effective beginning of when frame pointer is ready.
1254    ReadyLabelId = MMI->NextLabelID();
1255    BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(ReadyLabelId);
1256  }
1257
1258  // Skip the callee-saved push instructions.
1259  while (MBBI != MBB.end() &&
1260         (MBBI->getOpcode() == X86::PUSH32r ||
1261          MBBI->getOpcode() == X86::PUSH64r))
1262    ++MBBI;
1263
1264  if (NumBytes) {   // adjust stack pointer: ESP -= numbytes
1265    if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1266      // Check, whether EAX is livein for this function
1267      bool isEAXAlive = false;
1268      for (MachineFunction::livein_iterator II = MF.livein_begin(),
1269             EE = MF.livein_end(); (II != EE) && !isEAXAlive; ++II) {
1270        unsigned Reg = II->first;
1271        isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1272                      Reg == X86::AH || Reg == X86::AL);
1273      }
1274
1275      // Function prologue calls _alloca to probe the stack when allocating
1276      // more than 4k bytes in one go. Touching the stack at 4K increments is
1277      // necessary to ensure that the guard pages used by the OS virtual memory
1278      // manager are allocated in correct sequence.
1279      if (!isEAXAlive) {
1280        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes);
1281        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
1282          .addExternalSymbol("_alloca");
1283      } else {
1284        // Save EAX
1285        BuildMI(MBB, MBBI, TII.get(X86::PUSH32r), X86::EAX);
1286        // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1287        // allocated bytes for EAX.
1288        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4);
1289        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
1290          .addExternalSymbol("_alloca");
1291        // Restore EAX
1292        MachineInstr *MI = addRegOffset(BuildMI(TII.get(X86::MOV32rm),X86::EAX),
1293                                        StackPtr, NumBytes-4);
1294        MBB.insert(MBBI, MI);
1295      }
1296    } else {
1297      // If there is an ADD32ri or SUB32ri of ESP immediately after this
1298      // instruction, merge the two instructions.
1299      if (MBBI != MBB.end()) {
1300        MachineBasicBlock::iterator NI = next(MBBI);
1301        unsigned Opc = MBBI->getOpcode();
1302        if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1303             Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1304            MBBI->getOperand(0).getReg() == StackPtr) {
1305          NumBytes -= MBBI->getOperand(2).getImm();
1306          MBB.erase(MBBI);
1307          MBBI = NI;
1308        } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1309                    Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1310                   MBBI->getOperand(0).getReg() == StackPtr) {
1311          NumBytes += MBBI->getOperand(2).getImm();
1312          MBB.erase(MBBI);
1313          MBBI = NI;
1314        }
1315      }
1316
1317      if (NumBytes)
1318        emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1319    }
1320  }
1321
1322  if (MMI && MMI->needsFrameInfo()) {
1323    std::vector<MachineMove> &Moves = MMI->getFrameMoves();
1324    const TargetAsmInfo *TAI = MF.getTarget().getTargetAsmInfo();
1325
1326    // Calculate amount of bytes used for return address storing
1327    int stackGrowth =
1328      (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
1329       TargetFrameInfo::StackGrowsUp ?
1330       TAI->getAddressSize() : -TAI->getAddressSize());
1331
1332    if (StackSize) {
1333      // Show update of SP.
1334      if (hasFP(MF)) {
1335        // Adjust SP
1336        MachineLocation SPDst(MachineLocation::VirtualFP);
1337        MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth);
1338        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1339      } else {
1340        MachineLocation SPDst(MachineLocation::VirtualFP);
1341        MachineLocation SPSrc(MachineLocation::VirtualFP, -StackSize+stackGrowth);
1342        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1343      }
1344    } else {
1345      //FIXME: Verify & implement for FP
1346      MachineLocation SPDst(StackPtr);
1347      MachineLocation SPSrc(StackPtr, stackGrowth);
1348      Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1349    }
1350
1351    // Add callee saved registers to move list.
1352    const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
1353
1354    // FIXME: This is dirty hack. The code itself is pretty mess right now.
1355    // It should be rewritten from scratch and generalized sometimes.
1356
1357    // Determine maximum offset (minumum due to stack growth)
1358    int64_t MaxOffset = 0;
1359    for (unsigned I = 0, E = CSI.size(); I!=E; ++I)
1360      MaxOffset = std::min(MaxOffset,
1361                           MFI->getObjectOffset(CSI[I].getFrameIdx()));
1362
1363    // Calculate offsets
1364    for (unsigned I = 0, E = CSI.size(); I!=E; ++I) {
1365      int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
1366      unsigned Reg = CSI[I].getReg();
1367      Offset = (MaxOffset-Offset+3*stackGrowth);
1368      MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
1369      MachineLocation CSSrc(Reg);
1370      Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc));
1371    }
1372
1373    if (hasFP(MF)) {
1374      // Save FP
1375      MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth);
1376      MachineLocation FPSrc(FramePtr);
1377      Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1378    }
1379
1380    MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr);
1381    MachineLocation FPSrc(MachineLocation::VirtualFP);
1382    Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1383  }
1384
1385  // If it's main() on Cygwin\Mingw32 we should align stack as well
1386  if (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
1387      Subtarget->isTargetCygMing()) {
1388    BuildMI(MBB, MBBI, TII.get(X86::AND32ri), X86::ESP)
1389                .addReg(X86::ESP).addImm(-Align);
1390
1391    // Probe the stack
1392    BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(Align);
1393    BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca");
1394  }
1395}
1396
1397void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1398                                   MachineBasicBlock &MBB) const {
1399  const MachineFrameInfo *MFI = MF.getFrameInfo();
1400  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1401  MachineBasicBlock::iterator MBBI = prior(MBB.end());
1402  unsigned RetOpcode = MBBI->getOpcode();
1403
1404  switch (RetOpcode) {
1405  case X86::RET:
1406  case X86::RETI:
1407  case X86::EH_RETURN:
1408  case X86::TAILJMPd:
1409  case X86::TAILJMPr:
1410  case X86::TAILJMPm: break;  // These are ok
1411  default:
1412    assert(0 && "Can only insert epilog into returning blocks");
1413  }
1414
1415  // Get the number of bytes to allocate from the FrameInfo
1416  uint64_t StackSize = MFI->getStackSize();
1417  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1418  uint64_t NumBytes = StackSize - CSSize;
1419
1420  if (hasFP(MF)) {
1421    // pop EBP.
1422    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1423    NumBytes -= SlotSize;
1424  }
1425
1426  // Skip the callee-saved pop instructions.
1427  while (MBBI != MBB.begin()) {
1428    MachineBasicBlock::iterator PI = prior(MBBI);
1429    unsigned Opc = PI->getOpcode();
1430    if (Opc != X86::POP32r && Opc != X86::POP64r && !TII.isTerminatorInstr(Opc))
1431      break;
1432    --MBBI;
1433  }
1434
1435  if (NumBytes || MFI->hasVarSizedObjects()) {
1436    // If there is an ADD32ri or SUB32ri of ESP immediately before this
1437    // instruction, merge the two instructions.
1438    if (MBBI != MBB.begin()) {
1439      MachineBasicBlock::iterator PI = prior(MBBI);
1440      unsigned Opc = PI->getOpcode();
1441      if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1442           Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1443          PI->getOperand(0).getReg() == StackPtr) {
1444        NumBytes += PI->getOperand(2).getImm();
1445        MBB.erase(PI);
1446      } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1447                  Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1448                 PI->getOperand(0).getReg() == StackPtr) {
1449        NumBytes -= PI->getOperand(2).getImm();
1450        MBB.erase(PI);
1451      }
1452    }
1453  }
1454
1455  // If dynamic alloca is used, then reset esp to point to the last
1456  // callee-saved slot before popping them off!
1457  if (MFI->hasVarSizedObjects()) {
1458    unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1459    if (CSSize) {
1460      MachineInstr *MI = addRegOffset(BuildMI(TII.get(Opc), StackPtr),
1461                                      FramePtr, -CSSize);
1462      MBB.insert(MBBI, MI);
1463    } else
1464      BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
1465        addReg(FramePtr);
1466
1467    NumBytes = 0;
1468  }
1469
1470  // adjust stack pointer back: ESP += numbytes
1471  if (NumBytes)
1472    emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1473
1474  // We're returning from function via eh_return.
1475  if (RetOpcode == X86::EH_RETURN) {
1476    MBBI = prior(MBB.end());
1477    MachineOperand &DestAddr  = MBBI->getOperand(0);
1478    assert(DestAddr.isReg() && "Offset should be in register!");
1479    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
1480      addReg(DestAddr.getReg());
1481  }
1482}
1483
1484unsigned X86RegisterInfo::getRARegister() const {
1485  if (Is64Bit)
1486    return X86::RIP;  // Should have dwarf #16
1487  else
1488    return X86::EIP;  // Should have dwarf #8
1489}
1490
1491unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
1492  return hasFP(MF) ? FramePtr : StackPtr;
1493}
1494
1495void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
1496                                                                         const {
1497  // Calculate amount of bytes used for return address storing
1498  int stackGrowth = (Is64Bit ? -8 : -4);
1499
1500  // Initial state of the frame pointer is esp+4.
1501  MachineLocation Dst(MachineLocation::VirtualFP);
1502  MachineLocation Src(StackPtr, stackGrowth);
1503  Moves.push_back(MachineMove(0, Dst, Src));
1504
1505  // Add return address to move list
1506  MachineLocation CSDst(StackPtr, stackGrowth);
1507  MachineLocation CSSrc(getRARegister());
1508  Moves.push_back(MachineMove(0, CSDst, CSSrc));
1509}
1510
1511unsigned X86RegisterInfo::getEHExceptionRegister() const {
1512  assert(0 && "What is the exception register");
1513  return 0;
1514}
1515
1516unsigned X86RegisterInfo::getEHHandlerRegister() const {
1517  assert(0 && "What is the exception handler register");
1518  return 0;
1519}
1520
1521namespace llvm {
1522unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) {
1523  switch (VT) {
1524  default: return Reg;
1525  case MVT::i8:
1526    if (High) {
1527      switch (Reg) {
1528      default: return 0;
1529      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1530        return X86::AH;
1531      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1532        return X86::DH;
1533      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1534        return X86::CH;
1535      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1536        return X86::BH;
1537      }
1538    } else {
1539      switch (Reg) {
1540      default: return 0;
1541      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1542        return X86::AL;
1543      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1544        return X86::DL;
1545      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1546        return X86::CL;
1547      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1548        return X86::BL;
1549      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1550        return X86::SIL;
1551      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1552        return X86::DIL;
1553      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1554        return X86::BPL;
1555      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1556        return X86::SPL;
1557      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1558        return X86::R8B;
1559      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1560        return X86::R9B;
1561      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1562        return X86::R10B;
1563      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1564        return X86::R11B;
1565      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1566        return X86::R12B;
1567      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1568        return X86::R13B;
1569      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1570        return X86::R14B;
1571      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1572        return X86::R15B;
1573      }
1574    }
1575  case MVT::i16:
1576    switch (Reg) {
1577    default: return Reg;
1578    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1579      return X86::AX;
1580    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1581      return X86::DX;
1582    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1583      return X86::CX;
1584    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1585      return X86::BX;
1586    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1587      return X86::SI;
1588    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1589      return X86::DI;
1590    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1591      return X86::BP;
1592    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1593      return X86::SP;
1594    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1595      return X86::R8W;
1596    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1597      return X86::R9W;
1598    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1599      return X86::R10W;
1600    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1601      return X86::R11W;
1602    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1603      return X86::R12W;
1604    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1605      return X86::R13W;
1606    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1607      return X86::R14W;
1608    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1609      return X86::R15W;
1610    }
1611  case MVT::i32:
1612    switch (Reg) {
1613    default: return Reg;
1614    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1615      return X86::EAX;
1616    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1617      return X86::EDX;
1618    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1619      return X86::ECX;
1620    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1621      return X86::EBX;
1622    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1623      return X86::ESI;
1624    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1625      return X86::EDI;
1626    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1627      return X86::EBP;
1628    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1629      return X86::ESP;
1630    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1631      return X86::R8D;
1632    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1633      return X86::R9D;
1634    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1635      return X86::R10D;
1636    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1637      return X86::R11D;
1638    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1639      return X86::R12D;
1640    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1641      return X86::R13D;
1642    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1643      return X86::R14D;
1644    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1645      return X86::R15D;
1646    }
1647  case MVT::i64:
1648    switch (Reg) {
1649    default: return Reg;
1650    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1651      return X86::RAX;
1652    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1653      return X86::RDX;
1654    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1655      return X86::RCX;
1656    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1657      return X86::RBX;
1658    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1659      return X86::RSI;
1660    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1661      return X86::RDI;
1662    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1663      return X86::RBP;
1664    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1665      return X86::RSP;
1666    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1667      return X86::R8;
1668    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1669      return X86::R9;
1670    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1671      return X86::R10;
1672    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1673      return X86::R11;
1674    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1675      return X86::R12;
1676    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1677      return X86::R13;
1678    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1679      return X86::R14;
1680    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1681      return X86::R15;
1682    }
1683  }
1684
1685  return Reg;
1686}
1687}
1688
1689#include "X86GenRegisterInfo.inc"
1690
1691