CodeGenPrepare.cpp revision 1df9859c40492511b8aa4321eb76496005d3b75b
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ProfileInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Transforms/Utils/AddrModeMatcher.h"
29#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30#include "llvm/Transforms/Utils/Local.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/Assembly/Writer.h"
34#include "llvm/Support/CallSite.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Support/PatternMatch.h"
38#include "llvm/Support/raw_ostream.h"
39using namespace llvm;
40using namespace llvm::PatternMatch;
41
42namespace {
43  class CodeGenPrepare : public FunctionPass {
44    /// TLI - Keep a pointer of a TargetLowering to consult for determining
45    /// transformation profitability.
46    const TargetLowering *TLI;
47    ProfileInfo *PFI;
48
49    /// BackEdges - Keep a set of all the loop back edges.
50    ///
51    SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges;
52  public:
53    static char ID; // Pass identification, replacement for typeid
54    explicit CodeGenPrepare(const TargetLowering *tli = 0)
55      : FunctionPass(&ID), TLI(tli) {}
56    bool runOnFunction(Function &F);
57
58    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
59      AU.addPreserved<ProfileInfo>();
60    }
61
62    virtual void releaseMemory() {
63      BackEdges.clear();
64    }
65
66  private:
67    bool EliminateMostlyEmptyBlocks(Function &F);
68    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
69    void EliminateMostlyEmptyBlock(BasicBlock *BB);
70    bool OptimizeBlock(BasicBlock &BB);
71    bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
72                            DenseMap<Value*,Value*> &SunkAddrs);
73    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
74                               DenseMap<Value*,Value*> &SunkAddrs);
75    bool MoveExtToFormExtLoad(Instruction *I);
76    bool OptimizeExtUses(Instruction *I);
77    void findLoopBackEdges(const Function &F);
78  };
79}
80
81char CodeGenPrepare::ID = 0;
82static RegisterPass<CodeGenPrepare> X("codegenprepare",
83                                      "Optimize for code generation");
84
85FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
86  return new CodeGenPrepare(TLI);
87}
88
89/// findLoopBackEdges - Do a DFS walk to find loop back edges.
90///
91void CodeGenPrepare::findLoopBackEdges(const Function &F) {
92  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
93  FindFunctionBackedges(F, Edges);
94
95  BackEdges.insert(Edges.begin(), Edges.end());
96}
97
98
99bool CodeGenPrepare::runOnFunction(Function &F) {
100  bool EverMadeChange = false;
101
102  PFI = getAnalysisIfAvailable<ProfileInfo>();
103  // First pass, eliminate blocks that contain only PHI nodes and an
104  // unconditional branch.
105  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
106
107  // Now find loop back edges.
108  findLoopBackEdges(F);
109
110  bool MadeChange = true;
111  while (MadeChange) {
112    MadeChange = false;
113    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
114      MadeChange |= OptimizeBlock(*BB);
115    EverMadeChange |= MadeChange;
116  }
117  return EverMadeChange;
118}
119
120/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
121/// debug info directives, and an unconditional branch.  Passes before isel
122/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
123/// isel.  Start by eliminating these blocks so we can split them the way we
124/// want them.
125bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
126  bool MadeChange = false;
127  // Note that this intentionally skips the entry block.
128  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
129    BasicBlock *BB = I++;
130
131    // If this block doesn't end with an uncond branch, ignore it.
132    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
133    if (!BI || !BI->isUnconditional())
134      continue;
135
136    // If the instruction before the branch (skipping debug info) isn't a phi
137    // node, then other stuff is happening here.
138    BasicBlock::iterator BBI = BI;
139    if (BBI != BB->begin()) {
140      --BBI;
141      while (isa<DbgInfoIntrinsic>(BBI)) {
142        if (BBI == BB->begin())
143          break;
144        --BBI;
145      }
146      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
147        continue;
148    }
149
150    // Do not break infinite loops.
151    BasicBlock *DestBB = BI->getSuccessor(0);
152    if (DestBB == BB)
153      continue;
154
155    if (!CanMergeBlocks(BB, DestBB))
156      continue;
157
158    EliminateMostlyEmptyBlock(BB);
159    MadeChange = true;
160  }
161  return MadeChange;
162}
163
164/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
165/// single uncond branch between them, and BB contains no other non-phi
166/// instructions.
167bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
168                                    const BasicBlock *DestBB) const {
169  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
170  // the successor.  If there are more complex condition (e.g. preheaders),
171  // don't mess around with them.
172  BasicBlock::const_iterator BBI = BB->begin();
173  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
174    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
175         UI != E; ++UI) {
176      const Instruction *User = cast<Instruction>(*UI);
177      if (User->getParent() != DestBB || !isa<PHINode>(User))
178        return false;
179      // If User is inside DestBB block and it is a PHINode then check
180      // incoming value. If incoming value is not from BB then this is
181      // a complex condition (e.g. preheaders) we want to avoid here.
182      if (User->getParent() == DestBB) {
183        if (const PHINode *UPN = dyn_cast<PHINode>(User))
184          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
185            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
186            if (Insn && Insn->getParent() == BB &&
187                Insn->getParent() != UPN->getIncomingBlock(I))
188              return false;
189          }
190      }
191    }
192  }
193
194  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
195  // and DestBB may have conflicting incoming values for the block.  If so, we
196  // can't merge the block.
197  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
198  if (!DestBBPN) return true;  // no conflict.
199
200  // Collect the preds of BB.
201  SmallPtrSet<const BasicBlock*, 16> BBPreds;
202  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
203    // It is faster to get preds from a PHI than with pred_iterator.
204    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
205      BBPreds.insert(BBPN->getIncomingBlock(i));
206  } else {
207    BBPreds.insert(pred_begin(BB), pred_end(BB));
208  }
209
210  // Walk the preds of DestBB.
211  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
212    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
213    if (BBPreds.count(Pred)) {   // Common predecessor?
214      BBI = DestBB->begin();
215      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
216        const Value *V1 = PN->getIncomingValueForBlock(Pred);
217        const Value *V2 = PN->getIncomingValueForBlock(BB);
218
219        // If V2 is a phi node in BB, look up what the mapped value will be.
220        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
221          if (V2PN->getParent() == BB)
222            V2 = V2PN->getIncomingValueForBlock(Pred);
223
224        // If there is a conflict, bail out.
225        if (V1 != V2) return false;
226      }
227    }
228  }
229
230  return true;
231}
232
233
234/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
235/// an unconditional branch in it.
236void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
237  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
238  BasicBlock *DestBB = BI->getSuccessor(0);
239
240  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
241
242  // If the destination block has a single pred, then this is a trivial edge,
243  // just collapse it.
244  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
245    if (SinglePred != DestBB) {
246      // Remember if SinglePred was the entry block of the function.  If so, we
247      // will need to move BB back to the entry position.
248      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
249      MergeBasicBlockIntoOnlyPred(DestBB, this);
250
251      if (isEntry && BB != &BB->getParent()->getEntryBlock())
252        BB->moveBefore(&BB->getParent()->getEntryBlock());
253
254      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
255      return;
256    }
257  }
258
259  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
260  // to handle the new incoming edges it is about to have.
261  PHINode *PN;
262  for (BasicBlock::iterator BBI = DestBB->begin();
263       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
264    // Remove the incoming value for BB, and remember it.
265    Value *InVal = PN->removeIncomingValue(BB, false);
266
267    // Two options: either the InVal is a phi node defined in BB or it is some
268    // value that dominates BB.
269    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
270    if (InValPhi && InValPhi->getParent() == BB) {
271      // Add all of the input values of the input PHI as inputs of this phi.
272      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
273        PN->addIncoming(InValPhi->getIncomingValue(i),
274                        InValPhi->getIncomingBlock(i));
275    } else {
276      // Otherwise, add one instance of the dominating value for each edge that
277      // we will be adding.
278      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
279        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
280          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
281      } else {
282        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
283          PN->addIncoming(InVal, *PI);
284      }
285    }
286  }
287
288  // The PHIs are now updated, change everything that refers to BB to use
289  // DestBB and remove BB.
290  BB->replaceAllUsesWith(DestBB);
291  if (PFI) {
292    PFI->replaceAllUses(BB, DestBB);
293    PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
294  }
295  BB->eraseFromParent();
296
297  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
298}
299
300/// FindReusablePredBB - Check all of the predecessors of the block DestPHI
301/// lives in to see if there is a block that we can reuse as a critical edge
302/// from TIBB.
303static BasicBlock *FindReusablePredBB(PHINode *DestPHI, BasicBlock *TIBB) {
304  BasicBlock *Dest = DestPHI->getParent();
305
306  /// TIPHIValues - This array is lazily computed to determine the values of
307  /// PHIs in Dest that TI would provide.
308  SmallVector<Value*, 32> TIPHIValues;
309
310  /// TIBBEntryNo - This is a cache to speed up pred queries for TIBB.
311  unsigned TIBBEntryNo = 0;
312
313  // Check to see if Dest has any blocks that can be used as a split edge for
314  // this terminator.
315  for (unsigned pi = 0, e = DestPHI->getNumIncomingValues(); pi != e; ++pi) {
316    BasicBlock *Pred = DestPHI->getIncomingBlock(pi);
317    // To be usable, the pred has to end with an uncond branch to the dest.
318    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
319    if (!PredBr || !PredBr->isUnconditional())
320      continue;
321    // Must be empty other than the branch and debug info.
322    BasicBlock::iterator I = Pred->begin();
323    while (isa<DbgInfoIntrinsic>(I))
324      I++;
325    if (&*I != PredBr)
326      continue;
327    // Cannot be the entry block; its label does not get emitted.
328    if (Pred == &Dest->getParent()->getEntryBlock())
329      continue;
330
331    // Finally, since we know that Dest has phi nodes in it, we have to make
332    // sure that jumping to Pred will have the same effect as going to Dest in
333    // terms of PHI values.
334    PHINode *PN;
335    unsigned PHINo = 0;
336    unsigned PredEntryNo = pi;
337
338    bool FoundMatch = true;
339    for (BasicBlock::iterator I = Dest->begin();
340         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
341      if (PHINo == TIPHIValues.size()) {
342        if (PN->getIncomingBlock(TIBBEntryNo) != TIBB)
343          TIBBEntryNo = PN->getBasicBlockIndex(TIBB);
344        TIPHIValues.push_back(PN->getIncomingValue(TIBBEntryNo));
345      }
346
347      // If the PHI entry doesn't work, we can't use this pred.
348      if (PN->getIncomingBlock(PredEntryNo) != Pred)
349        PredEntryNo = PN->getBasicBlockIndex(Pred);
350
351      if (TIPHIValues[PHINo] != PN->getIncomingValue(PredEntryNo)) {
352        FoundMatch = false;
353        break;
354      }
355    }
356
357    // If we found a workable predecessor, change TI to branch to Succ.
358    if (FoundMatch)
359      return Pred;
360  }
361  return 0;
362}
363
364
365/// SplitEdgeNicely - Split the critical edge from TI to its specified
366/// successor if it will improve codegen.  We only do this if the successor has
367/// phi nodes (otherwise critical edges are ok).  If there is already another
368/// predecessor of the succ that is empty (and thus has no phi nodes), use it
369/// instead of introducing a new block.
370static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
371                     SmallSet<std::pair<const BasicBlock*,
372                                        const BasicBlock*>, 8> &BackEdges,
373                             Pass *P) {
374  BasicBlock *TIBB = TI->getParent();
375  BasicBlock *Dest = TI->getSuccessor(SuccNum);
376  assert(isa<PHINode>(Dest->begin()) &&
377         "This should only be called if Dest has a PHI!");
378  PHINode *DestPHI = cast<PHINode>(Dest->begin());
379
380  // Do not split edges to EH landing pads.
381  if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI))
382    if (Invoke->getSuccessor(1) == Dest)
383      return;
384
385  // As a hack, never split backedges of loops.  Even though the copy for any
386  // PHIs inserted on the backedge would be dead for exits from the loop, we
387  // assume that the cost of *splitting* the backedge would be too high.
388  if (BackEdges.count(std::make_pair(TIBB, Dest)))
389    return;
390
391  if (BasicBlock *ReuseBB = FindReusablePredBB(DestPHI, TIBB)) {
392    ProfileInfo *PFI = P->getAnalysisIfAvailable<ProfileInfo>();
393    if (PFI)
394      PFI->splitEdge(TIBB, Dest, ReuseBB);
395    Dest->removePredecessor(TIBB);
396    TI->setSuccessor(SuccNum, ReuseBB);
397    return;
398  }
399
400  SplitCriticalEdge(TI, SuccNum, P, true);
401}
402
403
404/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
405/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
406/// sink it into user blocks to reduce the number of virtual
407/// registers that must be created and coalesced.
408///
409/// Return true if any changes are made.
410///
411static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
412  // If this is a noop copy,
413  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
414  EVT DstVT = TLI.getValueType(CI->getType());
415
416  // This is an fp<->int conversion?
417  if (SrcVT.isInteger() != DstVT.isInteger())
418    return false;
419
420  // If this is an extension, it will be a zero or sign extension, which
421  // isn't a noop.
422  if (SrcVT.bitsLT(DstVT)) return false;
423
424  // If these values will be promoted, find out what they will be promoted
425  // to.  This helps us consider truncates on PPC as noop copies when they
426  // are.
427  if (TLI.getTypeAction(CI->getContext(), SrcVT) == TargetLowering::Promote)
428    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
429  if (TLI.getTypeAction(CI->getContext(), DstVT) == TargetLowering::Promote)
430    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
431
432  // If, after promotion, these are the same types, this is a noop copy.
433  if (SrcVT != DstVT)
434    return false;
435
436  BasicBlock *DefBB = CI->getParent();
437
438  /// InsertedCasts - Only insert a cast in each block once.
439  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
440
441  bool MadeChange = false;
442  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
443       UI != E; ) {
444    Use &TheUse = UI.getUse();
445    Instruction *User = cast<Instruction>(*UI);
446
447    // Figure out which BB this cast is used in.  For PHI's this is the
448    // appropriate predecessor block.
449    BasicBlock *UserBB = User->getParent();
450    if (PHINode *PN = dyn_cast<PHINode>(User)) {
451      UserBB = PN->getIncomingBlock(UI);
452    }
453
454    // Preincrement use iterator so we don't invalidate it.
455    ++UI;
456
457    // If this user is in the same block as the cast, don't change the cast.
458    if (UserBB == DefBB) continue;
459
460    // If we have already inserted a cast into this block, use it.
461    CastInst *&InsertedCast = InsertedCasts[UserBB];
462
463    if (!InsertedCast) {
464      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
465
466      InsertedCast =
467        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
468                         InsertPt);
469      MadeChange = true;
470    }
471
472    // Replace a use of the cast with a use of the new cast.
473    TheUse = InsertedCast;
474  }
475
476  // If we removed all uses, nuke the cast.
477  if (CI->use_empty()) {
478    CI->eraseFromParent();
479    MadeChange = true;
480  }
481
482  return MadeChange;
483}
484
485/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
486/// the number of virtual registers that must be created and coalesced.  This is
487/// a clear win except on targets with multiple condition code registers
488///  (PowerPC), where it might lose; some adjustment may be wanted there.
489///
490/// Return true if any changes are made.
491static bool OptimizeCmpExpression(CmpInst *CI) {
492  BasicBlock *DefBB = CI->getParent();
493
494  /// InsertedCmp - Only insert a cmp in each block once.
495  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
496
497  bool MadeChange = false;
498  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
499       UI != E; ) {
500    Use &TheUse = UI.getUse();
501    Instruction *User = cast<Instruction>(*UI);
502
503    // Preincrement use iterator so we don't invalidate it.
504    ++UI;
505
506    // Don't bother for PHI nodes.
507    if (isa<PHINode>(User))
508      continue;
509
510    // Figure out which BB this cmp is used in.
511    BasicBlock *UserBB = User->getParent();
512
513    // If this user is in the same block as the cmp, don't change the cmp.
514    if (UserBB == DefBB) continue;
515
516    // If we have already inserted a cmp into this block, use it.
517    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
518
519    if (!InsertedCmp) {
520      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
521
522      InsertedCmp =
523        CmpInst::Create(CI->getOpcode(),
524                        CI->getPredicate(),  CI->getOperand(0),
525                        CI->getOperand(1), "", InsertPt);
526      MadeChange = true;
527    }
528
529    // Replace a use of the cmp with a use of the new cmp.
530    TheUse = InsertedCmp;
531  }
532
533  // If we removed all uses, nuke the cmp.
534  if (CI->use_empty())
535    CI->eraseFromParent();
536
537  return MadeChange;
538}
539
540//===----------------------------------------------------------------------===//
541// Memory Optimization
542//===----------------------------------------------------------------------===//
543
544/// IsNonLocalValue - Return true if the specified values are defined in a
545/// different basic block than BB.
546static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
547  if (Instruction *I = dyn_cast<Instruction>(V))
548    return I->getParent() != BB;
549  return false;
550}
551
552/// OptimizeMemoryInst - Load and Store Instructions often have
553/// addressing modes that can do significant amounts of computation.  As such,
554/// instruction selection will try to get the load or store to do as much
555/// computation as possible for the program.  The problem is that isel can only
556/// see within a single block.  As such, we sink as much legal addressing mode
557/// stuff into the block as possible.
558///
559/// This method is used to optimize both load/store and inline asms with memory
560/// operands.
561bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
562                                        const Type *AccessTy,
563                                        DenseMap<Value*,Value*> &SunkAddrs) {
564  // Figure out what addressing mode will be built up for this operation.
565  SmallVector<Instruction*, 16> AddrModeInsts;
566  ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
567                                                      AddrModeInsts, *TLI);
568
569  // Check to see if any of the instructions supersumed by this addr mode are
570  // non-local to I's BB.
571  bool AnyNonLocal = false;
572  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
573    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
574      AnyNonLocal = true;
575      break;
576    }
577  }
578
579  // If all the instructions matched are already in this BB, don't do anything.
580  if (!AnyNonLocal) {
581    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
582    return false;
583  }
584
585  // Insert this computation right after this user.  Since our caller is
586  // scanning from the top of the BB to the bottom, reuse of the expr are
587  // guaranteed to happen later.
588  BasicBlock::iterator InsertPt = MemoryInst;
589
590  // Now that we determined the addressing expression we want to use and know
591  // that we have to sink it into this block.  Check to see if we have already
592  // done this for some other load/store instr in this block.  If so, reuse the
593  // computation.
594  Value *&SunkAddr = SunkAddrs[Addr];
595  if (SunkAddr) {
596    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
597                 << *MemoryInst);
598    if (SunkAddr->getType() != Addr->getType())
599      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
600  } else {
601    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
602                 << *MemoryInst);
603    const Type *IntPtrTy =
604          TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
605
606    Value *Result = 0;
607
608    // Start with the base register. Do this first so that subsequent address
609    // matching finds it last, which will prevent it from trying to match it
610    // as the scaled value in case it happens to be a mul. That would be
611    // problematic if we've sunk a different mul for the scale, because then
612    // we'd end up sinking both muls.
613    if (AddrMode.BaseReg) {
614      Value *V = AddrMode.BaseReg;
615      if (V->getType()->isPointerTy())
616        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
617      if (V->getType() != IntPtrTy)
618        V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
619                                        "sunkaddr", InsertPt);
620      Result = V;
621    }
622
623    // Add the scale value.
624    if (AddrMode.Scale) {
625      Value *V = AddrMode.ScaledReg;
626      if (V->getType() == IntPtrTy) {
627        // done.
628      } else if (V->getType()->isPointerTy()) {
629        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
630      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
631                 cast<IntegerType>(V->getType())->getBitWidth()) {
632        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
633      } else {
634        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
635      }
636      if (AddrMode.Scale != 1)
637        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
638                                                                AddrMode.Scale),
639                                      "sunkaddr", InsertPt);
640      if (Result)
641        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
642      else
643        Result = V;
644    }
645
646    // Add in the BaseGV if present.
647    if (AddrMode.BaseGV) {
648      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
649                                  InsertPt);
650      if (Result)
651        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
652      else
653        Result = V;
654    }
655
656    // Add in the Base Offset if present.
657    if (AddrMode.BaseOffs) {
658      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
659      if (Result)
660        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
661      else
662        Result = V;
663    }
664
665    if (Result == 0)
666      SunkAddr = Constant::getNullValue(Addr->getType());
667    else
668      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
669  }
670
671  MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
672
673  if (Addr->use_empty())
674    RecursivelyDeleteTriviallyDeadInstructions(Addr);
675  return true;
676}
677
678/// OptimizeInlineAsmInst - If there are any memory operands, use
679/// OptimizeMemoryInst to sink their address computing into the block when
680/// possible / profitable.
681bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
682                                           DenseMap<Value*,Value*> &SunkAddrs) {
683  bool MadeChange = false;
684  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
685
686  // Do a prepass over the constraints, canonicalizing them, and building up the
687  // ConstraintOperands list.
688  std::vector<InlineAsm::ConstraintInfo>
689    ConstraintInfos = IA->ParseConstraints();
690
691  /// ConstraintOperands - Information about all of the constraints.
692  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
693  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
694  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
695    ConstraintOperands.
696      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
697    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
698
699    // Compute the value type for each operand.
700    switch (OpInfo.Type) {
701    case InlineAsm::isOutput:
702      if (OpInfo.isIndirect)
703        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
704      break;
705    case InlineAsm::isInput:
706      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
707      break;
708    case InlineAsm::isClobber:
709      // Nothing to do.
710      break;
711    }
712
713    // Compute the constraint code and ConstraintType to use.
714    TLI->ComputeConstraintToUse(OpInfo, SDValue(),
715                             OpInfo.ConstraintType == TargetLowering::C_Memory);
716
717    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
718        OpInfo.isIndirect) {
719      Value *OpVal = OpInfo.CallOperandVal;
720      MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
721    }
722  }
723
724  return MadeChange;
725}
726
727/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
728/// basic block as the load, unless conditions are unfavorable. This allows
729/// SelectionDAG to fold the extend into the load.
730///
731bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
732  // Look for a load being extended.
733  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
734  if (!LI) return false;
735
736  // If they're already in the same block, there's nothing to do.
737  if (LI->getParent() == I->getParent())
738    return false;
739
740  // If the load has other users and the truncate is not free, this probably
741  // isn't worthwhile.
742  if (!LI->hasOneUse() &&
743      TLI && !TLI->isTruncateFree(I->getType(), LI->getType()))
744    return false;
745
746  // Check whether the target supports casts folded into loads.
747  unsigned LType;
748  if (isa<ZExtInst>(I))
749    LType = ISD::ZEXTLOAD;
750  else {
751    assert(isa<SExtInst>(I) && "Unexpected ext type!");
752    LType = ISD::SEXTLOAD;
753  }
754  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
755    return false;
756
757  // Move the extend into the same block as the load, so that SelectionDAG
758  // can fold it.
759  I->removeFromParent();
760  I->insertAfter(LI);
761  return true;
762}
763
764bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
765  BasicBlock *DefBB = I->getParent();
766
767  // If both result of the {s|z}xt and its source are live out, rewrite all
768  // other uses of the source with result of extension.
769  Value *Src = I->getOperand(0);
770  if (Src->hasOneUse())
771    return false;
772
773  // Only do this xform if truncating is free.
774  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
775    return false;
776
777  // Only safe to perform the optimization if the source is also defined in
778  // this block.
779  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
780    return false;
781
782  bool DefIsLiveOut = false;
783  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
784       UI != E; ++UI) {
785    Instruction *User = cast<Instruction>(*UI);
786
787    // Figure out which BB this ext is used in.
788    BasicBlock *UserBB = User->getParent();
789    if (UserBB == DefBB) continue;
790    DefIsLiveOut = true;
791    break;
792  }
793  if (!DefIsLiveOut)
794    return false;
795
796  // Make sure non of the uses are PHI nodes.
797  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
798       UI != E; ++UI) {
799    Instruction *User = cast<Instruction>(*UI);
800    BasicBlock *UserBB = User->getParent();
801    if (UserBB == DefBB) continue;
802    // Be conservative. We don't want this xform to end up introducing
803    // reloads just before load / store instructions.
804    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
805      return false;
806  }
807
808  // InsertedTruncs - Only insert one trunc in each block once.
809  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
810
811  bool MadeChange = false;
812  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
813       UI != E; ++UI) {
814    Use &TheUse = UI.getUse();
815    Instruction *User = cast<Instruction>(*UI);
816
817    // Figure out which BB this ext is used in.
818    BasicBlock *UserBB = User->getParent();
819    if (UserBB == DefBB) continue;
820
821    // Both src and def are live in this block. Rewrite the use.
822    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
823
824    if (!InsertedTrunc) {
825      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
826
827      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
828    }
829
830    // Replace a use of the {s|z}ext source with a use of the result.
831    TheUse = InsertedTrunc;
832
833    MadeChange = true;
834  }
835
836  return MadeChange;
837}
838
839// In this pass we look for GEP and cast instructions that are used
840// across basic blocks and rewrite them to improve basic-block-at-a-time
841// selection.
842bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
843  bool MadeChange = false;
844
845  // Split all critical edges where the dest block has a PHI.
846  TerminatorInst *BBTI = BB.getTerminator();
847  if (BBTI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(BBTI)) {
848    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
849      BasicBlock *SuccBB = BBTI->getSuccessor(i);
850      if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
851        SplitEdgeNicely(BBTI, i, BackEdges, this);
852    }
853  }
854
855  // Keep track of non-local addresses that have been sunk into this block.
856  // This allows us to avoid inserting duplicate code for blocks with multiple
857  // load/stores of the same address.
858  DenseMap<Value*, Value*> SunkAddrs;
859
860  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
861    Instruction *I = BBI++;
862
863    if (CastInst *CI = dyn_cast<CastInst>(I)) {
864      // If the source of the cast is a constant, then this should have
865      // already been constant folded.  The only reason NOT to constant fold
866      // it is if something (e.g. LSR) was careful to place the constant
867      // evaluation in a block other than then one that uses it (e.g. to hoist
868      // the address of globals out of a loop).  If this is the case, we don't
869      // want to forward-subst the cast.
870      if (isa<Constant>(CI->getOperand(0)))
871        continue;
872
873      bool Change = false;
874      if (TLI) {
875        Change = OptimizeNoopCopyExpression(CI, *TLI);
876        MadeChange |= Change;
877      }
878
879      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I))) {
880        MadeChange |= MoveExtToFormExtLoad(I);
881        MadeChange |= OptimizeExtUses(I);
882      }
883    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
884      MadeChange |= OptimizeCmpExpression(CI);
885    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
886      if (TLI)
887        MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
888                                         SunkAddrs);
889    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
890      if (TLI)
891        MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
892                                         SI->getOperand(0)->getType(),
893                                         SunkAddrs);
894    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
895      if (GEPI->hasAllZeroIndices()) {
896        /// The GEP operand must be a pointer, so must its result -> BitCast
897        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
898                                          GEPI->getName(), GEPI);
899        GEPI->replaceAllUsesWith(NC);
900        GEPI->eraseFromParent();
901        MadeChange = true;
902        BBI = NC;
903      }
904    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
905      // If we found an inline asm expession, and if the target knows how to
906      // lower it to normal LLVM code, do so now.
907      if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
908        if (TLI->ExpandInlineAsm(CI)) {
909          BBI = BB.begin();
910          // Avoid processing instructions out of order, which could cause
911          // reuse before a value is defined.
912          SunkAddrs.clear();
913        } else
914          // Sink address computing for memory operands into the block.
915          MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
916      }
917    }
918  }
919
920  return MadeChange;
921}
922