CodeGenPrepare.cpp revision 47f5751c8092f96b989318faab991b23e558babf
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Instructions.h"
23#include "llvm/Pass.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36using namespace llvm;
37
38namespace {
39  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
40    /// TLI - Keep a pointer of a TargetLowering to consult for determining
41    /// transformation profitability.
42    const TargetLowering *TLI;
43  public:
44    static char ID; // Pass identification, replacement for typeid
45    explicit CodeGenPrepare(const TargetLowering *tli = 0)
46      : FunctionPass(&ID), TLI(tli) {}
47    bool runOnFunction(Function &F);
48
49  private:
50    bool EliminateMostlyEmptyBlocks(Function &F);
51    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
52    void EliminateMostlyEmptyBlock(BasicBlock *BB);
53    bool OptimizeBlock(BasicBlock &BB);
54    bool OptimizeLoadStoreInst(Instruction *I, Value *Addr,
55                               const Type *AccessTy,
56                               DenseMap<Value*,Value*> &SunkAddrs);
57    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
58                               DenseMap<Value*,Value*> &SunkAddrs);
59    bool OptimizeExtUses(Instruction *I);
60  };
61}
62
63char CodeGenPrepare::ID = 0;
64static RegisterPass<CodeGenPrepare> X("codegenprepare",
65                                      "Optimize for code generation");
66
67FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
68  return new CodeGenPrepare(TLI);
69}
70
71
72bool CodeGenPrepare::runOnFunction(Function &F) {
73  bool EverMadeChange = false;
74
75  // First pass, eliminate blocks that contain only PHI nodes and an
76  // unconditional branch.
77  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
78
79  bool MadeChange = true;
80  while (MadeChange) {
81    MadeChange = false;
82    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
83      MadeChange |= OptimizeBlock(*BB);
84    EverMadeChange |= MadeChange;
85  }
86  return EverMadeChange;
87}
88
89/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
90/// and an unconditional branch.  Passes before isel (e.g. LSR/loopsimplify)
91/// often split edges in ways that are non-optimal for isel.  Start by
92/// eliminating these blocks so we can split them the way we want them.
93bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
94  bool MadeChange = false;
95  // Note that this intentionally skips the entry block.
96  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
97    BasicBlock *BB = I++;
98
99    // If this block doesn't end with an uncond branch, ignore it.
100    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
101    if (!BI || !BI->isUnconditional())
102      continue;
103
104    // If the instruction before the branch isn't a phi node, then other stuff
105    // is happening here.
106    BasicBlock::iterator BBI = BI;
107    if (BBI != BB->begin()) {
108      --BBI;
109      if (!isa<PHINode>(BBI)) continue;
110    }
111
112    // Do not break infinite loops.
113    BasicBlock *DestBB = BI->getSuccessor(0);
114    if (DestBB == BB)
115      continue;
116
117    if (!CanMergeBlocks(BB, DestBB))
118      continue;
119
120    EliminateMostlyEmptyBlock(BB);
121    MadeChange = true;
122  }
123  return MadeChange;
124}
125
126/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
127/// single uncond branch between them, and BB contains no other non-phi
128/// instructions.
129bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
130                                    const BasicBlock *DestBB) const {
131  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
132  // the successor.  If there are more complex condition (e.g. preheaders),
133  // don't mess around with them.
134  BasicBlock::const_iterator BBI = BB->begin();
135  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
136    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
137         UI != E; ++UI) {
138      const Instruction *User = cast<Instruction>(*UI);
139      if (User->getParent() != DestBB || !isa<PHINode>(User))
140        return false;
141      // If User is inside DestBB block and it is a PHINode then check
142      // incoming value. If incoming value is not from BB then this is
143      // a complex condition (e.g. preheaders) we want to avoid here.
144      if (User->getParent() == DestBB) {
145        if (const PHINode *UPN = dyn_cast<PHINode>(User))
146          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
147            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
148            if (Insn && Insn->getParent() == BB &&
149                Insn->getParent() != UPN->getIncomingBlock(I))
150              return false;
151          }
152      }
153    }
154  }
155
156  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
157  // and DestBB may have conflicting incoming values for the block.  If so, we
158  // can't merge the block.
159  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
160  if (!DestBBPN) return true;  // no conflict.
161
162  // Collect the preds of BB.
163  SmallPtrSet<const BasicBlock*, 16> BBPreds;
164  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
165    // It is faster to get preds from a PHI than with pred_iterator.
166    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
167      BBPreds.insert(BBPN->getIncomingBlock(i));
168  } else {
169    BBPreds.insert(pred_begin(BB), pred_end(BB));
170  }
171
172  // Walk the preds of DestBB.
173  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
174    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
175    if (BBPreds.count(Pred)) {   // Common predecessor?
176      BBI = DestBB->begin();
177      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
178        const Value *V1 = PN->getIncomingValueForBlock(Pred);
179        const Value *V2 = PN->getIncomingValueForBlock(BB);
180
181        // If V2 is a phi node in BB, look up what the mapped value will be.
182        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
183          if (V2PN->getParent() == BB)
184            V2 = V2PN->getIncomingValueForBlock(Pred);
185
186        // If there is a conflict, bail out.
187        if (V1 != V2) return false;
188      }
189    }
190  }
191
192  return true;
193}
194
195
196/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
197/// an unconditional branch in it.
198void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
199  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
200  BasicBlock *DestBB = BI->getSuccessor(0);
201
202  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
203
204  // If the destination block has a single pred, then this is a trivial edge,
205  // just collapse it.
206  if (DestBB->getSinglePredecessor()) {
207    // If DestBB has single-entry PHI nodes, fold them.
208    while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
209      Value *NewVal = PN->getIncomingValue(0);
210      // Replace self referencing PHI with undef, it must be dead.
211      if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
212      PN->replaceAllUsesWith(NewVal);
213      PN->eraseFromParent();
214    }
215
216    // Splice all the PHI nodes from BB over to DestBB.
217    DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
218                                 BB->begin(), BI);
219
220    // Anything that branched to BB now branches to DestBB.
221    BB->replaceAllUsesWith(DestBB);
222
223    // Nuke BB.
224    BB->eraseFromParent();
225
226    DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
227    return;
228  }
229
230  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
231  // to handle the new incoming edges it is about to have.
232  PHINode *PN;
233  for (BasicBlock::iterator BBI = DestBB->begin();
234       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
235    // Remove the incoming value for BB, and remember it.
236    Value *InVal = PN->removeIncomingValue(BB, false);
237
238    // Two options: either the InVal is a phi node defined in BB or it is some
239    // value that dominates BB.
240    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
241    if (InValPhi && InValPhi->getParent() == BB) {
242      // Add all of the input values of the input PHI as inputs of this phi.
243      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
244        PN->addIncoming(InValPhi->getIncomingValue(i),
245                        InValPhi->getIncomingBlock(i));
246    } else {
247      // Otherwise, add one instance of the dominating value for each edge that
248      // we will be adding.
249      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
250        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
251          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
252      } else {
253        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
254          PN->addIncoming(InVal, *PI);
255      }
256    }
257  }
258
259  // The PHIs are now updated, change everything that refers to BB to use
260  // DestBB and remove BB.
261  BB->replaceAllUsesWith(DestBB);
262  BB->eraseFromParent();
263
264  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
265}
266
267
268/// SplitEdgeNicely - Split the critical edge from TI to its specified
269/// successor if it will improve codegen.  We only do this if the successor has
270/// phi nodes (otherwise critical edges are ok).  If there is already another
271/// predecessor of the succ that is empty (and thus has no phi nodes), use it
272/// instead of introducing a new block.
273static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
274  BasicBlock *TIBB = TI->getParent();
275  BasicBlock *Dest = TI->getSuccessor(SuccNum);
276  assert(isa<PHINode>(Dest->begin()) &&
277         "This should only be called if Dest has a PHI!");
278
279  // As a hack, never split backedges of loops.  Even though the copy for any
280  // PHIs inserted on the backedge would be dead for exits from the loop, we
281  // assume that the cost of *splitting* the backedge would be too high.
282  if (Dest == TIBB)
283    return;
284
285  /// TIPHIValues - This array is lazily computed to determine the values of
286  /// PHIs in Dest that TI would provide.
287  SmallVector<Value*, 32> TIPHIValues;
288
289  // Check to see if Dest has any blocks that can be used as a split edge for
290  // this terminator.
291  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
292    BasicBlock *Pred = *PI;
293    // To be usable, the pred has to end with an uncond branch to the dest.
294    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
295    if (!PredBr || !PredBr->isUnconditional() ||
296        // Must be empty other than the branch.
297        &Pred->front() != PredBr ||
298        // Cannot be the entry block; its label does not get emitted.
299        Pred == &(Dest->getParent()->getEntryBlock()))
300      continue;
301
302    // Finally, since we know that Dest has phi nodes in it, we have to make
303    // sure that jumping to Pred will have the same affect as going to Dest in
304    // terms of PHI values.
305    PHINode *PN;
306    unsigned PHINo = 0;
307    bool FoundMatch = true;
308    for (BasicBlock::iterator I = Dest->begin();
309         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
310      if (PHINo == TIPHIValues.size())
311        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
312
313      // If the PHI entry doesn't work, we can't use this pred.
314      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
315        FoundMatch = false;
316        break;
317      }
318    }
319
320    // If we found a workable predecessor, change TI to branch to Succ.
321    if (FoundMatch) {
322      Dest->removePredecessor(TIBB);
323      TI->setSuccessor(SuccNum, Pred);
324      return;
325    }
326  }
327
328  SplitCriticalEdge(TI, SuccNum, P, true);
329}
330
331/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
332/// copy (e.g. it's casting from one pointer type to another, int->uint, or
333/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
334/// registers that must be created and coalesced.
335///
336/// Return true if any changes are made.
337static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
338  // If this is a noop copy,
339  MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
340  MVT DstVT = TLI.getValueType(CI->getType());
341
342  // This is an fp<->int conversion?
343  if (SrcVT.isInteger() != DstVT.isInteger())
344    return false;
345
346  // If this is an extension, it will be a zero or sign extension, which
347  // isn't a noop.
348  if (SrcVT.bitsLT(DstVT)) return false;
349
350  // If these values will be promoted, find out what they will be promoted
351  // to.  This helps us consider truncates on PPC as noop copies when they
352  // are.
353  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
354    SrcVT = TLI.getTypeToTransformTo(SrcVT);
355  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
356    DstVT = TLI.getTypeToTransformTo(DstVT);
357
358  // If, after promotion, these are the same types, this is a noop copy.
359  if (SrcVT != DstVT)
360    return false;
361
362  BasicBlock *DefBB = CI->getParent();
363
364  /// InsertedCasts - Only insert a cast in each block once.
365  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
366
367  bool MadeChange = false;
368  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
369       UI != E; ) {
370    Use &TheUse = UI.getUse();
371    Instruction *User = cast<Instruction>(*UI);
372
373    // Figure out which BB this cast is used in.  For PHI's this is the
374    // appropriate predecessor block.
375    BasicBlock *UserBB = User->getParent();
376    if (PHINode *PN = dyn_cast<PHINode>(User)) {
377      unsigned OpVal = UI.getOperandNo()/2;
378      UserBB = PN->getIncomingBlock(OpVal);
379    }
380
381    // Preincrement use iterator so we don't invalidate it.
382    ++UI;
383
384    // If this user is in the same block as the cast, don't change the cast.
385    if (UserBB == DefBB) continue;
386
387    // If we have already inserted a cast into this block, use it.
388    CastInst *&InsertedCast = InsertedCasts[UserBB];
389
390    if (!InsertedCast) {
391      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
392
393      InsertedCast =
394        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
395                         InsertPt);
396      MadeChange = true;
397    }
398
399    // Replace a use of the cast with a use of the new cast.
400    TheUse = InsertedCast;
401  }
402
403  // If we removed all uses, nuke the cast.
404  if (CI->use_empty()) {
405    CI->eraseFromParent();
406    MadeChange = true;
407  }
408
409  return MadeChange;
410}
411
412/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
413/// the number of virtual registers that must be created and coalesced.  This is
414/// a clear win except on targets with multiple condition code registers
415///  (PowerPC), where it might lose; some adjustment may be wanted there.
416///
417/// Return true if any changes are made.
418static bool OptimizeCmpExpression(CmpInst *CI){
419
420  BasicBlock *DefBB = CI->getParent();
421
422  /// InsertedCmp - Only insert a cmp in each block once.
423  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
424
425  bool MadeChange = false;
426  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
427       UI != E; ) {
428    Use &TheUse = UI.getUse();
429    Instruction *User = cast<Instruction>(*UI);
430
431    // Preincrement use iterator so we don't invalidate it.
432    ++UI;
433
434    // Don't bother for PHI nodes.
435    if (isa<PHINode>(User))
436      continue;
437
438    // Figure out which BB this cmp is used in.
439    BasicBlock *UserBB = User->getParent();
440
441    // If this user is in the same block as the cmp, don't change the cmp.
442    if (UserBB == DefBB) continue;
443
444    // If we have already inserted a cmp into this block, use it.
445    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
446
447    if (!InsertedCmp) {
448      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
449
450      InsertedCmp =
451        CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0),
452                        CI->getOperand(1), "", InsertPt);
453      MadeChange = true;
454    }
455
456    // Replace a use of the cmp with a use of the new cmp.
457    TheUse = InsertedCmp;
458  }
459
460  // If we removed all uses, nuke the cmp.
461  if (CI->use_empty())
462    CI->eraseFromParent();
463
464  return MadeChange;
465}
466
467/// EraseDeadInstructions - Erase any dead instructions
468static void EraseDeadInstructions(Value *V) {
469  Instruction *I = dyn_cast<Instruction>(V);
470  if (!I || !I->use_empty()) return;
471
472  SmallPtrSet<Instruction*, 16> Insts;
473  Insts.insert(I);
474
475  while (!Insts.empty()) {
476    I = *Insts.begin();
477    Insts.erase(I);
478    if (isInstructionTriviallyDead(I)) {
479      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
480        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
481          Insts.insert(U);
482      I->eraseFromParent();
483    }
484  }
485}
486
487namespace {
488
489/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which
490/// holds actual Value*'s for register values.
491struct ExtAddrMode : public TargetLowering::AddrMode {
492  Value *BaseReg;
493  Value *ScaledReg;
494  ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
495  void dump() const;
496};
497
498static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) {
499  bool NeedPlus = false;
500  OS << "[";
501  if (AM.BaseGV)
502    OS << (NeedPlus ? " + " : "")
503       << "GV:%" << AM.BaseGV->getName(), NeedPlus = true;
504
505  if (AM.BaseOffs)
506    OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true;
507
508  if (AM.BaseReg)
509    OS << (NeedPlus ? " + " : "")
510       << "Base:%" << AM.BaseReg->getName(), NeedPlus = true;
511  if (AM.Scale)
512    OS << (NeedPlus ? " + " : "")
513       << AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true;
514
515  return OS << "]";
516}
517
518void ExtAddrMode::dump() const {
519  cerr << *this << "\n";
520}
521
522}
523
524static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
525                                   const Type *AccessTy, ExtAddrMode &AddrMode,
526                                   SmallVector<Instruction*, 16> &AddrModeInsts,
527                                   const TargetLowering &TLI, unsigned Depth);
528
529/// FindMaximalLegalAddressingMode - If we can, try to merge the computation of
530/// Addr into the specified addressing mode.  If Addr can't be added to AddrMode
531/// this returns false.  This assumes that Addr is either a pointer type or
532/// intptr_t for the target.
533static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy,
534                                           ExtAddrMode &AddrMode,
535                                   SmallVector<Instruction*, 16> &AddrModeInsts,
536                                           const TargetLowering &TLI,
537                                           unsigned Depth) {
538
539  // If this is a global variable, fold it into the addressing mode if possible.
540  if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
541    if (AddrMode.BaseGV == 0) {
542      AddrMode.BaseGV = GV;
543      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
544        return true;
545      AddrMode.BaseGV = 0;
546    }
547  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
548    AddrMode.BaseOffs += CI->getSExtValue();
549    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
550      return true;
551    AddrMode.BaseOffs -= CI->getSExtValue();
552  } else if (isa<ConstantPointerNull>(Addr)) {
553    return true;
554  }
555
556  // Look through constant exprs and instructions.
557  unsigned Opcode = ~0U;
558  User *AddrInst = 0;
559  if (Instruction *I = dyn_cast<Instruction>(Addr)) {
560    Opcode = I->getOpcode();
561    AddrInst = I;
562  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
563    Opcode = CE->getOpcode();
564    AddrInst = CE;
565  }
566
567  // Limit recursion to avoid exponential behavior.
568  if (Depth == 5) { AddrInst = 0; Opcode = ~0U; }
569
570  // If this is really an instruction, add it to our list of related
571  // instructions.
572  if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst))
573    AddrModeInsts.push_back(I);
574
575  if (AddrInst && !AddrInst->hasOneUse())
576    ;
577  else
578  switch (Opcode) {
579  case Instruction::PtrToInt:
580    // PtrToInt is always a noop, as we know that the int type is pointer sized.
581    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
582                                       AddrMode, AddrModeInsts, TLI, Depth))
583      return true;
584    break;
585  case Instruction::IntToPtr:
586    // This inttoptr is a no-op if the integer type is pointer sized.
587    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
588        TLI.getPointerTy()) {
589      if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
590                                         AddrMode, AddrModeInsts, TLI, Depth))
591        return true;
592    }
593    break;
594  case Instruction::Add: {
595    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
596    ExtAddrMode BackupAddrMode = AddrMode;
597    unsigned OldSize = AddrModeInsts.size();
598    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
599                                       AddrMode, AddrModeInsts, TLI, Depth+1) &&
600        FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
601                                       AddrMode, AddrModeInsts, TLI, Depth+1))
602      return true;
603
604    // Restore the old addr mode info.
605    AddrMode = BackupAddrMode;
606    AddrModeInsts.resize(OldSize);
607
608    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
609    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
610                                       AddrMode, AddrModeInsts, TLI, Depth+1) &&
611        FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
612                                       AddrMode, AddrModeInsts, TLI, Depth+1))
613      return true;
614
615    // Otherwise we definitely can't merge the ADD in.
616    AddrMode = BackupAddrMode;
617    AddrModeInsts.resize(OldSize);
618    break;
619  }
620  case Instruction::Or: {
621    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
622    if (!RHS) break;
623    // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
624    break;
625  }
626  case Instruction::Mul:
627  case Instruction::Shl: {
628    // Can only handle X*C and X << C, and can only handle this when the scale
629    // field is available.
630    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
631    if (!RHS) break;
632    int64_t Scale = RHS->getSExtValue();
633    if (Opcode == Instruction::Shl)
634      Scale = 1 << Scale;
635
636    if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy,
637                               AddrMode, AddrModeInsts, TLI, Depth))
638      return true;
639    break;
640  }
641  case Instruction::GetElementPtr: {
642    // Scan the GEP.  We check it if it contains constant offsets and at most
643    // one variable offset.
644    int VariableOperand = -1;
645    unsigned VariableScale = 0;
646
647    int64_t ConstantOffset = 0;
648    const TargetData *TD = TLI.getTargetData();
649    gep_type_iterator GTI = gep_type_begin(AddrInst);
650    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
651      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
652        const StructLayout *SL = TD->getStructLayout(STy);
653        unsigned Idx =
654          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
655        ConstantOffset += SL->getElementOffset(Idx);
656      } else {
657        uint64_t TypeSize = TD->getABITypeSize(GTI.getIndexedType());
658        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
659          ConstantOffset += CI->getSExtValue()*TypeSize;
660        } else if (TypeSize) {  // Scales of zero don't do anything.
661          // We only allow one variable index at the moment.
662          if (VariableOperand != -1) {
663            VariableOperand = -2;
664            break;
665          }
666
667          // Remember the variable index.
668          VariableOperand = i;
669          VariableScale = TypeSize;
670        }
671      }
672    }
673
674    // If the GEP had multiple variable indices, punt.
675    if (VariableOperand == -2)
676      break;
677
678    // A common case is for the GEP to only do a constant offset.  In this case,
679    // just add it to the disp field and check validity.
680    if (VariableOperand == -1) {
681      AddrMode.BaseOffs += ConstantOffset;
682      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
683        // Check to see if we can fold the base pointer in too.
684        if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
685                                           AddrMode, AddrModeInsts, TLI,
686                                           Depth+1))
687          return true;
688      }
689      AddrMode.BaseOffs -= ConstantOffset;
690    } else {
691      // Check that this has no base reg yet.  If so, we won't have a place to
692      // put the base of the GEP (assuming it is not a null ptr).
693      bool SetBaseReg = false;
694      if (AddrMode.HasBaseReg) {
695        if (!isa<ConstantPointerNull>(AddrInst->getOperand(0)))
696          break;
697      } else {
698        AddrMode.HasBaseReg = true;
699        AddrMode.BaseReg = AddrInst->getOperand(0);
700        SetBaseReg = true;
701      }
702
703      // See if the scale amount is valid for this target.
704      AddrMode.BaseOffs += ConstantOffset;
705      if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand),
706                                 VariableScale, AccessTy, AddrMode,
707                                 AddrModeInsts, TLI, Depth)) {
708        if (!SetBaseReg) return true;
709
710        // If this match succeeded, we know that we can form an address with the
711        // GepBase as the basereg.  See if we can match *more*.
712        AddrMode.HasBaseReg = false;
713        AddrMode.BaseReg = 0;
714        if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
715                                           AddrMode, AddrModeInsts, TLI,
716                                           Depth+1))
717          return true;
718        // Strange, shouldn't happen.  Restore the base reg and succeed the easy
719        // way.
720        AddrMode.HasBaseReg = true;
721        AddrMode.BaseReg = AddrInst->getOperand(0);
722        return true;
723      }
724
725      AddrMode.BaseOffs -= ConstantOffset;
726      if (SetBaseReg) {
727        AddrMode.HasBaseReg = false;
728        AddrMode.BaseReg = 0;
729      }
730    }
731    break;
732  }
733  }
734
735  if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst)) {
736    assert(AddrModeInsts.back() == I && "Stack imbalance"); I = I;
737    AddrModeInsts.pop_back();
738  }
739
740  // Worse case, the target should support [reg] addressing modes. :)
741  if (!AddrMode.HasBaseReg) {
742    AddrMode.HasBaseReg = true;
743    // Still check for legality in case the target supports [imm] but not [i+r].
744    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
745      AddrMode.BaseReg = Addr;
746      return true;
747    }
748    AddrMode.HasBaseReg = false;
749  }
750
751  // If the base register is already taken, see if we can do [r+r].
752  if (AddrMode.Scale == 0) {
753    AddrMode.Scale = 1;
754    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
755      AddrMode.ScaledReg = Addr;
756      return true;
757    }
758    AddrMode.Scale = 0;
759  }
760  // Couldn't match.
761  return false;
762}
763
764/// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified
765/// addressing mode.  Return true if this addr mode is legal for the target,
766/// false if not.
767static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
768                                   const Type *AccessTy, ExtAddrMode &AddrMode,
769                                   SmallVector<Instruction*, 16> &AddrModeInsts,
770                                   const TargetLowering &TLI, unsigned Depth) {
771  // If we already have a scale of this value, we can add to it, otherwise, we
772  // need an available scale field.
773  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
774    return false;
775
776  ExtAddrMode InputAddrMode = AddrMode;
777
778  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
779  // [A+B + A*7] -> [B+A*8].
780  AddrMode.Scale += Scale;
781  AddrMode.ScaledReg = ScaleReg;
782
783  if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
784    // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
785    // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
786    // X*Scale + C*Scale to addr mode.
787    BinaryOperator *BinOp = dyn_cast<BinaryOperator>(ScaleReg);
788    if (BinOp && BinOp->getOpcode() == Instruction::Add &&
789        isa<ConstantInt>(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) {
790
791      InputAddrMode.Scale = Scale;
792      InputAddrMode.ScaledReg = BinOp->getOperand(0);
793      InputAddrMode.BaseOffs +=
794        cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue()*Scale;
795      if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) {
796        AddrModeInsts.push_back(BinOp);
797        AddrMode = InputAddrMode;
798        return true;
799      }
800    }
801
802    // Otherwise, not (x+c)*scale, just return what we have.
803    return true;
804  }
805
806  // Otherwise, back this attempt out.
807  AddrMode.Scale -= Scale;
808  if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0;
809
810  return false;
811}
812
813
814/// IsNonLocalValue - Return true if the specified values are defined in a
815/// different basic block than BB.
816static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
817  if (Instruction *I = dyn_cast<Instruction>(V))
818    return I->getParent() != BB;
819  return false;
820}
821
822/// OptimizeLoadStoreInst - Load and Store Instructions have often have
823/// addressing modes that can do significant amounts of computation.  As such,
824/// instruction selection will try to get the load or store to do as much
825/// computation as possible for the program.  The problem is that isel can only
826/// see within a single block.  As such, we sink as much legal addressing mode
827/// stuff into the block as possible.
828bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr,
829                                           const Type *AccessTy,
830                                           DenseMap<Value*,Value*> &SunkAddrs) {
831  // Figure out what addressing mode will be built up for this operation.
832  SmallVector<Instruction*, 16> AddrModeInsts;
833  ExtAddrMode AddrMode;
834  bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode,
835                                                AddrModeInsts, *TLI, 0);
836  Success = Success; assert(Success && "Couldn't select *anything*?");
837
838  // Check to see if any of the instructions supersumed by this addr mode are
839  // non-local to I's BB.
840  bool AnyNonLocal = false;
841  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
842    if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) {
843      AnyNonLocal = true;
844      break;
845    }
846  }
847
848  // If all the instructions matched are already in this BB, don't do anything.
849  if (!AnyNonLocal) {
850    DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
851    return false;
852  }
853
854  // Insert this computation right after this user.  Since our caller is
855  // scanning from the top of the BB to the bottom, reuse of the expr are
856  // guaranteed to happen later.
857  BasicBlock::iterator InsertPt = LdStInst;
858
859  // Now that we determined the addressing expression we want to use and know
860  // that we have to sink it into this block.  Check to see if we have already
861  // done this for some other load/store instr in this block.  If so, reuse the
862  // computation.
863  Value *&SunkAddr = SunkAddrs[Addr];
864  if (SunkAddr) {
865    DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
866    if (SunkAddr->getType() != Addr->getType())
867      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
868  } else {
869    DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
870    const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
871
872    Value *Result = 0;
873    // Start with the scale value.
874    if (AddrMode.Scale) {
875      Value *V = AddrMode.ScaledReg;
876      if (V->getType() == IntPtrTy) {
877        // done.
878      } else if (isa<PointerType>(V->getType())) {
879        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
880      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
881                 cast<IntegerType>(V->getType())->getBitWidth()) {
882        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
883      } else {
884        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
885      }
886      if (AddrMode.Scale != 1)
887        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
888                                                          AddrMode.Scale),
889                                      "sunkaddr", InsertPt);
890      Result = V;
891    }
892
893    // Add in the base register.
894    if (AddrMode.BaseReg) {
895      Value *V = AddrMode.BaseReg;
896      if (V->getType() != IntPtrTy)
897        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
898      if (Result)
899        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
900      else
901        Result = V;
902    }
903
904    // Add in the BaseGV if present.
905    if (AddrMode.BaseGV) {
906      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
907                                  InsertPt);
908      if (Result)
909        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
910      else
911        Result = V;
912    }
913
914    // Add in the Base Offset if present.
915    if (AddrMode.BaseOffs) {
916      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
917      if (Result)
918        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
919      else
920        Result = V;
921    }
922
923    if (Result == 0)
924      SunkAddr = Constant::getNullValue(Addr->getType());
925    else
926      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
927  }
928
929  LdStInst->replaceUsesOfWith(Addr, SunkAddr);
930
931  if (Addr->use_empty())
932    EraseDeadInstructions(Addr);
933  return true;
934}
935
936/// OptimizeInlineAsmInst - If there are any memory operands, use
937/// OptimizeLoadStoreInt to sink their address computing into the block when
938/// possible / profitable.
939bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
940                                           DenseMap<Value*,Value*> &SunkAddrs) {
941  bool MadeChange = false;
942  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
943
944  // Do a prepass over the constraints, canonicalizing them, and building up the
945  // ConstraintOperands list.
946  std::vector<InlineAsm::ConstraintInfo>
947    ConstraintInfos = IA->ParseConstraints();
948
949  /// ConstraintOperands - Information about all of the constraints.
950  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
951  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
952  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
953    ConstraintOperands.
954      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
955    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
956
957    // Compute the value type for each operand.
958    switch (OpInfo.Type) {
959    case InlineAsm::isOutput:
960      if (OpInfo.isIndirect)
961        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
962      break;
963    case InlineAsm::isInput:
964      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
965      break;
966    case InlineAsm::isClobber:
967      // Nothing to do.
968      break;
969    }
970
971    // Compute the constraint code and ConstraintType to use.
972    TLI->ComputeConstraintToUse(OpInfo, SDValue(),
973                             OpInfo.ConstraintType == TargetLowering::C_Memory);
974
975    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
976        OpInfo.isIndirect) {
977      Value *OpVal = OpInfo.CallOperandVal;
978      MadeChange |= OptimizeLoadStoreInst(I, OpVal, OpVal->getType(),
979                                          SunkAddrs);
980    }
981  }
982
983  return MadeChange;
984}
985
986bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
987  BasicBlock *DefBB = I->getParent();
988
989  // If both result of the {s|z}xt and its source are live out, rewrite all
990  // other uses of the source with result of extension.
991  Value *Src = I->getOperand(0);
992  if (Src->hasOneUse())
993    return false;
994
995  // Only do this xform if truncating is free.
996  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
997    return false;
998
999  // Only safe to perform the optimization if the source is also defined in
1000  // this block.
1001  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
1002    return false;
1003
1004  bool DefIsLiveOut = false;
1005  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1006       UI != E; ++UI) {
1007    Instruction *User = cast<Instruction>(*UI);
1008
1009    // Figure out which BB this ext is used in.
1010    BasicBlock *UserBB = User->getParent();
1011    if (UserBB == DefBB) continue;
1012    DefIsLiveOut = true;
1013    break;
1014  }
1015  if (!DefIsLiveOut)
1016    return false;
1017
1018  // Make sure non of the uses are PHI nodes.
1019  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1020       UI != E; ++UI) {
1021    Instruction *User = cast<Instruction>(*UI);
1022    BasicBlock *UserBB = User->getParent();
1023    if (UserBB == DefBB) continue;
1024    // Be conservative. We don't want this xform to end up introducing
1025    // reloads just before load / store instructions.
1026    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
1027      return false;
1028  }
1029
1030  // InsertedTruncs - Only insert one trunc in each block once.
1031  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
1032
1033  bool MadeChange = false;
1034  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1035       UI != E; ++UI) {
1036    Use &TheUse = UI.getUse();
1037    Instruction *User = cast<Instruction>(*UI);
1038
1039    // Figure out which BB this ext is used in.
1040    BasicBlock *UserBB = User->getParent();
1041    if (UserBB == DefBB) continue;
1042
1043    // Both src and def are live in this block. Rewrite the use.
1044    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
1045
1046    if (!InsertedTrunc) {
1047      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
1048
1049      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
1050    }
1051
1052    // Replace a use of the {s|z}ext source with a use of the result.
1053    TheUse = InsertedTrunc;
1054
1055    MadeChange = true;
1056  }
1057
1058  return MadeChange;
1059}
1060
1061// In this pass we look for GEP and cast instructions that are used
1062// across basic blocks and rewrite them to improve basic-block-at-a-time
1063// selection.
1064bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
1065  bool MadeChange = false;
1066
1067  // Split all critical edges where the dest block has a PHI and where the phi
1068  // has shared immediate operands.
1069  TerminatorInst *BBTI = BB.getTerminator();
1070  if (BBTI->getNumSuccessors() > 1) {
1071    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
1072      if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
1073          isCriticalEdge(BBTI, i, true))
1074        SplitEdgeNicely(BBTI, i, this);
1075  }
1076
1077
1078  // Keep track of non-local addresses that have been sunk into this block.
1079  // This allows us to avoid inserting duplicate code for blocks with multiple
1080  // load/stores of the same address.
1081  DenseMap<Value*, Value*> SunkAddrs;
1082
1083  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
1084    Instruction *I = BBI++;
1085
1086    if (CastInst *CI = dyn_cast<CastInst>(I)) {
1087      // If the source of the cast is a constant, then this should have
1088      // already been constant folded.  The only reason NOT to constant fold
1089      // it is if something (e.g. LSR) was careful to place the constant
1090      // evaluation in a block other than then one that uses it (e.g. to hoist
1091      // the address of globals out of a loop).  If this is the case, we don't
1092      // want to forward-subst the cast.
1093      if (isa<Constant>(CI->getOperand(0)))
1094        continue;
1095
1096      bool Change = false;
1097      if (TLI) {
1098        Change = OptimizeNoopCopyExpression(CI, *TLI);
1099        MadeChange |= Change;
1100      }
1101
1102      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I)))
1103        MadeChange |= OptimizeExtUses(I);
1104    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
1105      MadeChange |= OptimizeCmpExpression(CI);
1106    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1107      if (TLI)
1108        MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(),
1109                                            SunkAddrs);
1110    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1111      if (TLI)
1112        MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1),
1113                                            SI->getOperand(0)->getType(),
1114                                            SunkAddrs);
1115    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1116      if (GEPI->hasAllZeroIndices()) {
1117        /// The GEP operand must be a pointer, so must its result -> BitCast
1118        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
1119                                          GEPI->getName(), GEPI);
1120        GEPI->replaceAllUsesWith(NC);
1121        GEPI->eraseFromParent();
1122        MadeChange = true;
1123        BBI = NC;
1124      }
1125    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
1126      // If we found an inline asm expession, and if the target knows how to
1127      // lower it to normal LLVM code, do so now.
1128      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
1129        if (const TargetAsmInfo *TAI =
1130            TLI->getTargetMachine().getTargetAsmInfo()) {
1131          if (TAI->ExpandInlineAsm(CI))
1132            BBI = BB.begin();
1133          else
1134            // Sink address computing for memory operands into the block.
1135            MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
1136        }
1137    }
1138  }
1139
1140  return MadeChange;
1141}
1142