CodeGenPrepare.cpp revision 58256f83c86d85df24874db0db78b0bc972d6258
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Instructions.h"
23#include "llvm/Pass.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Transforms/Utils/AddrModeMatcher.h"
29#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30#include "llvm/Transforms/Utils/Local.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/Assembly/Writer.h"
34#include "llvm/Support/CallSite.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/PatternMatch.h"
40using namespace llvm;
41using namespace llvm::PatternMatch;
42
43static cl::opt<bool> FactorCommonPreds("split-critical-paths-tweak",
44                                       cl::init(false), cl::Hidden);
45
46namespace {
47  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
48    /// TLI - Keep a pointer of a TargetLowering to consult for determining
49    /// transformation profitability.
50    const TargetLowering *TLI;
51
52    /// BackEdges - Keep a set of all the loop back edges.
53    ///
54    SmallSet<std::pair<BasicBlock*,BasicBlock*>, 8> BackEdges;
55  public:
56    static char ID; // Pass identification, replacement for typeid
57    explicit CodeGenPrepare(const TargetLowering *tli = 0)
58      : FunctionPass(&ID), TLI(tli) {}
59    bool runOnFunction(Function &F);
60
61  private:
62    bool EliminateMostlyEmptyBlocks(Function &F);
63    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
64    void EliminateMostlyEmptyBlock(BasicBlock *BB);
65    bool OptimizeBlock(BasicBlock &BB);
66    bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
67                            DenseMap<Value*,Value*> &SunkAddrs);
68    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
69                               DenseMap<Value*,Value*> &SunkAddrs);
70    bool OptimizeExtUses(Instruction *I);
71    void findLoopBackEdges(Function &F);
72  };
73}
74
75char CodeGenPrepare::ID = 0;
76static RegisterPass<CodeGenPrepare> X("codegenprepare",
77                                      "Optimize for code generation");
78
79FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
80  return new CodeGenPrepare(TLI);
81}
82
83/// findLoopBackEdges - Do a DFS walk to find loop back edges.
84///
85void CodeGenPrepare::findLoopBackEdges(Function &F) {
86  SmallPtrSet<BasicBlock*, 8> Visited;
87  SmallVector<std::pair<BasicBlock*, succ_iterator>, 8> VisitStack;
88  SmallPtrSet<BasicBlock*, 8> InStack;
89
90  BasicBlock *BB = &F.getEntryBlock();
91  if (succ_begin(BB) == succ_end(BB))
92    return;
93  Visited.insert(BB);
94  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
95  InStack.insert(BB);
96  do {
97    std::pair<BasicBlock*, succ_iterator> &Top = VisitStack.back();
98    BasicBlock *ParentBB = Top.first;
99    succ_iterator &I = Top.second;
100
101    bool FoundNew = false;
102    while (I != succ_end(ParentBB)) {
103      BB = *I++;
104      if (Visited.insert(BB)) {
105        FoundNew = true;
106        break;
107      }
108      // Successor is in VisitStack, it's a back edge.
109      if (InStack.count(BB))
110        BackEdges.insert(std::make_pair(ParentBB, BB));
111    }
112
113    if (FoundNew) {
114      // Go down one level if there is a unvisited successor.
115      InStack.insert(BB);
116      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
117    } else {
118      // Go up one level.
119      std::pair<BasicBlock*, succ_iterator> &Pop = VisitStack.back();
120      InStack.erase(Pop.first);
121      VisitStack.pop_back();
122    }
123  } while (!VisitStack.empty());
124}
125
126
127bool CodeGenPrepare::runOnFunction(Function &F) {
128  bool EverMadeChange = false;
129
130  // First pass, eliminate blocks that contain only PHI nodes and an
131  // unconditional branch.
132  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
133
134  // Now find loop back edges.
135  findLoopBackEdges(F);
136
137  bool MadeChange = true;
138  while (MadeChange) {
139    MadeChange = false;
140    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
141      MadeChange |= OptimizeBlock(*BB);
142    EverMadeChange |= MadeChange;
143  }
144  return EverMadeChange;
145}
146
147/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
148/// and an unconditional branch.  Passes before isel (e.g. LSR/loopsimplify)
149/// often split edges in ways that are non-optimal for isel.  Start by
150/// eliminating these blocks so we can split them the way we want them.
151bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
152  bool MadeChange = false;
153  // Note that this intentionally skips the entry block.
154  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
155    BasicBlock *BB = I++;
156
157    // If this block doesn't end with an uncond branch, ignore it.
158    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
159    if (!BI || !BI->isUnconditional())
160      continue;
161
162    // If the instruction before the branch isn't a phi node, then other stuff
163    // is happening here.
164    BasicBlock::iterator BBI = BI;
165    if (BBI != BB->begin()) {
166      --BBI;
167      if (!isa<PHINode>(BBI)) continue;
168    }
169
170    // Do not break infinite loops.
171    BasicBlock *DestBB = BI->getSuccessor(0);
172    if (DestBB == BB)
173      continue;
174
175    if (!CanMergeBlocks(BB, DestBB))
176      continue;
177
178    EliminateMostlyEmptyBlock(BB);
179    MadeChange = true;
180  }
181  return MadeChange;
182}
183
184/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
185/// single uncond branch between them, and BB contains no other non-phi
186/// instructions.
187bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
188                                    const BasicBlock *DestBB) const {
189  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
190  // the successor.  If there are more complex condition (e.g. preheaders),
191  // don't mess around with them.
192  BasicBlock::const_iterator BBI = BB->begin();
193  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
194    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
195         UI != E; ++UI) {
196      const Instruction *User = cast<Instruction>(*UI);
197      if (User->getParent() != DestBB || !isa<PHINode>(User))
198        return false;
199      // If User is inside DestBB block and it is a PHINode then check
200      // incoming value. If incoming value is not from BB then this is
201      // a complex condition (e.g. preheaders) we want to avoid here.
202      if (User->getParent() == DestBB) {
203        if (const PHINode *UPN = dyn_cast<PHINode>(User))
204          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
205            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
206            if (Insn && Insn->getParent() == BB &&
207                Insn->getParent() != UPN->getIncomingBlock(I))
208              return false;
209          }
210      }
211    }
212  }
213
214  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
215  // and DestBB may have conflicting incoming values for the block.  If so, we
216  // can't merge the block.
217  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
218  if (!DestBBPN) return true;  // no conflict.
219
220  // Collect the preds of BB.
221  SmallPtrSet<const BasicBlock*, 16> BBPreds;
222  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
223    // It is faster to get preds from a PHI than with pred_iterator.
224    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
225      BBPreds.insert(BBPN->getIncomingBlock(i));
226  } else {
227    BBPreds.insert(pred_begin(BB), pred_end(BB));
228  }
229
230  // Walk the preds of DestBB.
231  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
232    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
233    if (BBPreds.count(Pred)) {   // Common predecessor?
234      BBI = DestBB->begin();
235      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
236        const Value *V1 = PN->getIncomingValueForBlock(Pred);
237        const Value *V2 = PN->getIncomingValueForBlock(BB);
238
239        // If V2 is a phi node in BB, look up what the mapped value will be.
240        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
241          if (V2PN->getParent() == BB)
242            V2 = V2PN->getIncomingValueForBlock(Pred);
243
244        // If there is a conflict, bail out.
245        if (V1 != V2) return false;
246      }
247    }
248  }
249
250  return true;
251}
252
253
254/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
255/// an unconditional branch in it.
256void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
257  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
258  BasicBlock *DestBB = BI->getSuccessor(0);
259
260  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
261
262  // If the destination block has a single pred, then this is a trivial edge,
263  // just collapse it.
264  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
265    if (SinglePred != DestBB) {
266      // Remember if SinglePred was the entry block of the function.  If so, we
267      // will need to move BB back to the entry position.
268      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
269      MergeBasicBlockIntoOnlyPred(DestBB);
270
271      if (isEntry && BB != &BB->getParent()->getEntryBlock())
272        BB->moveBefore(&BB->getParent()->getEntryBlock());
273
274      DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
275      return;
276    }
277  }
278
279  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
280  // to handle the new incoming edges it is about to have.
281  PHINode *PN;
282  for (BasicBlock::iterator BBI = DestBB->begin();
283       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
284    // Remove the incoming value for BB, and remember it.
285    Value *InVal = PN->removeIncomingValue(BB, false);
286
287    // Two options: either the InVal is a phi node defined in BB or it is some
288    // value that dominates BB.
289    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
290    if (InValPhi && InValPhi->getParent() == BB) {
291      // Add all of the input values of the input PHI as inputs of this phi.
292      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
293        PN->addIncoming(InValPhi->getIncomingValue(i),
294                        InValPhi->getIncomingBlock(i));
295    } else {
296      // Otherwise, add one instance of the dominating value for each edge that
297      // we will be adding.
298      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
299        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
300          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
301      } else {
302        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
303          PN->addIncoming(InVal, *PI);
304      }
305    }
306  }
307
308  // The PHIs are now updated, change everything that refers to BB to use
309  // DestBB and remove BB.
310  BB->replaceAllUsesWith(DestBB);
311  BB->eraseFromParent();
312
313  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
314}
315
316
317/// SplitEdgeNicely - Split the critical edge from TI to its specified
318/// successor if it will improve codegen.  We only do this if the successor has
319/// phi nodes (otherwise critical edges are ok).  If there is already another
320/// predecessor of the succ that is empty (and thus has no phi nodes), use it
321/// instead of introducing a new block.
322static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
323                     SmallSet<std::pair<BasicBlock*,BasicBlock*>, 8> &BackEdges,
324                             Pass *P) {
325  BasicBlock *TIBB = TI->getParent();
326  BasicBlock *Dest = TI->getSuccessor(SuccNum);
327  assert(isa<PHINode>(Dest->begin()) &&
328         "This should only be called if Dest has a PHI!");
329
330  // As a hack, never split backedges of loops.  Even though the copy for any
331  // PHIs inserted on the backedge would be dead for exits from the loop, we
332  // assume that the cost of *splitting* the backedge would be too high.
333  if (BackEdges.count(std::make_pair(TIBB, Dest)))
334    return;
335
336  if (!FactorCommonPreds) {
337    /// TIPHIValues - This array is lazily computed to determine the values of
338    /// PHIs in Dest that TI would provide.
339    SmallVector<Value*, 32> TIPHIValues;
340
341    // Check to see if Dest has any blocks that can be used as a split edge for
342    // this terminator.
343    for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
344      BasicBlock *Pred = *PI;
345      // To be usable, the pred has to end with an uncond branch to the dest.
346      BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
347      if (!PredBr || !PredBr->isUnconditional() ||
348          // Must be empty other than the branch.
349          &Pred->front() != PredBr ||
350          // Cannot be the entry block; its label does not get emitted.
351          Pred == &(Dest->getParent()->getEntryBlock()))
352        continue;
353
354      // Finally, since we know that Dest has phi nodes in it, we have to make
355      // sure that jumping to Pred will have the same affect as going to Dest in
356      // terms of PHI values.
357      PHINode *PN;
358      unsigned PHINo = 0;
359      bool FoundMatch = true;
360      for (BasicBlock::iterator I = Dest->begin();
361           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
362        if (PHINo == TIPHIValues.size())
363          TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
364
365        // If the PHI entry doesn't work, we can't use this pred.
366        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
367          FoundMatch = false;
368          break;
369        }
370      }
371
372      // If we found a workable predecessor, change TI to branch to Succ.
373      if (FoundMatch) {
374        Dest->removePredecessor(TIBB);
375        TI->setSuccessor(SuccNum, Pred);
376        return;
377      }
378    }
379
380    SplitCriticalEdge(TI, SuccNum, P, true);
381    return;
382  }
383
384  PHINode *PN;
385  SmallVector<Value*, 8> TIPHIValues;
386  for (BasicBlock::iterator I = Dest->begin();
387       (PN = dyn_cast<PHINode>(I)); ++I)
388    TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
389
390  SmallVector<BasicBlock*, 8> IdenticalPreds;
391  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
392    BasicBlock *Pred = *PI;
393    if (BackEdges.count(std::make_pair(Pred, Dest)))
394      continue;
395    if (PI == TIBB)
396      IdenticalPreds.push_back(Pred);
397    else {
398      bool Identical = true;
399      unsigned PHINo = 0;
400      for (BasicBlock::iterator I = Dest->begin();
401           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo)
402        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
403          Identical = false;
404          break;
405        }
406      if (Identical)
407        IdenticalPreds.push_back(Pred);
408    }
409  }
410
411  assert(!IdenticalPreds.empty());
412  SplitBlockPredecessors(Dest, &IdenticalPreds[0], IdenticalPreds.size(),
413                         ".critedge", P);
414}
415
416
417/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
418/// copy (e.g. it's casting from one pointer type to another, int->uint, or
419/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
420/// registers that must be created and coalesced.
421///
422/// Return true if any changes are made.
423///
424static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
425  // If this is a noop copy,
426  MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
427  MVT DstVT = TLI.getValueType(CI->getType());
428
429  // This is an fp<->int conversion?
430  if (SrcVT.isInteger() != DstVT.isInteger())
431    return false;
432
433  // If this is an extension, it will be a zero or sign extension, which
434  // isn't a noop.
435  if (SrcVT.bitsLT(DstVT)) return false;
436
437  // If these values will be promoted, find out what they will be promoted
438  // to.  This helps us consider truncates on PPC as noop copies when they
439  // are.
440  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
441    SrcVT = TLI.getTypeToTransformTo(SrcVT);
442  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
443    DstVT = TLI.getTypeToTransformTo(DstVT);
444
445  // If, after promotion, these are the same types, this is a noop copy.
446  if (SrcVT != DstVT)
447    return false;
448
449  BasicBlock *DefBB = CI->getParent();
450
451  /// InsertedCasts - Only insert a cast in each block once.
452  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
453
454  bool MadeChange = false;
455  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
456       UI != E; ) {
457    Use &TheUse = UI.getUse();
458    Instruction *User = cast<Instruction>(*UI);
459
460    // Figure out which BB this cast is used in.  For PHI's this is the
461    // appropriate predecessor block.
462    BasicBlock *UserBB = User->getParent();
463    if (PHINode *PN = dyn_cast<PHINode>(User)) {
464      UserBB = PN->getIncomingBlock(UI);
465    }
466
467    // Preincrement use iterator so we don't invalidate it.
468    ++UI;
469
470    // If this user is in the same block as the cast, don't change the cast.
471    if (UserBB == DefBB) continue;
472
473    // If we have already inserted a cast into this block, use it.
474    CastInst *&InsertedCast = InsertedCasts[UserBB];
475
476    if (!InsertedCast) {
477      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
478
479      InsertedCast =
480        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
481                         InsertPt);
482      MadeChange = true;
483    }
484
485    // Replace a use of the cast with a use of the new cast.
486    TheUse = InsertedCast;
487  }
488
489  // If we removed all uses, nuke the cast.
490  if (CI->use_empty()) {
491    CI->eraseFromParent();
492    MadeChange = true;
493  }
494
495  return MadeChange;
496}
497
498/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
499/// the number of virtual registers that must be created and coalesced.  This is
500/// a clear win except on targets with multiple condition code registers
501///  (PowerPC), where it might lose; some adjustment may be wanted there.
502///
503/// Return true if any changes are made.
504static bool OptimizeCmpExpression(CmpInst *CI) {
505  BasicBlock *DefBB = CI->getParent();
506
507  /// InsertedCmp - Only insert a cmp in each block once.
508  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
509
510  bool MadeChange = false;
511  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
512       UI != E; ) {
513    Use &TheUse = UI.getUse();
514    Instruction *User = cast<Instruction>(*UI);
515
516    // Preincrement use iterator so we don't invalidate it.
517    ++UI;
518
519    // Don't bother for PHI nodes.
520    if (isa<PHINode>(User))
521      continue;
522
523    // Figure out which BB this cmp is used in.
524    BasicBlock *UserBB = User->getParent();
525
526    // If this user is in the same block as the cmp, don't change the cmp.
527    if (UserBB == DefBB) continue;
528
529    // If we have already inserted a cmp into this block, use it.
530    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
531
532    if (!InsertedCmp) {
533      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
534
535      InsertedCmp =
536        CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0),
537                        CI->getOperand(1), "", InsertPt);
538      MadeChange = true;
539    }
540
541    // Replace a use of the cmp with a use of the new cmp.
542    TheUse = InsertedCmp;
543  }
544
545  // If we removed all uses, nuke the cmp.
546  if (CI->use_empty())
547    CI->eraseFromParent();
548
549  return MadeChange;
550}
551
552//===----------------------------------------------------------------------===//
553// Addressing Mode Analysis and Optimization
554//===----------------------------------------------------------------------===//
555
556//===----------------------------------------------------------------------===//
557// Memory Optimization
558//===----------------------------------------------------------------------===//
559
560/// IsNonLocalValue - Return true if the specified values are defined in a
561/// different basic block than BB.
562static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
563  if (Instruction *I = dyn_cast<Instruction>(V))
564    return I->getParent() != BB;
565  return false;
566}
567
568/// OptimizeMemoryInst - Load and Store Instructions have often have
569/// addressing modes that can do significant amounts of computation.  As such,
570/// instruction selection will try to get the load or store to do as much
571/// computation as possible for the program.  The problem is that isel can only
572/// see within a single block.  As such, we sink as much legal addressing mode
573/// stuff into the block as possible.
574///
575/// This method is used to optimize both load/store and inline asms with memory
576/// operands.
577bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
578                                        const Type *AccessTy,
579                                        DenseMap<Value*,Value*> &SunkAddrs) {
580  // Figure out what addressing mode will be built up for this operation.
581  SmallVector<Instruction*, 16> AddrModeInsts;
582  ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
583                                                      AddrModeInsts, *TLI);
584
585  // Check to see if any of the instructions supersumed by this addr mode are
586  // non-local to I's BB.
587  bool AnyNonLocal = false;
588  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
589    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
590      AnyNonLocal = true;
591      break;
592    }
593  }
594
595  // If all the instructions matched are already in this BB, don't do anything.
596  if (!AnyNonLocal) {
597    DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
598    return false;
599  }
600
601  // Insert this computation right after this user.  Since our caller is
602  // scanning from the top of the BB to the bottom, reuse of the expr are
603  // guaranteed to happen later.
604  BasicBlock::iterator InsertPt = MemoryInst;
605
606  // Now that we determined the addressing expression we want to use and know
607  // that we have to sink it into this block.  Check to see if we have already
608  // done this for some other load/store instr in this block.  If so, reuse the
609  // computation.
610  Value *&SunkAddr = SunkAddrs[Addr];
611  if (SunkAddr) {
612    DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
613               << *MemoryInst);
614    if (SunkAddr->getType() != Addr->getType())
615      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
616  } else {
617    DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
618               << *MemoryInst);
619    const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
620
621    Value *Result = 0;
622    // Start with the scale value.
623    if (AddrMode.Scale) {
624      Value *V = AddrMode.ScaledReg;
625      if (V->getType() == IntPtrTy) {
626        // done.
627      } else if (isa<PointerType>(V->getType())) {
628        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
629      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
630                 cast<IntegerType>(V->getType())->getBitWidth()) {
631        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
632      } else {
633        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
634      }
635      if (AddrMode.Scale != 1)
636        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
637                                                          AddrMode.Scale),
638                                      "sunkaddr", InsertPt);
639      Result = V;
640    }
641
642    // Add in the base register.
643    if (AddrMode.BaseReg) {
644      Value *V = AddrMode.BaseReg;
645      if (V->getType() != IntPtrTy)
646        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
647      if (Result)
648        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
649      else
650        Result = V;
651    }
652
653    // Add in the BaseGV if present.
654    if (AddrMode.BaseGV) {
655      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
656                                  InsertPt);
657      if (Result)
658        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
659      else
660        Result = V;
661    }
662
663    // Add in the Base Offset if present.
664    if (AddrMode.BaseOffs) {
665      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
666      if (Result)
667        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
668      else
669        Result = V;
670    }
671
672    if (Result == 0)
673      SunkAddr = Constant::getNullValue(Addr->getType());
674    else
675      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
676  }
677
678  MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
679
680  if (Addr->use_empty())
681    RecursivelyDeleteTriviallyDeadInstructions(Addr);
682  return true;
683}
684
685/// OptimizeInlineAsmInst - If there are any memory operands, use
686/// OptimizeMemoryInst to sink their address computing into the block when
687/// possible / profitable.
688bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
689                                           DenseMap<Value*,Value*> &SunkAddrs) {
690  bool MadeChange = false;
691  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
692
693  // Do a prepass over the constraints, canonicalizing them, and building up the
694  // ConstraintOperands list.
695  std::vector<InlineAsm::ConstraintInfo>
696    ConstraintInfos = IA->ParseConstraints();
697
698  /// ConstraintOperands - Information about all of the constraints.
699  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
700  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
701  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
702    ConstraintOperands.
703      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
704    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
705
706    // Compute the value type for each operand.
707    switch (OpInfo.Type) {
708    case InlineAsm::isOutput:
709      if (OpInfo.isIndirect)
710        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
711      break;
712    case InlineAsm::isInput:
713      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
714      break;
715    case InlineAsm::isClobber:
716      // Nothing to do.
717      break;
718    }
719
720    // Compute the constraint code and ConstraintType to use.
721    TLI->ComputeConstraintToUse(OpInfo, SDValue(),
722                             OpInfo.ConstraintType == TargetLowering::C_Memory);
723
724    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
725        OpInfo.isIndirect) {
726      Value *OpVal = OpInfo.CallOperandVal;
727      MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
728    }
729  }
730
731  return MadeChange;
732}
733
734bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
735  BasicBlock *DefBB = I->getParent();
736
737  // If both result of the {s|z}xt and its source are live out, rewrite all
738  // other uses of the source with result of extension.
739  Value *Src = I->getOperand(0);
740  if (Src->hasOneUse())
741    return false;
742
743  // Only do this xform if truncating is free.
744  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
745    return false;
746
747  // Only safe to perform the optimization if the source is also defined in
748  // this block.
749  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
750    return false;
751
752  bool DefIsLiveOut = false;
753  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
754       UI != E; ++UI) {
755    Instruction *User = cast<Instruction>(*UI);
756
757    // Figure out which BB this ext is used in.
758    BasicBlock *UserBB = User->getParent();
759    if (UserBB == DefBB) continue;
760    DefIsLiveOut = true;
761    break;
762  }
763  if (!DefIsLiveOut)
764    return false;
765
766  // Make sure non of the uses are PHI nodes.
767  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
768       UI != E; ++UI) {
769    Instruction *User = cast<Instruction>(*UI);
770    BasicBlock *UserBB = User->getParent();
771    if (UserBB == DefBB) continue;
772    // Be conservative. We don't want this xform to end up introducing
773    // reloads just before load / store instructions.
774    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
775      return false;
776  }
777
778  // InsertedTruncs - Only insert one trunc in each block once.
779  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
780
781  bool MadeChange = false;
782  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
783       UI != E; ++UI) {
784    Use &TheUse = UI.getUse();
785    Instruction *User = cast<Instruction>(*UI);
786
787    // Figure out which BB this ext is used in.
788    BasicBlock *UserBB = User->getParent();
789    if (UserBB == DefBB) continue;
790
791    // Both src and def are live in this block. Rewrite the use.
792    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
793
794    if (!InsertedTrunc) {
795      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
796
797      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
798    }
799
800    // Replace a use of the {s|z}ext source with a use of the result.
801    TheUse = InsertedTrunc;
802
803    MadeChange = true;
804  }
805
806  return MadeChange;
807}
808
809// In this pass we look for GEP and cast instructions that are used
810// across basic blocks and rewrite them to improve basic-block-at-a-time
811// selection.
812bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
813  bool MadeChange = false;
814
815  // Split all critical edges where the dest block has a PHI.
816  TerminatorInst *BBTI = BB.getTerminator();
817  if (BBTI->getNumSuccessors() > 1) {
818    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
819      BasicBlock *SuccBB = BBTI->getSuccessor(i);
820      if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
821        SplitEdgeNicely(BBTI, i, BackEdges, this);
822    }
823  }
824
825  // Keep track of non-local addresses that have been sunk into this block.
826  // This allows us to avoid inserting duplicate code for blocks with multiple
827  // load/stores of the same address.
828  DenseMap<Value*, Value*> SunkAddrs;
829
830  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
831    Instruction *I = BBI++;
832
833    if (CastInst *CI = dyn_cast<CastInst>(I)) {
834      // If the source of the cast is a constant, then this should have
835      // already been constant folded.  The only reason NOT to constant fold
836      // it is if something (e.g. LSR) was careful to place the constant
837      // evaluation in a block other than then one that uses it (e.g. to hoist
838      // the address of globals out of a loop).  If this is the case, we don't
839      // want to forward-subst the cast.
840      if (isa<Constant>(CI->getOperand(0)))
841        continue;
842
843      bool Change = false;
844      if (TLI) {
845        Change = OptimizeNoopCopyExpression(CI, *TLI);
846        MadeChange |= Change;
847      }
848
849      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I)))
850        MadeChange |= OptimizeExtUses(I);
851    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
852      MadeChange |= OptimizeCmpExpression(CI);
853    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
854      if (TLI)
855        MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
856                                         SunkAddrs);
857    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
858      if (TLI)
859        MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
860                                         SI->getOperand(0)->getType(),
861                                         SunkAddrs);
862    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
863      if (GEPI->hasAllZeroIndices()) {
864        /// The GEP operand must be a pointer, so must its result -> BitCast
865        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
866                                          GEPI->getName(), GEPI);
867        GEPI->replaceAllUsesWith(NC);
868        GEPI->eraseFromParent();
869        MadeChange = true;
870        BBI = NC;
871      }
872    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
873      // If we found an inline asm expession, and if the target knows how to
874      // lower it to normal LLVM code, do so now.
875      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
876        if (const TargetAsmInfo *TAI =
877            TLI->getTargetMachine().getTargetAsmInfo()) {
878          if (TAI->ExpandInlineAsm(CI)) {
879            BBI = BB.begin();
880            // Avoid processing instructions out of order, which could cause
881            // reuse before a value is defined.
882            SunkAddrs.clear();
883          } else
884            // Sink address computing for memory operands into the block.
885            MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
886        }
887    }
888  }
889
890  return MadeChange;
891}
892