CodeGenPrepare.cpp revision 661a390b830fcdea13ed9daeaf4e6dbd1adcdca6
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/InstructionSimplify.h"
27#include "llvm/Analysis/ProfileInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Transforms/Utils/AddrModeMatcher.h"
31#include "llvm/Transforms/Utils/BasicBlockUtils.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Transforms/Utils/BuildLibCalls.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/Assembly/Writer.h"
38#include "llvm/Support/CallSite.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/GetElementPtrTypeIterator.h"
42#include "llvm/Support/PatternMatch.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Support/IRBuilder.h"
45#include "llvm/Support/ValueHandle.h"
46using namespace llvm;
47using namespace llvm::PatternMatch;
48
49STATISTIC(NumBlocksElim, "Number of blocks eliminated");
50STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
51STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
52STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
53                      "sunken Cmps");
54STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
55                       "of sunken Casts");
56STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
57                          "computations were sunk");
58STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
59STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
60STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
61
62static cl::opt<bool> DisableBranchOpts(
63  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
64  cl::desc("Disable branch optimizations in CodeGenPrepare"));
65
66namespace {
67  class CodeGenPrepare : public FunctionPass {
68    /// TLI - Keep a pointer of a TargetLowering to consult for determining
69    /// transformation profitability.
70    const TargetLowering *TLI;
71    DominatorTree *DT;
72    ProfileInfo *PFI;
73
74    /// CurInstIterator - As we scan instructions optimizing them, this is the
75    /// next instruction to optimize.  Xforms that can invalidate this should
76    /// update it.
77    BasicBlock::iterator CurInstIterator;
78
79    /// Keeps track of non-local addresses that have been sunk into a block.
80    /// This allows us to avoid inserting duplicate code for blocks with
81    /// multiple load/stores of the same address.
82    DenseMap<Value*, Value*> SunkAddrs;
83
84    /// UpdateDT - If CFG is modified in anyway, dominator tree may need to
85    /// be updated.
86    bool UpdateDT;
87
88  public:
89    static char ID; // Pass identification, replacement for typeid
90    explicit CodeGenPrepare(const TargetLowering *tli = 0)
91      : FunctionPass(ID), TLI(tli) {
92        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
93      }
94    bool runOnFunction(Function &F);
95
96    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
97      AU.addPreserved<DominatorTree>();
98      AU.addPreserved<ProfileInfo>();
99    }
100
101  private:
102    bool EliminateMostlyEmptyBlocks(Function &F);
103    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
104    void EliminateMostlyEmptyBlock(BasicBlock *BB);
105    bool OptimizeBlock(BasicBlock &BB);
106    bool OptimizeInst(Instruction *I);
107    bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy);
108    bool OptimizeInlineAsmInst(CallInst *CS);
109    bool OptimizeCallInst(CallInst *CI);
110    bool MoveExtToFormExtLoad(Instruction *I);
111    bool OptimizeExtUses(Instruction *I);
112    bool DupRetToEnableTailCallOpts(ReturnInst *RI);
113  };
114}
115
116char CodeGenPrepare::ID = 0;
117INITIALIZE_PASS(CodeGenPrepare, "codegenprepare",
118                "Optimize for code generation", false, false)
119
120FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
121  return new CodeGenPrepare(TLI);
122}
123
124bool CodeGenPrepare::runOnFunction(Function &F) {
125  bool EverMadeChange = false;
126
127  UpdateDT = false;
128  DT = getAnalysisIfAvailable<DominatorTree>();
129  PFI = getAnalysisIfAvailable<ProfileInfo>();
130
131  // First pass, eliminate blocks that contain only PHI nodes and an
132  // unconditional branch.
133  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
134
135  bool MadeChange = true;
136  while (MadeChange) {
137    MadeChange = false;
138    for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
139      BasicBlock *BB = I++;
140      MadeChange |= OptimizeBlock(*BB);
141    }
142    EverMadeChange |= MadeChange;
143  }
144
145  SunkAddrs.clear();
146
147  if (!DisableBranchOpts) {
148    MadeChange = false;
149    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
150      MadeChange |= ConstantFoldTerminator(BB);
151
152    if (MadeChange)
153      UpdateDT = true;
154    EverMadeChange |= MadeChange;
155  }
156
157  if (UpdateDT && DT)
158    DT->DT->recalculate(F);
159
160  return EverMadeChange;
161}
162
163/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
164/// debug info directives, and an unconditional branch.  Passes before isel
165/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
166/// isel.  Start by eliminating these blocks so we can split them the way we
167/// want them.
168bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
169  bool MadeChange = false;
170  // Note that this intentionally skips the entry block.
171  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
172    BasicBlock *BB = I++;
173
174    // If this block doesn't end with an uncond branch, ignore it.
175    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
176    if (!BI || !BI->isUnconditional())
177      continue;
178
179    // If the instruction before the branch (skipping debug info) isn't a phi
180    // node, then other stuff is happening here.
181    BasicBlock::iterator BBI = BI;
182    if (BBI != BB->begin()) {
183      --BBI;
184      while (isa<DbgInfoIntrinsic>(BBI)) {
185        if (BBI == BB->begin())
186          break;
187        --BBI;
188      }
189      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
190        continue;
191    }
192
193    // Do not break infinite loops.
194    BasicBlock *DestBB = BI->getSuccessor(0);
195    if (DestBB == BB)
196      continue;
197
198    if (!CanMergeBlocks(BB, DestBB))
199      continue;
200
201    EliminateMostlyEmptyBlock(BB);
202    MadeChange = true;
203  }
204  return MadeChange;
205}
206
207/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
208/// single uncond branch between them, and BB contains no other non-phi
209/// instructions.
210bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
211                                    const BasicBlock *DestBB) const {
212  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
213  // the successor.  If there are more complex condition (e.g. preheaders),
214  // don't mess around with them.
215  BasicBlock::const_iterator BBI = BB->begin();
216  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
217    for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
218         UI != E; ++UI) {
219      const Instruction *User = cast<Instruction>(*UI);
220      if (User->getParent() != DestBB || !isa<PHINode>(User))
221        return false;
222      // If User is inside DestBB block and it is a PHINode then check
223      // incoming value. If incoming value is not from BB then this is
224      // a complex condition (e.g. preheaders) we want to avoid here.
225      if (User->getParent() == DestBB) {
226        if (const PHINode *UPN = dyn_cast<PHINode>(User))
227          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
228            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
229            if (Insn && Insn->getParent() == BB &&
230                Insn->getParent() != UPN->getIncomingBlock(I))
231              return false;
232          }
233      }
234    }
235  }
236
237  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
238  // and DestBB may have conflicting incoming values for the block.  If so, we
239  // can't merge the block.
240  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
241  if (!DestBBPN) return true;  // no conflict.
242
243  // Collect the preds of BB.
244  SmallPtrSet<const BasicBlock*, 16> BBPreds;
245  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
246    // It is faster to get preds from a PHI than with pred_iterator.
247    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
248      BBPreds.insert(BBPN->getIncomingBlock(i));
249  } else {
250    BBPreds.insert(pred_begin(BB), pred_end(BB));
251  }
252
253  // Walk the preds of DestBB.
254  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
255    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
256    if (BBPreds.count(Pred)) {   // Common predecessor?
257      BBI = DestBB->begin();
258      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
259        const Value *V1 = PN->getIncomingValueForBlock(Pred);
260        const Value *V2 = PN->getIncomingValueForBlock(BB);
261
262        // If V2 is a phi node in BB, look up what the mapped value will be.
263        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
264          if (V2PN->getParent() == BB)
265            V2 = V2PN->getIncomingValueForBlock(Pred);
266
267        // If there is a conflict, bail out.
268        if (V1 != V2) return false;
269      }
270    }
271  }
272
273  return true;
274}
275
276
277/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
278/// an unconditional branch in it.
279void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
280  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
281  BasicBlock *DestBB = BI->getSuccessor(0);
282
283  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
284
285  // If the destination block has a single pred, then this is a trivial edge,
286  // just collapse it.
287  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
288    if (SinglePred != DestBB) {
289      // Remember if SinglePred was the entry block of the function.  If so, we
290      // will need to move BB back to the entry position.
291      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
292      MergeBasicBlockIntoOnlyPred(DestBB, this);
293
294      if (isEntry && BB != &BB->getParent()->getEntryBlock())
295        BB->moveBefore(&BB->getParent()->getEntryBlock());
296
297      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
298      return;
299    }
300  }
301
302  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
303  // to handle the new incoming edges it is about to have.
304  PHINode *PN;
305  for (BasicBlock::iterator BBI = DestBB->begin();
306       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
307    // Remove the incoming value for BB, and remember it.
308    Value *InVal = PN->removeIncomingValue(BB, false);
309
310    // Two options: either the InVal is a phi node defined in BB or it is some
311    // value that dominates BB.
312    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
313    if (InValPhi && InValPhi->getParent() == BB) {
314      // Add all of the input values of the input PHI as inputs of this phi.
315      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
316        PN->addIncoming(InValPhi->getIncomingValue(i),
317                        InValPhi->getIncomingBlock(i));
318    } else {
319      // Otherwise, add one instance of the dominating value for each edge that
320      // we will be adding.
321      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
322        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
323          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
324      } else {
325        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
326          PN->addIncoming(InVal, *PI);
327      }
328    }
329  }
330
331  // The PHIs are now updated, change everything that refers to BB to use
332  // DestBB and remove BB.
333  BB->replaceAllUsesWith(DestBB);
334  if (DT) {
335    BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
336    BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
337    BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
338    DT->changeImmediateDominator(DestBB, NewIDom);
339    DT->eraseNode(BB);
340  }
341  if (PFI) {
342    PFI->replaceAllUses(BB, DestBB);
343    PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
344  }
345  BB->eraseFromParent();
346  ++NumBlocksElim;
347
348  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
349}
350
351/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
352/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
353/// sink it into user blocks to reduce the number of virtual
354/// registers that must be created and coalesced.
355///
356/// Return true if any changes are made.
357///
358static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
359  // If this is a noop copy,
360  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
361  EVT DstVT = TLI.getValueType(CI->getType());
362
363  // This is an fp<->int conversion?
364  if (SrcVT.isInteger() != DstVT.isInteger())
365    return false;
366
367  // If this is an extension, it will be a zero or sign extension, which
368  // isn't a noop.
369  if (SrcVT.bitsLT(DstVT)) return false;
370
371  // If these values will be promoted, find out what they will be promoted
372  // to.  This helps us consider truncates on PPC as noop copies when they
373  // are.
374  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
375    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
376  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
377    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
378
379  // If, after promotion, these are the same types, this is a noop copy.
380  if (SrcVT != DstVT)
381    return false;
382
383  BasicBlock *DefBB = CI->getParent();
384
385  /// InsertedCasts - Only insert a cast in each block once.
386  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
387
388  bool MadeChange = false;
389  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
390       UI != E; ) {
391    Use &TheUse = UI.getUse();
392    Instruction *User = cast<Instruction>(*UI);
393
394    // Figure out which BB this cast is used in.  For PHI's this is the
395    // appropriate predecessor block.
396    BasicBlock *UserBB = User->getParent();
397    if (PHINode *PN = dyn_cast<PHINode>(User)) {
398      UserBB = PN->getIncomingBlock(UI);
399    }
400
401    // Preincrement use iterator so we don't invalidate it.
402    ++UI;
403
404    // If this user is in the same block as the cast, don't change the cast.
405    if (UserBB == DefBB) continue;
406
407    // If we have already inserted a cast into this block, use it.
408    CastInst *&InsertedCast = InsertedCasts[UserBB];
409
410    if (!InsertedCast) {
411      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
412
413      InsertedCast =
414        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
415                         InsertPt);
416      MadeChange = true;
417    }
418
419    // Replace a use of the cast with a use of the new cast.
420    TheUse = InsertedCast;
421    ++NumCastUses;
422  }
423
424  // If we removed all uses, nuke the cast.
425  if (CI->use_empty()) {
426    CI->eraseFromParent();
427    MadeChange = true;
428  }
429
430  return MadeChange;
431}
432
433/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
434/// the number of virtual registers that must be created and coalesced.  This is
435/// a clear win except on targets with multiple condition code registers
436///  (PowerPC), where it might lose; some adjustment may be wanted there.
437///
438/// Return true if any changes are made.
439static bool OptimizeCmpExpression(CmpInst *CI) {
440  BasicBlock *DefBB = CI->getParent();
441
442  /// InsertedCmp - Only insert a cmp in each block once.
443  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
444
445  bool MadeChange = false;
446  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
447       UI != E; ) {
448    Use &TheUse = UI.getUse();
449    Instruction *User = cast<Instruction>(*UI);
450
451    // Preincrement use iterator so we don't invalidate it.
452    ++UI;
453
454    // Don't bother for PHI nodes.
455    if (isa<PHINode>(User))
456      continue;
457
458    // Figure out which BB this cmp is used in.
459    BasicBlock *UserBB = User->getParent();
460
461    // If this user is in the same block as the cmp, don't change the cmp.
462    if (UserBB == DefBB) continue;
463
464    // If we have already inserted a cmp into this block, use it.
465    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
466
467    if (!InsertedCmp) {
468      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
469
470      InsertedCmp =
471        CmpInst::Create(CI->getOpcode(),
472                        CI->getPredicate(),  CI->getOperand(0),
473                        CI->getOperand(1), "", InsertPt);
474      MadeChange = true;
475    }
476
477    // Replace a use of the cmp with a use of the new cmp.
478    TheUse = InsertedCmp;
479    ++NumCmpUses;
480  }
481
482  // If we removed all uses, nuke the cmp.
483  if (CI->use_empty())
484    CI->eraseFromParent();
485
486  return MadeChange;
487}
488
489namespace {
490class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
491protected:
492  void replaceCall(Value *With) {
493    CI->replaceAllUsesWith(With);
494    CI->eraseFromParent();
495  }
496  bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
497      if (ConstantInt *SizeCI =
498                             dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
499        return SizeCI->isAllOnesValue();
500    return false;
501  }
502};
503} // end anonymous namespace
504
505bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
506  BasicBlock *BB = CI->getParent();
507
508  // Lower inline assembly if we can.
509  // If we found an inline asm expession, and if the target knows how to
510  // lower it to normal LLVM code, do so now.
511  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
512    if (TLI->ExpandInlineAsm(CI)) {
513      // Avoid invalidating the iterator.
514      CurInstIterator = BB->begin();
515      // Avoid processing instructions out of order, which could cause
516      // reuse before a value is defined.
517      SunkAddrs.clear();
518      return true;
519    }
520    // Sink address computing for memory operands into the block.
521    if (OptimizeInlineAsmInst(CI))
522      return true;
523  }
524
525  // Lower all uses of llvm.objectsize.*
526  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
527  if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
528    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
529    const Type *ReturnTy = CI->getType();
530    Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
531
532    // Substituting this can cause recursive simplifications, which can
533    // invalidate our iterator.  Use a WeakVH to hold onto it in case this
534    // happens.
535    WeakVH IterHandle(CurInstIterator);
536
537    ReplaceAndSimplifyAllUses(CI, RetVal, TLI ? TLI->getTargetData() : 0, DT);
538
539    // If the iterator instruction was recursively deleted, start over at the
540    // start of the block.
541    if (IterHandle != CurInstIterator) {
542      CurInstIterator = BB->begin();
543      SunkAddrs.clear();
544    }
545    return true;
546  }
547
548  // From here on out we're working with named functions.
549  if (CI->getCalledFunction() == 0) return false;
550
551  // We'll need TargetData from here on out.
552  const TargetData *TD = TLI ? TLI->getTargetData() : 0;
553  if (!TD) return false;
554
555  // Lower all default uses of _chk calls.  This is very similar
556  // to what InstCombineCalls does, but here we are only lowering calls
557  // that have the default "don't know" as the objectsize.  Anything else
558  // should be left alone.
559  CodeGenPrepareFortifiedLibCalls Simplifier;
560  return Simplifier.fold(CI, TD);
561}
562
563/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
564/// instructions to the predecessor to enable tail call optimizations. The
565/// case it is currently looking for is:
566/// bb0:
567///   %tmp0 = tail call i32 @f0()
568///   br label %return
569/// bb1:
570///   %tmp1 = tail call i32 @f1()
571///   br label %return
572/// bb2:
573///   %tmp2 = tail call i32 @f2()
574///   br label %return
575/// return:
576///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
577///   ret i32 %retval
578///
579/// =>
580///
581/// bb0:
582///   %tmp0 = tail call i32 @f0()
583///   ret i32 %tmp0
584/// bb1:
585///   %tmp1 = tail call i32 @f1()
586///   ret i32 %tmp1
587/// bb2:
588///   %tmp2 = tail call i32 @f2()
589///   ret i32 %tmp2
590///
591bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
592  if (!TLI)
593    return false;
594
595  Value *V = RI->getReturnValue();
596  if (!V)
597    return false;
598
599  if (PHINode *PN = dyn_cast<PHINode>(V)) {
600    BasicBlock *BB = RI->getParent();
601    if (PN->getParent() != BB)
602      return false;
603
604    // It's not safe to eliminate the sign / zero extension of the return value.
605    // See llvm::isInTailCallPosition().
606    const Function *F = BB->getParent();
607    unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
608    if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
609      return false;
610
611    // Make sure there are no instructions between PHI and return.
612    BasicBlock::iterator BI = PN;
613    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
614    if (&*BI != RI)
615      return false;
616
617    /// Only dup the ReturnInst if the CallInst is likely to be emitted as a
618    /// tail call.
619    SmallVector<CallInst*, 4> TailCalls;
620    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
621      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
622      // Make sure the phi value is indeed produced by the tail call.
623      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
624          TLI->mayBeEmittedAsTailCall(CI))
625        TailCalls.push_back(CI);
626    }
627
628    bool Changed = false;
629    for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
630      CallInst *CI = TailCalls[i];
631      CallSite CS(CI);
632
633      // Conservatively require the attributes of the call to match those of
634      // the return. Ignore noalias because it doesn't affect the call sequence.
635      unsigned CalleeRetAttr = CS.getAttributes().getRetAttributes();
636      if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
637        continue;
638
639      // Make sure the call instruction is followed by an unconditional branch
640      // to the return block.
641      BasicBlock *CallBB = CI->getParent();
642      BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
643      if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
644        continue;
645
646      // Duplicate the return into CallBB.
647      (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
648      UpdateDT = Changed = true;
649      ++NumRetsDup;
650    }
651
652    // If we eliminated all predecessors of the block, delete the block now.
653    if (Changed && pred_begin(BB) == pred_end(BB))
654      BB->eraseFromParent();
655
656    return Changed;
657  }
658
659  return false;
660}
661
662//===----------------------------------------------------------------------===//
663// Memory Optimization
664//===----------------------------------------------------------------------===//
665
666/// IsNonLocalValue - Return true if the specified values are defined in a
667/// different basic block than BB.
668static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
669  if (Instruction *I = dyn_cast<Instruction>(V))
670    return I->getParent() != BB;
671  return false;
672}
673
674/// OptimizeMemoryInst - Load and Store Instructions often have
675/// addressing modes that can do significant amounts of computation.  As such,
676/// instruction selection will try to get the load or store to do as much
677/// computation as possible for the program.  The problem is that isel can only
678/// see within a single block.  As such, we sink as much legal addressing mode
679/// stuff into the block as possible.
680///
681/// This method is used to optimize both load/store and inline asms with memory
682/// operands.
683bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
684                                        const Type *AccessTy) {
685  Value *Repl = Addr;
686
687  // Try to collapse single-value PHI nodes.  This is necessary to undo
688  // unprofitable PRE transformations.
689  SmallVector<Value*, 8> worklist;
690  SmallPtrSet<Value*, 16> Visited;
691  worklist.push_back(Addr);
692
693  // Use a worklist to iteratively look through PHI nodes, and ensure that
694  // the addressing mode obtained from the non-PHI roots of the graph
695  // are equivalent.
696  Value *Consensus = 0;
697  unsigned NumUsesConsensus = 0;
698  bool IsNumUsesConsensusValid = false;
699  SmallVector<Instruction*, 16> AddrModeInsts;
700  ExtAddrMode AddrMode;
701  while (!worklist.empty()) {
702    Value *V = worklist.back();
703    worklist.pop_back();
704
705    // Break use-def graph loops.
706    if (Visited.count(V)) {
707      Consensus = 0;
708      break;
709    }
710
711    Visited.insert(V);
712
713    // For a PHI node, push all of its incoming values.
714    if (PHINode *P = dyn_cast<PHINode>(V)) {
715      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
716        worklist.push_back(P->getIncomingValue(i));
717      continue;
718    }
719
720    // For non-PHIs, determine the addressing mode being computed.
721    SmallVector<Instruction*, 16> NewAddrModeInsts;
722    ExtAddrMode NewAddrMode =
723      AddressingModeMatcher::Match(V, AccessTy,MemoryInst,
724                                   NewAddrModeInsts, *TLI);
725
726    // This check is broken into two cases with very similar code to avoid using
727    // getNumUses() as much as possible. Some values have a lot of uses, so
728    // calling getNumUses() unconditionally caused a significant compile-time
729    // regression.
730    if (!Consensus) {
731      Consensus = V;
732      AddrMode = NewAddrMode;
733      AddrModeInsts = NewAddrModeInsts;
734      continue;
735    } else if (NewAddrMode == AddrMode) {
736      if (!IsNumUsesConsensusValid) {
737        NumUsesConsensus = Consensus->getNumUses();
738        IsNumUsesConsensusValid = true;
739      }
740
741      // Ensure that the obtained addressing mode is equivalent to that obtained
742      // for all other roots of the PHI traversal.  Also, when choosing one
743      // such root as representative, select the one with the most uses in order
744      // to keep the cost modeling heuristics in AddressingModeMatcher
745      // applicable.
746      unsigned NumUses = V->getNumUses();
747      if (NumUses > NumUsesConsensus) {
748        Consensus = V;
749        NumUsesConsensus = NumUses;
750        AddrModeInsts = NewAddrModeInsts;
751      }
752      continue;
753    }
754
755    Consensus = 0;
756    break;
757  }
758
759  // If the addressing mode couldn't be determined, or if multiple different
760  // ones were determined, bail out now.
761  if (!Consensus) return false;
762
763  // Check to see if any of the instructions supersumed by this addr mode are
764  // non-local to I's BB.
765  bool AnyNonLocal = false;
766  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
767    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
768      AnyNonLocal = true;
769      break;
770    }
771  }
772
773  // If all the instructions matched are already in this BB, don't do anything.
774  if (!AnyNonLocal) {
775    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
776    return false;
777  }
778
779  // Insert this computation right after this user.  Since our caller is
780  // scanning from the top of the BB to the bottom, reuse of the expr are
781  // guaranteed to happen later.
782  BasicBlock::iterator InsertPt = MemoryInst;
783
784  // Now that we determined the addressing expression we want to use and know
785  // that we have to sink it into this block.  Check to see if we have already
786  // done this for some other load/store instr in this block.  If so, reuse the
787  // computation.
788  Value *&SunkAddr = SunkAddrs[Addr];
789  if (SunkAddr) {
790    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
791                 << *MemoryInst);
792    if (SunkAddr->getType() != Addr->getType())
793      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
794  } else {
795    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
796                 << *MemoryInst);
797    const Type *IntPtrTy =
798          TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
799
800    Value *Result = 0;
801
802    // Start with the base register. Do this first so that subsequent address
803    // matching finds it last, which will prevent it from trying to match it
804    // as the scaled value in case it happens to be a mul. That would be
805    // problematic if we've sunk a different mul for the scale, because then
806    // we'd end up sinking both muls.
807    if (AddrMode.BaseReg) {
808      Value *V = AddrMode.BaseReg;
809      if (V->getType()->isPointerTy())
810        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
811      if (V->getType() != IntPtrTy)
812        V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
813                                        "sunkaddr", InsertPt);
814      Result = V;
815    }
816
817    // Add the scale value.
818    if (AddrMode.Scale) {
819      Value *V = AddrMode.ScaledReg;
820      if (V->getType() == IntPtrTy) {
821        // done.
822      } else if (V->getType()->isPointerTy()) {
823        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
824      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
825                 cast<IntegerType>(V->getType())->getBitWidth()) {
826        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
827      } else {
828        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
829      }
830      if (AddrMode.Scale != 1)
831        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
832                                                                AddrMode.Scale),
833                                      "sunkaddr", InsertPt);
834      if (Result)
835        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
836      else
837        Result = V;
838    }
839
840    // Add in the BaseGV if present.
841    if (AddrMode.BaseGV) {
842      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
843                                  InsertPt);
844      if (Result)
845        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
846      else
847        Result = V;
848    }
849
850    // Add in the Base Offset if present.
851    if (AddrMode.BaseOffs) {
852      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
853      if (Result)
854        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
855      else
856        Result = V;
857    }
858
859    if (Result == 0)
860      SunkAddr = Constant::getNullValue(Addr->getType());
861    else
862      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
863  }
864
865  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
866
867  if (Repl->use_empty()) {
868    RecursivelyDeleteTriviallyDeadInstructions(Repl);
869    // This address is now available for reassignment, so erase the table entry;
870    // we don't want to match some completely different instruction.
871    SunkAddrs[Addr] = 0;
872  }
873  ++NumMemoryInsts;
874  return true;
875}
876
877/// OptimizeInlineAsmInst - If there are any memory operands, use
878/// OptimizeMemoryInst to sink their address computing into the block when
879/// possible / profitable.
880bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
881  bool MadeChange = false;
882
883  TargetLowering::AsmOperandInfoVector
884    TargetConstraints = TLI->ParseConstraints(CS);
885  unsigned ArgNo = 0;
886  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
887    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
888
889    // Compute the constraint code and ConstraintType to use.
890    TLI->ComputeConstraintToUse(OpInfo, SDValue());
891
892    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
893        OpInfo.isIndirect) {
894      Value *OpVal = CS->getArgOperand(ArgNo++);
895      MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
896    } else if (OpInfo.Type == InlineAsm::isInput)
897      ArgNo++;
898  }
899
900  return MadeChange;
901}
902
903/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
904/// basic block as the load, unless conditions are unfavorable. This allows
905/// SelectionDAG to fold the extend into the load.
906///
907bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
908  // Look for a load being extended.
909  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
910  if (!LI) return false;
911
912  // If they're already in the same block, there's nothing to do.
913  if (LI->getParent() == I->getParent())
914    return false;
915
916  // If the load has other users and the truncate is not free, this probably
917  // isn't worthwhile.
918  if (!LI->hasOneUse() &&
919      TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
920              !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
921      !TLI->isTruncateFree(I->getType(), LI->getType()))
922    return false;
923
924  // Check whether the target supports casts folded into loads.
925  unsigned LType;
926  if (isa<ZExtInst>(I))
927    LType = ISD::ZEXTLOAD;
928  else {
929    assert(isa<SExtInst>(I) && "Unexpected ext type!");
930    LType = ISD::SEXTLOAD;
931  }
932  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
933    return false;
934
935  // Move the extend into the same block as the load, so that SelectionDAG
936  // can fold it.
937  I->removeFromParent();
938  I->insertAfter(LI);
939  ++NumExtsMoved;
940  return true;
941}
942
943bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
944  BasicBlock *DefBB = I->getParent();
945
946  // If the result of a {s|z}ext and its source are both live out, rewrite all
947  // other uses of the source with result of extension.
948  Value *Src = I->getOperand(0);
949  if (Src->hasOneUse())
950    return false;
951
952  // Only do this xform if truncating is free.
953  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
954    return false;
955
956  // Only safe to perform the optimization if the source is also defined in
957  // this block.
958  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
959    return false;
960
961  bool DefIsLiveOut = false;
962  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
963       UI != E; ++UI) {
964    Instruction *User = cast<Instruction>(*UI);
965
966    // Figure out which BB this ext is used in.
967    BasicBlock *UserBB = User->getParent();
968    if (UserBB == DefBB) continue;
969    DefIsLiveOut = true;
970    break;
971  }
972  if (!DefIsLiveOut)
973    return false;
974
975  // Make sure non of the uses are PHI nodes.
976  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
977       UI != E; ++UI) {
978    Instruction *User = cast<Instruction>(*UI);
979    BasicBlock *UserBB = User->getParent();
980    if (UserBB == DefBB) continue;
981    // Be conservative. We don't want this xform to end up introducing
982    // reloads just before load / store instructions.
983    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
984      return false;
985  }
986
987  // InsertedTruncs - Only insert one trunc in each block once.
988  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
989
990  bool MadeChange = false;
991  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
992       UI != E; ++UI) {
993    Use &TheUse = UI.getUse();
994    Instruction *User = cast<Instruction>(*UI);
995
996    // Figure out which BB this ext is used in.
997    BasicBlock *UserBB = User->getParent();
998    if (UserBB == DefBB) continue;
999
1000    // Both src and def are live in this block. Rewrite the use.
1001    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
1002
1003    if (!InsertedTrunc) {
1004      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
1005
1006      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
1007    }
1008
1009    // Replace a use of the {s|z}ext source with a use of the result.
1010    TheUse = InsertedTrunc;
1011    ++NumExtUses;
1012    MadeChange = true;
1013  }
1014
1015  return MadeChange;
1016}
1017
1018bool CodeGenPrepare::OptimizeInst(Instruction *I) {
1019  if (PHINode *P = dyn_cast<PHINode>(I)) {
1020    // It is possible for very late stage optimizations (such as SimplifyCFG)
1021    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
1022    // trivial PHI, go ahead and zap it here.
1023    if (Value *V = SimplifyInstruction(P)) {
1024      P->replaceAllUsesWith(V);
1025      P->eraseFromParent();
1026      ++NumPHIsElim;
1027      return true;
1028    }
1029    return false;
1030  }
1031
1032  if (CastInst *CI = dyn_cast<CastInst>(I)) {
1033    // If the source of the cast is a constant, then this should have
1034    // already been constant folded.  The only reason NOT to constant fold
1035    // it is if something (e.g. LSR) was careful to place the constant
1036    // evaluation in a block other than then one that uses it (e.g. to hoist
1037    // the address of globals out of a loop).  If this is the case, we don't
1038    // want to forward-subst the cast.
1039    if (isa<Constant>(CI->getOperand(0)))
1040      return false;
1041
1042    if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
1043      return true;
1044
1045    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
1046      bool MadeChange = MoveExtToFormExtLoad(I);
1047      return MadeChange | OptimizeExtUses(I);
1048    }
1049    return false;
1050  }
1051
1052  if (CmpInst *CI = dyn_cast<CmpInst>(I))
1053    return OptimizeCmpExpression(CI);
1054
1055  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1056    if (TLI)
1057      return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
1058    return false;
1059  }
1060
1061  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1062    if (TLI)
1063      return OptimizeMemoryInst(I, SI->getOperand(1),
1064                                SI->getOperand(0)->getType());
1065    return false;
1066  }
1067
1068  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1069    if (GEPI->hasAllZeroIndices()) {
1070      /// The GEP operand must be a pointer, so must its result -> BitCast
1071      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
1072                                        GEPI->getName(), GEPI);
1073      GEPI->replaceAllUsesWith(NC);
1074      GEPI->eraseFromParent();
1075      ++NumGEPsElim;
1076      OptimizeInst(NC);
1077      return true;
1078    }
1079    return false;
1080  }
1081
1082  if (CallInst *CI = dyn_cast<CallInst>(I))
1083    return OptimizeCallInst(CI);
1084
1085  if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
1086    return DupRetToEnableTailCallOpts(RI);
1087
1088  return false;
1089}
1090
1091// In this pass we look for GEP and cast instructions that are used
1092// across basic blocks and rewrite them to improve basic-block-at-a-time
1093// selection.
1094bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
1095  SunkAddrs.clear();
1096  bool MadeChange = false;
1097
1098  CurInstIterator = BB.begin();
1099  for (BasicBlock::iterator E = BB.end(); CurInstIterator != E; )
1100    MadeChange |= OptimizeInst(CurInstIterator++);
1101
1102  return MadeChange;
1103}
1104