CodeGenPrepare.cpp revision 896617b776e7b015346160645b19be776cbe3805
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Instructions.h"
23#include "llvm/Pass.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/PatternMatch.h"
37using namespace llvm;
38using namespace llvm::PatternMatch;
39
40namespace {
41  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
42    /// TLI - Keep a pointer of a TargetLowering to consult for determining
43    /// transformation profitability.
44    const TargetLowering *TLI;
45  public:
46    static char ID; // Pass identification, replacement for typeid
47    explicit CodeGenPrepare(const TargetLowering *tli = 0)
48      : FunctionPass(&ID), TLI(tli) {}
49    bool runOnFunction(Function &F);
50
51  private:
52    bool EliminateMostlyEmptyBlocks(Function &F);
53    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
54    void EliminateMostlyEmptyBlock(BasicBlock *BB);
55    bool OptimizeBlock(BasicBlock &BB);
56    bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
57                            DenseMap<Value*,Value*> &SunkAddrs);
58    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
59                               DenseMap<Value*,Value*> &SunkAddrs);
60    bool OptimizeExtUses(Instruction *I);
61  };
62}
63
64char CodeGenPrepare::ID = 0;
65static RegisterPass<CodeGenPrepare> X("codegenprepare",
66                                      "Optimize for code generation");
67
68FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
69  return new CodeGenPrepare(TLI);
70}
71
72
73bool CodeGenPrepare::runOnFunction(Function &F) {
74  bool EverMadeChange = false;
75
76  // First pass, eliminate blocks that contain only PHI nodes and an
77  // unconditional branch.
78  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
79
80  bool MadeChange = true;
81  while (MadeChange) {
82    MadeChange = false;
83    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
84      MadeChange |= OptimizeBlock(*BB);
85    EverMadeChange |= MadeChange;
86  }
87  return EverMadeChange;
88}
89
90/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
91/// and an unconditional branch.  Passes before isel (e.g. LSR/loopsimplify)
92/// often split edges in ways that are non-optimal for isel.  Start by
93/// eliminating these blocks so we can split them the way we want them.
94bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
95  bool MadeChange = false;
96  // Note that this intentionally skips the entry block.
97  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
98    BasicBlock *BB = I++;
99
100    // If this block doesn't end with an uncond branch, ignore it.
101    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
102    if (!BI || !BI->isUnconditional())
103      continue;
104
105    // If the instruction before the branch isn't a phi node, then other stuff
106    // is happening here.
107    BasicBlock::iterator BBI = BI;
108    if (BBI != BB->begin()) {
109      --BBI;
110      if (!isa<PHINode>(BBI)) continue;
111    }
112
113    // Do not break infinite loops.
114    BasicBlock *DestBB = BI->getSuccessor(0);
115    if (DestBB == BB)
116      continue;
117
118    if (!CanMergeBlocks(BB, DestBB))
119      continue;
120
121    EliminateMostlyEmptyBlock(BB);
122    MadeChange = true;
123  }
124  return MadeChange;
125}
126
127/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
128/// single uncond branch between them, and BB contains no other non-phi
129/// instructions.
130bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
131                                    const BasicBlock *DestBB) const {
132  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
133  // the successor.  If there are more complex condition (e.g. preheaders),
134  // don't mess around with them.
135  BasicBlock::const_iterator BBI = BB->begin();
136  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
137    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
138         UI != E; ++UI) {
139      const Instruction *User = cast<Instruction>(*UI);
140      if (User->getParent() != DestBB || !isa<PHINode>(User))
141        return false;
142      // If User is inside DestBB block and it is a PHINode then check
143      // incoming value. If incoming value is not from BB then this is
144      // a complex condition (e.g. preheaders) we want to avoid here.
145      if (User->getParent() == DestBB) {
146        if (const PHINode *UPN = dyn_cast<PHINode>(User))
147          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
148            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
149            if (Insn && Insn->getParent() == BB &&
150                Insn->getParent() != UPN->getIncomingBlock(I))
151              return false;
152          }
153      }
154    }
155  }
156
157  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
158  // and DestBB may have conflicting incoming values for the block.  If so, we
159  // can't merge the block.
160  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
161  if (!DestBBPN) return true;  // no conflict.
162
163  // Collect the preds of BB.
164  SmallPtrSet<const BasicBlock*, 16> BBPreds;
165  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
166    // It is faster to get preds from a PHI than with pred_iterator.
167    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
168      BBPreds.insert(BBPN->getIncomingBlock(i));
169  } else {
170    BBPreds.insert(pred_begin(BB), pred_end(BB));
171  }
172
173  // Walk the preds of DestBB.
174  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
175    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
176    if (BBPreds.count(Pred)) {   // Common predecessor?
177      BBI = DestBB->begin();
178      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
179        const Value *V1 = PN->getIncomingValueForBlock(Pred);
180        const Value *V2 = PN->getIncomingValueForBlock(BB);
181
182        // If V2 is a phi node in BB, look up what the mapped value will be.
183        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
184          if (V2PN->getParent() == BB)
185            V2 = V2PN->getIncomingValueForBlock(Pred);
186
187        // If there is a conflict, bail out.
188        if (V1 != V2) return false;
189      }
190    }
191  }
192
193  return true;
194}
195
196
197/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
198/// an unconditional branch in it.
199void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
200  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
201  BasicBlock *DestBB = BI->getSuccessor(0);
202
203  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
204
205  // If the destination block has a single pred, then this is a trivial edge,
206  // just collapse it.
207  if (DestBB->getSinglePredecessor()) {
208    // If DestBB has single-entry PHI nodes, fold them.
209    while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
210      Value *NewVal = PN->getIncomingValue(0);
211      // Replace self referencing PHI with undef, it must be dead.
212      if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
213      PN->replaceAllUsesWith(NewVal);
214      PN->eraseFromParent();
215    }
216
217    // Splice all the PHI nodes from BB over to DestBB.
218    DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
219                                 BB->begin(), BI);
220
221    // Anything that branched to BB now branches to DestBB.
222    BB->replaceAllUsesWith(DestBB);
223
224    // Nuke BB.
225    BB->eraseFromParent();
226
227    DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
228    return;
229  }
230
231  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
232  // to handle the new incoming edges it is about to have.
233  PHINode *PN;
234  for (BasicBlock::iterator BBI = DestBB->begin();
235       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
236    // Remove the incoming value for BB, and remember it.
237    Value *InVal = PN->removeIncomingValue(BB, false);
238
239    // Two options: either the InVal is a phi node defined in BB or it is some
240    // value that dominates BB.
241    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
242    if (InValPhi && InValPhi->getParent() == BB) {
243      // Add all of the input values of the input PHI as inputs of this phi.
244      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
245        PN->addIncoming(InValPhi->getIncomingValue(i),
246                        InValPhi->getIncomingBlock(i));
247    } else {
248      // Otherwise, add one instance of the dominating value for each edge that
249      // we will be adding.
250      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
251        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
252          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
253      } else {
254        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
255          PN->addIncoming(InVal, *PI);
256      }
257    }
258  }
259
260  // The PHIs are now updated, change everything that refers to BB to use
261  // DestBB and remove BB.
262  BB->replaceAllUsesWith(DestBB);
263  BB->eraseFromParent();
264
265  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
266}
267
268
269/// SplitEdgeNicely - Split the critical edge from TI to its specified
270/// successor if it will improve codegen.  We only do this if the successor has
271/// phi nodes (otherwise critical edges are ok).  If there is already another
272/// predecessor of the succ that is empty (and thus has no phi nodes), use it
273/// instead of introducing a new block.
274static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
275  BasicBlock *TIBB = TI->getParent();
276  BasicBlock *Dest = TI->getSuccessor(SuccNum);
277  assert(isa<PHINode>(Dest->begin()) &&
278         "This should only be called if Dest has a PHI!");
279
280  // As a hack, never split backedges of loops.  Even though the copy for any
281  // PHIs inserted on the backedge would be dead for exits from the loop, we
282  // assume that the cost of *splitting* the backedge would be too high.
283  if (Dest == TIBB)
284    return;
285
286  /// TIPHIValues - This array is lazily computed to determine the values of
287  /// PHIs in Dest that TI would provide.
288  SmallVector<Value*, 32> TIPHIValues;
289
290  // Check to see if Dest has any blocks that can be used as a split edge for
291  // this terminator.
292  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
293    BasicBlock *Pred = *PI;
294    // To be usable, the pred has to end with an uncond branch to the dest.
295    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
296    if (!PredBr || !PredBr->isUnconditional() ||
297        // Must be empty other than the branch.
298        &Pred->front() != PredBr ||
299        // Cannot be the entry block; its label does not get emitted.
300        Pred == &(Dest->getParent()->getEntryBlock()))
301      continue;
302
303    // Finally, since we know that Dest has phi nodes in it, we have to make
304    // sure that jumping to Pred will have the same affect as going to Dest in
305    // terms of PHI values.
306    PHINode *PN;
307    unsigned PHINo = 0;
308    bool FoundMatch = true;
309    for (BasicBlock::iterator I = Dest->begin();
310         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
311      if (PHINo == TIPHIValues.size())
312        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
313
314      // If the PHI entry doesn't work, we can't use this pred.
315      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
316        FoundMatch = false;
317        break;
318      }
319    }
320
321    // If we found a workable predecessor, change TI to branch to Succ.
322    if (FoundMatch) {
323      Dest->removePredecessor(TIBB);
324      TI->setSuccessor(SuccNum, Pred);
325      return;
326    }
327  }
328
329  SplitCriticalEdge(TI, SuccNum, P, true);
330}
331
332/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
333/// copy (e.g. it's casting from one pointer type to another, int->uint, or
334/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
335/// registers that must be created and coalesced.
336///
337/// Return true if any changes are made.
338///
339static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
340  // If this is a noop copy,
341  MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
342  MVT DstVT = TLI.getValueType(CI->getType());
343
344  // This is an fp<->int conversion?
345  if (SrcVT.isInteger() != DstVT.isInteger())
346    return false;
347
348  // If this is an extension, it will be a zero or sign extension, which
349  // isn't a noop.
350  if (SrcVT.bitsLT(DstVT)) return false;
351
352  // If these values will be promoted, find out what they will be promoted
353  // to.  This helps us consider truncates on PPC as noop copies when they
354  // are.
355  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
356    SrcVT = TLI.getTypeToTransformTo(SrcVT);
357  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
358    DstVT = TLI.getTypeToTransformTo(DstVT);
359
360  // If, after promotion, these are the same types, this is a noop copy.
361  if (SrcVT != DstVT)
362    return false;
363
364  BasicBlock *DefBB = CI->getParent();
365
366  /// InsertedCasts - Only insert a cast in each block once.
367  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
368
369  bool MadeChange = false;
370  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
371       UI != E; ) {
372    Use &TheUse = UI.getUse();
373    Instruction *User = cast<Instruction>(*UI);
374
375    // Figure out which BB this cast is used in.  For PHI's this is the
376    // appropriate predecessor block.
377    BasicBlock *UserBB = User->getParent();
378    if (PHINode *PN = dyn_cast<PHINode>(User)) {
379      unsigned OpVal = UI.getOperandNo()/2;
380      UserBB = PN->getIncomingBlock(OpVal);
381    }
382
383    // Preincrement use iterator so we don't invalidate it.
384    ++UI;
385
386    // If this user is in the same block as the cast, don't change the cast.
387    if (UserBB == DefBB) continue;
388
389    // If we have already inserted a cast into this block, use it.
390    CastInst *&InsertedCast = InsertedCasts[UserBB];
391
392    if (!InsertedCast) {
393      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
394
395      InsertedCast =
396        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
397                         InsertPt);
398      MadeChange = true;
399    }
400
401    // Replace a use of the cast with a use of the new cast.
402    TheUse = InsertedCast;
403  }
404
405  // If we removed all uses, nuke the cast.
406  if (CI->use_empty()) {
407    CI->eraseFromParent();
408    MadeChange = true;
409  }
410
411  return MadeChange;
412}
413
414/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
415/// the number of virtual registers that must be created and coalesced.  This is
416/// a clear win except on targets with multiple condition code registers
417///  (PowerPC), where it might lose; some adjustment may be wanted there.
418///
419/// Return true if any changes are made.
420static bool OptimizeCmpExpression(CmpInst *CI) {
421  BasicBlock *DefBB = CI->getParent();
422
423  /// InsertedCmp - Only insert a cmp in each block once.
424  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
425
426  bool MadeChange = false;
427  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
428       UI != E; ) {
429    Use &TheUse = UI.getUse();
430    Instruction *User = cast<Instruction>(*UI);
431
432    // Preincrement use iterator so we don't invalidate it.
433    ++UI;
434
435    // Don't bother for PHI nodes.
436    if (isa<PHINode>(User))
437      continue;
438
439    // Figure out which BB this cmp is used in.
440    BasicBlock *UserBB = User->getParent();
441
442    // If this user is in the same block as the cmp, don't change the cmp.
443    if (UserBB == DefBB) continue;
444
445    // If we have already inserted a cmp into this block, use it.
446    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
447
448    if (!InsertedCmp) {
449      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
450
451      InsertedCmp =
452        CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0),
453                        CI->getOperand(1), "", InsertPt);
454      MadeChange = true;
455    }
456
457    // Replace a use of the cmp with a use of the new cmp.
458    TheUse = InsertedCmp;
459  }
460
461  // If we removed all uses, nuke the cmp.
462  if (CI->use_empty())
463    CI->eraseFromParent();
464
465  return MadeChange;
466}
467
468/// EraseDeadInstructions - Erase any dead instructions, recursively.
469static void EraseDeadInstructions(Value *V) {
470  Instruction *I = dyn_cast<Instruction>(V);
471  if (!I || !I->use_empty()) return;
472
473  SmallPtrSet<Instruction*, 16> Insts;
474  Insts.insert(I);
475
476  while (!Insts.empty()) {
477    I = *Insts.begin();
478    Insts.erase(I);
479    if (isInstructionTriviallyDead(I)) {
480      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
481        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
482          Insts.insert(U);
483      I->eraseFromParent();
484    }
485  }
486}
487
488//===----------------------------------------------------------------------===//
489// Addressing Mode Analysis and Optimization
490//===----------------------------------------------------------------------===//
491
492namespace {
493  /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
494  /// which holds actual Value*'s for register values.
495  struct ExtAddrMode : public TargetLowering::AddrMode {
496    Value *BaseReg;
497    Value *ScaledReg;
498    ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
499    void print(OStream &OS) const;
500    void dump() const {
501      print(cerr);
502      cerr << '\n';
503    }
504  };
505} // end anonymous namespace
506
507static inline OStream &operator<<(OStream &OS, const ExtAddrMode &AM) {
508  AM.print(OS);
509  return OS;
510}
511
512void ExtAddrMode::print(OStream &OS) const {
513  bool NeedPlus = false;
514  OS << "[";
515  if (BaseGV)
516    OS << (NeedPlus ? " + " : "")
517       << "GV:%" << BaseGV->getName(), NeedPlus = true;
518
519  if (BaseOffs)
520    OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
521
522  if (BaseReg)
523    OS << (NeedPlus ? " + " : "")
524       << "Base:%" << BaseReg->getName(), NeedPlus = true;
525  if (Scale)
526    OS << (NeedPlus ? " + " : "")
527       << Scale << "*%" << ScaledReg->getName(), NeedPlus = true;
528
529  OS << ']';
530}
531
532namespace {
533/// AddressingModeMatcher - This class exposes a single public method, which is
534/// used to construct a "maximal munch" of the addressing mode for the target
535/// specified by TLI for an access to "V" with an access type of AccessTy.  This
536/// returns the addressing mode that is actually matched by value, but also
537/// returns the list of instructions involved in that addressing computation in
538/// AddrModeInsts.
539class AddressingModeMatcher {
540  SmallVectorImpl<Instruction*> &AddrModeInsts;
541  const TargetLowering &TLI;
542
543  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
544  /// the memory instruction that we're computing this address for.
545  const Type *AccessTy;
546  Instruction *MemoryInst;
547
548  /// AddrMode - This is the addressing mode that we're building up.  This is
549  /// part of the return value of this addressing mode matching stuff.
550  ExtAddrMode &AddrMode;
551
552  /// IgnoreProfitability - This is set to true when we should not do
553  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
554  /// always returns true.
555  bool IgnoreProfitability;
556
557  AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
558                        const TargetLowering &T, const Type *AT,
559                        Instruction *MI, ExtAddrMode &AM)
560    : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
561    IgnoreProfitability = false;
562  }
563public:
564
565  /// Match - Find the maximal addressing mode that a load/store of V can fold,
566  /// give an access type of AccessTy.  This returns a list of involved
567  /// instructions in AddrModeInsts.
568  static ExtAddrMode Match(Value *V, const Type *AccessTy,
569                           Instruction *MemoryInst,
570                           SmallVectorImpl<Instruction*> &AddrModeInsts,
571                           const TargetLowering &TLI) {
572    ExtAddrMode Result;
573
574    bool Success =
575      AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
576                            MemoryInst, Result).MatchAddr(V, 0);
577    Success = Success; assert(Success && "Couldn't select *anything*?");
578    return Result;
579  }
580private:
581  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
582  bool MatchAddr(Value *V, unsigned Depth);
583  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
584  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
585                                            ExtAddrMode &AMBefore,
586                                            ExtAddrMode &AMAfter);
587  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
588};
589} // end anonymous namespace
590
591/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
592/// Return true and update AddrMode if this addr mode is legal for the target,
593/// false if not.
594bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
595                                             unsigned Depth) {
596  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
597  // mode.  Just process that directly.
598  if (Scale == 1)
599    return MatchAddr(ScaleReg, Depth);
600
601  // If the scale is 0, it takes nothing to add this.
602  if (Scale == 0)
603    return true;
604
605  // If we already have a scale of this value, we can add to it, otherwise, we
606  // need an available scale field.
607  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
608    return false;
609
610  ExtAddrMode TestAddrMode = AddrMode;
611
612  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
613  // [A+B + A*7] -> [B+A*8].
614  TestAddrMode.Scale += Scale;
615  TestAddrMode.ScaledReg = ScaleReg;
616
617  // If the new address isn't legal, bail out.
618  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
619    return false;
620
621  // It was legal, so commit it.
622  AddrMode = TestAddrMode;
623
624  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
625  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
626  // X*Scale + C*Scale to addr mode.
627  ConstantInt *CI; Value *AddLHS;
628  if (match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
629    TestAddrMode.ScaledReg = AddLHS;
630    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
631
632    // If this addressing mode is legal, commit it and remember that we folded
633    // this instruction.
634    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
635      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
636      AddrMode = TestAddrMode;
637      return true;
638    }
639  }
640
641  // Otherwise, not (x+c)*scale, just return what we have.
642  return true;
643}
644
645/// MightBeFoldableInst - This is a little filter, which returns true if an
646/// addressing computation involving I might be folded into a load/store
647/// accessing it.  This doesn't need to be perfect, but needs to accept at least
648/// the set of instructions that MatchOperationAddr can.
649static bool MightBeFoldableInst(Instruction *I) {
650  switch (I->getOpcode()) {
651  case Instruction::BitCast:
652    // Don't touch identity bitcasts.
653    if (I->getType() == I->getOperand(0)->getType())
654      return false;
655    return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType());
656  case Instruction::PtrToInt:
657    // PtrToInt is always a noop, as we know that the int type is pointer sized.
658    return true;
659  case Instruction::IntToPtr:
660    // We know the input is intptr_t, so this is foldable.
661    return true;
662  case Instruction::Add:
663    return true;
664  case Instruction::Mul:
665  case Instruction::Shl:
666    // Can only handle X*C and X << C.
667    return isa<ConstantInt>(I->getOperand(1));
668  case Instruction::GetElementPtr:
669    return true;
670  default:
671    return false;
672  }
673}
674
675
676/// MatchOperationAddr - Given an instruction or constant expr, see if we can
677/// fold the operation into the addressing mode.  If so, update the addressing
678/// mode and return true, otherwise return false without modifying AddrMode.
679bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
680                                               unsigned Depth) {
681  // Avoid exponential behavior on extremely deep expression trees.
682  if (Depth >= 5) return false;
683
684  switch (Opcode) {
685  case Instruction::PtrToInt:
686    // PtrToInt is always a noop, as we know that the int type is pointer sized.
687    return MatchAddr(AddrInst->getOperand(0), Depth);
688  case Instruction::IntToPtr:
689    // This inttoptr is a no-op if the integer type is pointer sized.
690    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
691        TLI.getPointerTy())
692      return MatchAddr(AddrInst->getOperand(0), Depth);
693    return false;
694  case Instruction::BitCast:
695    // BitCast is always a noop, and we can handle it as long as it is
696    // int->int or pointer->pointer (we don't want int<->fp or something).
697    if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) ||
698         isa<IntegerType>(AddrInst->getOperand(0)->getType())) &&
699        // Don't touch identity bitcasts.  These were probably put here by LSR,
700        // and we don't want to mess around with them.  Assume it knows what it
701        // is doing.
702        AddrInst->getOperand(0)->getType() != AddrInst->getType())
703      return MatchAddr(AddrInst->getOperand(0), Depth);
704    return false;
705  case Instruction::Add: {
706    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
707    ExtAddrMode BackupAddrMode = AddrMode;
708    unsigned OldSize = AddrModeInsts.size();
709    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
710        MatchAddr(AddrInst->getOperand(0), Depth+1))
711      return true;
712
713    // Restore the old addr mode info.
714    AddrMode = BackupAddrMode;
715    AddrModeInsts.resize(OldSize);
716
717    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
718    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
719        MatchAddr(AddrInst->getOperand(1), Depth+1))
720      return true;
721
722    // Otherwise we definitely can't merge the ADD in.
723    AddrMode = BackupAddrMode;
724    AddrModeInsts.resize(OldSize);
725    break;
726  }
727  //case Instruction::Or:
728  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
729  //break;
730  case Instruction::Mul:
731  case Instruction::Shl: {
732    // Can only handle X*C and X << C.
733    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
734    if (!RHS) return false;
735    int64_t Scale = RHS->getSExtValue();
736    if (Opcode == Instruction::Shl)
737      Scale = 1 << Scale;
738
739    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
740  }
741  case Instruction::GetElementPtr: {
742    // Scan the GEP.  We check it if it contains constant offsets and at most
743    // one variable offset.
744    int VariableOperand = -1;
745    unsigned VariableScale = 0;
746
747    int64_t ConstantOffset = 0;
748    const TargetData *TD = TLI.getTargetData();
749    gep_type_iterator GTI = gep_type_begin(AddrInst);
750    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
751      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
752        const StructLayout *SL = TD->getStructLayout(STy);
753        unsigned Idx =
754          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
755        ConstantOffset += SL->getElementOffset(Idx);
756      } else {
757        uint64_t TypeSize = TD->getABITypeSize(GTI.getIndexedType());
758        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
759          ConstantOffset += CI->getSExtValue()*TypeSize;
760        } else if (TypeSize) {  // Scales of zero don't do anything.
761          // We only allow one variable index at the moment.
762          if (VariableOperand != -1)
763            return false;
764
765          // Remember the variable index.
766          VariableOperand = i;
767          VariableScale = TypeSize;
768        }
769      }
770    }
771
772    // A common case is for the GEP to only do a constant offset.  In this case,
773    // just add it to the disp field and check validity.
774    if (VariableOperand == -1) {
775      AddrMode.BaseOffs += ConstantOffset;
776      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
777        // Check to see if we can fold the base pointer in too.
778        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
779          return true;
780      }
781      AddrMode.BaseOffs -= ConstantOffset;
782      return false;
783    }
784
785    // Save the valid addressing mode in case we can't match.
786    ExtAddrMode BackupAddrMode = AddrMode;
787
788    // Check that this has no base reg yet.  If so, we won't have a place to
789    // put the base of the GEP (assuming it is not a null ptr).
790    bool SetBaseReg = true;
791    if (isa<ConstantPointerNull>(AddrInst->getOperand(0)))
792      SetBaseReg = false;   // null pointer base doesn't need representation.
793    else if (AddrMode.HasBaseReg)
794      return false;  // Base register already specified, can't match GEP.
795    else {
796      // Otherwise, we'll use the GEP base as the BaseReg.
797      AddrMode.HasBaseReg = true;
798      AddrMode.BaseReg = AddrInst->getOperand(0);
799    }
800
801    // See if the scale and offset amount is valid for this target.
802    AddrMode.BaseOffs += ConstantOffset;
803
804    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
805                          Depth)) {
806      AddrMode = BackupAddrMode;
807      return false;
808    }
809
810    // If we have a null as the base of the GEP, folding in the constant offset
811    // plus variable scale is all we can do.
812    if (!SetBaseReg) return true;
813
814    // If this match succeeded, we know that we can form an address with the
815    // GepBase as the basereg.  Match the base pointer of the GEP more
816    // aggressively by zeroing out BaseReg and rematching.  If the base is
817    // (for example) another GEP, this allows merging in that other GEP into
818    // the addressing mode we're forming.
819    AddrMode.HasBaseReg = false;
820    AddrMode.BaseReg = 0;
821    bool Success = MatchAddr(AddrInst->getOperand(0), Depth+1);
822    assert(Success && "MatchAddr should be able to fill in BaseReg!");
823    Success=Success;
824    return true;
825  }
826  }
827  return false;
828}
829
830/// MatchAddr - If we can, try to add the value of 'Addr' into the current
831/// addressing mode.  If Addr can't be added to AddrMode this returns false and
832/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
833/// or intptr_t for the target.
834///
835bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
836  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
837    // Fold in immediates if legal for the target.
838    AddrMode.BaseOffs += CI->getSExtValue();
839    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
840      return true;
841    AddrMode.BaseOffs -= CI->getSExtValue();
842  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
843    // If this is a global variable, try to fold it into the addressing mode.
844    if (AddrMode.BaseGV == 0) {
845      AddrMode.BaseGV = GV;
846      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
847        return true;
848      AddrMode.BaseGV = 0;
849    }
850  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
851    ExtAddrMode BackupAddrMode = AddrMode;
852    unsigned OldSize = AddrModeInsts.size();
853
854    // Check to see if it is possible to fold this operation.
855    if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
856      // Okay, it's possible to fold this.  Check to see if it is actually
857      // *profitable* to do so.  We use a simple cost model to avoid increasing
858      // register pressure too much.
859      if (I->hasOneUse() ||
860          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
861        AddrModeInsts.push_back(I);
862        return true;
863      }
864
865      // It isn't profitable to do this, roll back.
866      //cerr << "NOT FOLDING: " << *I;
867      AddrMode = BackupAddrMode;
868      AddrModeInsts.resize(OldSize);
869    }
870  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
871    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
872      return true;
873  } else if (isa<ConstantPointerNull>(Addr)) {
874    // Null pointer gets folded without affecting the addressing mode.
875    return true;
876  }
877
878  // Worse case, the target should support [reg] addressing modes. :)
879  if (!AddrMode.HasBaseReg) {
880    AddrMode.HasBaseReg = true;
881    AddrMode.BaseReg = Addr;
882    // Still check for legality in case the target supports [imm] but not [i+r].
883    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
884      return true;
885    AddrMode.HasBaseReg = false;
886    AddrMode.BaseReg = 0;
887  }
888
889  // If the base register is already taken, see if we can do [r+r].
890  if (AddrMode.Scale == 0) {
891    AddrMode.Scale = 1;
892    AddrMode.ScaledReg = Addr;
893    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
894      return true;
895    AddrMode.Scale = 0;
896    AddrMode.ScaledReg = 0;
897  }
898  // Couldn't match.
899  return false;
900}
901
902/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
903/// memory use.  If we find an obviously non-foldable instruction, return true.
904/// Add the ultimately found memory instructions to MemoryUses.
905static bool FindAllMemoryUses(Instruction *I,
906                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
907                              SmallPtrSet<Instruction*, 16> &ConsideredInsts) {
908  // If we already considered this instruction, we're done.
909  if (!ConsideredInsts.insert(I))
910    return false;
911
912  // If this is an obviously unfoldable instruction, bail out.
913  if (!MightBeFoldableInst(I))
914    return true;
915
916  // Loop over all the uses, recursively processing them.
917  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
918       UI != E; ++UI) {
919    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
920      MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
921      continue;
922    }
923
924    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
925      if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr.
926      MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo()));
927      continue;
928    }
929
930    if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
931      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
932      if (IA == 0) return true;
933
934
935      // FIXME: HANDLE MEM OPS
936      //MemoryUses.push_back(std::make_pair(CI, UI.getOperandNo()));
937      return true;
938    }
939
940    if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts))
941      return true;
942  }
943
944  return false;
945}
946
947
948/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
949/// the use site that we're folding it into.  If so, there is no cost to
950/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
951/// that we know are live at the instruction already.
952bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
953                                                   Value *KnownLive2) {
954  // If Val is either of the known-live values, we know it is live!
955  if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
956    return true;
957
958  // All values other than instructions and arguments (e.g. constants) are live.
959  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
960
961  // If Val is a constant sized alloca in the entry block, it is live, this is
962  // true because it is just a reference to the stack/frame pointer, which is
963  // live for the whole function.
964  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
965    if (AI->isStaticAlloca())
966      return true;
967
968  // Check to see if this value is already used in the memory instruction's
969  // block.  If so, it's already live into the block at the very least, so we
970  // can reasonably fold it.
971  BasicBlock *MemBB = MemoryInst->getParent();
972  for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end();
973       UI != E; ++UI)
974    // We know that uses of arguments and instructions have to be instructions.
975    if (cast<Instruction>(*UI)->getParent() == MemBB)
976      return true;
977
978  return false;
979}
980
981
982
983#include "llvm/Support/CommandLine.h"
984cl::opt<bool> ENABLECRAZYHACK("enable-smarter-addr-folding", cl::Hidden);
985
986
987/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
988/// mode of the machine to fold the specified instruction into a load or store
989/// that ultimately uses it.  However, the specified instruction has multiple
990/// uses.  Given this, it may actually increase register pressure to fold it
991/// into the load.  For example, consider this code:
992///
993///     X = ...
994///     Y = X+1
995///     use(Y)   -> nonload/store
996///     Z = Y+1
997///     load Z
998///
999/// In this case, Y has multiple uses, and can be folded into the load of Z
1000/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
1001/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
1002/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
1003/// number of computations either.
1004///
1005/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
1006/// X was live across 'load Z' for other reasons, we actually *would* want to
1007/// fold the addressing mode in the Z case.  This would make Y die earlier.
1008bool AddressingModeMatcher::
1009IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
1010                                     ExtAddrMode &AMAfter) {
1011  if (IgnoreProfitability || !ENABLECRAZYHACK) return true;
1012
1013  // AMBefore is the addressing mode before this instruction was folded into it,
1014  // and AMAfter is the addressing mode after the instruction was folded.  Get
1015  // the set of registers referenced by AMAfter and subtract out those
1016  // referenced by AMBefore: this is the set of values which folding in this
1017  // address extends the lifetime of.
1018  //
1019  // Note that there are only two potential values being referenced here,
1020  // BaseReg and ScaleReg (global addresses are always available, as are any
1021  // folded immediates).
1022  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
1023
1024  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
1025  // lifetime wasn't extended by adding this instruction.
1026  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
1027    BaseReg = 0;
1028  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
1029    ScaledReg = 0;
1030
1031  // If folding this instruction (and it's subexprs) didn't extend any live
1032  // ranges, we're ok with it.
1033  if (BaseReg == 0 && ScaledReg == 0)
1034    return true;
1035
1036  // If all uses of this instruction are ultimately load/store/inlineasm's,
1037  // check to see if their addressing modes will include this instruction.  If
1038  // so, we can fold it into all uses, so it doesn't matter if it has multiple
1039  // uses.
1040  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
1041  SmallPtrSet<Instruction*, 16> ConsideredInsts;
1042  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts))
1043    return false;  // Has a non-memory, non-foldable use!
1044
1045  // Now that we know that all uses of this instruction are part of a chain of
1046  // computation involving only operations that could theoretically be folded
1047  // into a memory use, loop over each of these uses and see if they could
1048  // *actually* fold the instruction.
1049  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
1050  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
1051    Instruction *User = MemoryUses[i].first;
1052    unsigned OpNo = MemoryUses[i].second;
1053
1054    // Get the access type of this use.  If the use isn't a pointer, we don't
1055    // know what it accesses.
1056    Value *Address = User->getOperand(OpNo);
1057    if (!isa<PointerType>(Address->getType()))
1058      return false;
1059    const Type *AddressAccessTy =
1060      cast<PointerType>(Address->getType())->getElementType();
1061
1062    // Do a match against the root of this address, ignoring profitability. This
1063    // will tell us if the addressing mode for the memory operation will
1064    // *actually* cover the shared instruction.
1065    ExtAddrMode Result;
1066    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
1067                                  MemoryInst, Result);
1068    Matcher.IgnoreProfitability = true;
1069    bool Success = Matcher.MatchAddr(Address, 0);
1070    Success = Success; assert(Success && "Couldn't select *anything*?");
1071
1072    // If the match didn't cover I, then it won't be shared by it.
1073    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
1074                  I) == MatchedAddrModeInsts.end())
1075      return false;
1076
1077    MatchedAddrModeInsts.clear();
1078  }
1079
1080  return true;
1081}
1082
1083
1084//===----------------------------------------------------------------------===//
1085// Memory Optimization
1086//===----------------------------------------------------------------------===//
1087
1088/// IsNonLocalValue - Return true if the specified values are defined in a
1089/// different basic block than BB.
1090static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
1091  if (Instruction *I = dyn_cast<Instruction>(V))
1092    return I->getParent() != BB;
1093  return false;
1094}
1095
1096/// OptimizeMemoryInst - Load and Store Instructions have often have
1097/// addressing modes that can do significant amounts of computation.  As such,
1098/// instruction selection will try to get the load or store to do as much
1099/// computation as possible for the program.  The problem is that isel can only
1100/// see within a single block.  As such, we sink as much legal addressing mode
1101/// stuff into the block as possible.
1102///
1103/// This method is used to optimize both load/store and inline asms with memory
1104/// operands.
1105bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
1106                                        const Type *AccessTy,
1107                                        DenseMap<Value*,Value*> &SunkAddrs) {
1108  // Figure out what addressing mode will be built up for this operation.
1109  SmallVector<Instruction*, 16> AddrModeInsts;
1110  ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
1111                                                      AddrModeInsts, *TLI);
1112
1113  // Check to see if any of the instructions supersumed by this addr mode are
1114  // non-local to I's BB.
1115  bool AnyNonLocal = false;
1116  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
1117    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
1118      AnyNonLocal = true;
1119      break;
1120    }
1121  }
1122
1123  // If all the instructions matched are already in this BB, don't do anything.
1124  if (!AnyNonLocal) {
1125    DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
1126    return false;
1127  }
1128
1129  // Insert this computation right after this user.  Since our caller is
1130  // scanning from the top of the BB to the bottom, reuse of the expr are
1131  // guaranteed to happen later.
1132  BasicBlock::iterator InsertPt = MemoryInst;
1133
1134  // Now that we determined the addressing expression we want to use and know
1135  // that we have to sink it into this block.  Check to see if we have already
1136  // done this for some other load/store instr in this block.  If so, reuse the
1137  // computation.
1138  Value *&SunkAddr = SunkAddrs[Addr];
1139  if (SunkAddr) {
1140    DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
1141    if (SunkAddr->getType() != Addr->getType())
1142      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
1143  } else {
1144    DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
1145    const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
1146
1147    Value *Result = 0;
1148    // Start with the scale value.
1149    if (AddrMode.Scale) {
1150      Value *V = AddrMode.ScaledReg;
1151      if (V->getType() == IntPtrTy) {
1152        // done.
1153      } else if (isa<PointerType>(V->getType())) {
1154        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
1155      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
1156                 cast<IntegerType>(V->getType())->getBitWidth()) {
1157        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
1158      } else {
1159        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
1160      }
1161      if (AddrMode.Scale != 1)
1162        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
1163                                                          AddrMode.Scale),
1164                                      "sunkaddr", InsertPt);
1165      Result = V;
1166    }
1167
1168    // Add in the base register.
1169    if (AddrMode.BaseReg) {
1170      Value *V = AddrMode.BaseReg;
1171      if (V->getType() != IntPtrTy)
1172        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
1173      if (Result)
1174        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
1175      else
1176        Result = V;
1177    }
1178
1179    // Add in the BaseGV if present.
1180    if (AddrMode.BaseGV) {
1181      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
1182                                  InsertPt);
1183      if (Result)
1184        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
1185      else
1186        Result = V;
1187    }
1188
1189    // Add in the Base Offset if present.
1190    if (AddrMode.BaseOffs) {
1191      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
1192      if (Result)
1193        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
1194      else
1195        Result = V;
1196    }
1197
1198    if (Result == 0)
1199      SunkAddr = Constant::getNullValue(Addr->getType());
1200    else
1201      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
1202  }
1203
1204  MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
1205
1206  if (Addr->use_empty())
1207    EraseDeadInstructions(Addr);
1208  return true;
1209}
1210
1211/// OptimizeInlineAsmInst - If there are any memory operands, use
1212/// OptimizeMemoryInst to sink their address computing into the block when
1213/// possible / profitable.
1214bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
1215                                           DenseMap<Value*,Value*> &SunkAddrs) {
1216  bool MadeChange = false;
1217  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
1218
1219  // Do a prepass over the constraints, canonicalizing them, and building up the
1220  // ConstraintOperands list.
1221  std::vector<InlineAsm::ConstraintInfo>
1222    ConstraintInfos = IA->ParseConstraints();
1223
1224  /// ConstraintOperands - Information about all of the constraints.
1225  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
1226  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
1227  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
1228    ConstraintOperands.
1229      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
1230    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
1231
1232    // Compute the value type for each operand.
1233    switch (OpInfo.Type) {
1234    case InlineAsm::isOutput:
1235      if (OpInfo.isIndirect)
1236        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
1237      break;
1238    case InlineAsm::isInput:
1239      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
1240      break;
1241    case InlineAsm::isClobber:
1242      // Nothing to do.
1243      break;
1244    }
1245
1246    // Compute the constraint code and ConstraintType to use.
1247    TLI->ComputeConstraintToUse(OpInfo, SDValue(),
1248                             OpInfo.ConstraintType == TargetLowering::C_Memory);
1249
1250    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
1251        OpInfo.isIndirect) {
1252      Value *OpVal = OpInfo.CallOperandVal;
1253      MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
1254    }
1255  }
1256
1257  return MadeChange;
1258}
1259
1260bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
1261  BasicBlock *DefBB = I->getParent();
1262
1263  // If both result of the {s|z}xt and its source are live out, rewrite all
1264  // other uses of the source with result of extension.
1265  Value *Src = I->getOperand(0);
1266  if (Src->hasOneUse())
1267    return false;
1268
1269  // Only do this xform if truncating is free.
1270  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
1271    return false;
1272
1273  // Only safe to perform the optimization if the source is also defined in
1274  // this block.
1275  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
1276    return false;
1277
1278  bool DefIsLiveOut = false;
1279  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1280       UI != E; ++UI) {
1281    Instruction *User = cast<Instruction>(*UI);
1282
1283    // Figure out which BB this ext is used in.
1284    BasicBlock *UserBB = User->getParent();
1285    if (UserBB == DefBB) continue;
1286    DefIsLiveOut = true;
1287    break;
1288  }
1289  if (!DefIsLiveOut)
1290    return false;
1291
1292  // Make sure non of the uses are PHI nodes.
1293  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1294       UI != E; ++UI) {
1295    Instruction *User = cast<Instruction>(*UI);
1296    BasicBlock *UserBB = User->getParent();
1297    if (UserBB == DefBB) continue;
1298    // Be conservative. We don't want this xform to end up introducing
1299    // reloads just before load / store instructions.
1300    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
1301      return false;
1302  }
1303
1304  // InsertedTruncs - Only insert one trunc in each block once.
1305  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
1306
1307  bool MadeChange = false;
1308  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1309       UI != E; ++UI) {
1310    Use &TheUse = UI.getUse();
1311    Instruction *User = cast<Instruction>(*UI);
1312
1313    // Figure out which BB this ext is used in.
1314    BasicBlock *UserBB = User->getParent();
1315    if (UserBB == DefBB) continue;
1316
1317    // Both src and def are live in this block. Rewrite the use.
1318    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
1319
1320    if (!InsertedTrunc) {
1321      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
1322
1323      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
1324    }
1325
1326    // Replace a use of the {s|z}ext source with a use of the result.
1327    TheUse = InsertedTrunc;
1328
1329    MadeChange = true;
1330  }
1331
1332  return MadeChange;
1333}
1334
1335// In this pass we look for GEP and cast instructions that are used
1336// across basic blocks and rewrite them to improve basic-block-at-a-time
1337// selection.
1338bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
1339  bool MadeChange = false;
1340
1341  // Split all critical edges where the dest block has a PHI and where the phi
1342  // has shared immediate operands.
1343  TerminatorInst *BBTI = BB.getTerminator();
1344  if (BBTI->getNumSuccessors() > 1) {
1345    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
1346      if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
1347          isCriticalEdge(BBTI, i, true))
1348        SplitEdgeNicely(BBTI, i, this);
1349  }
1350
1351
1352  // Keep track of non-local addresses that have been sunk into this block.
1353  // This allows us to avoid inserting duplicate code for blocks with multiple
1354  // load/stores of the same address.
1355  DenseMap<Value*, Value*> SunkAddrs;
1356
1357  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
1358    Instruction *I = BBI++;
1359
1360    if (CastInst *CI = dyn_cast<CastInst>(I)) {
1361      // If the source of the cast is a constant, then this should have
1362      // already been constant folded.  The only reason NOT to constant fold
1363      // it is if something (e.g. LSR) was careful to place the constant
1364      // evaluation in a block other than then one that uses it (e.g. to hoist
1365      // the address of globals out of a loop).  If this is the case, we don't
1366      // want to forward-subst the cast.
1367      if (isa<Constant>(CI->getOperand(0)))
1368        continue;
1369
1370      bool Change = false;
1371      if (TLI) {
1372        Change = OptimizeNoopCopyExpression(CI, *TLI);
1373        MadeChange |= Change;
1374      }
1375
1376      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I)))
1377        MadeChange |= OptimizeExtUses(I);
1378    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
1379      MadeChange |= OptimizeCmpExpression(CI);
1380    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1381      if (TLI)
1382        MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
1383                                         SunkAddrs);
1384    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1385      if (TLI)
1386        MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
1387                                         SI->getOperand(0)->getType(),
1388                                         SunkAddrs);
1389    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1390      if (GEPI->hasAllZeroIndices()) {
1391        /// The GEP operand must be a pointer, so must its result -> BitCast
1392        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
1393                                          GEPI->getName(), GEPI);
1394        GEPI->replaceAllUsesWith(NC);
1395        GEPI->eraseFromParent();
1396        MadeChange = true;
1397        BBI = NC;
1398      }
1399    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
1400      // If we found an inline asm expession, and if the target knows how to
1401      // lower it to normal LLVM code, do so now.
1402      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
1403        if (const TargetAsmInfo *TAI =
1404            TLI->getTargetMachine().getTargetAsmInfo()) {
1405          if (TAI->ExpandInlineAsm(CI))
1406            BBI = BB.begin();
1407          else
1408            // Sink address computing for memory operands into the block.
1409            MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
1410        }
1411    }
1412  }
1413
1414  return MadeChange;
1415}
1416