CodeGenPrepare.cpp revision 8b0d4f61bbe07060a4638ae1d3731dec09d13854
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Pass.h"
25#include "llvm/Target/TargetAsmInfo.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Transforms/Utils/AddrModeMatcher.h"
30#include "llvm/Transforms/Utils/BasicBlockUtils.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/Assembly/Writer.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/PatternMatch.h"
41using namespace llvm;
42using namespace llvm::PatternMatch;
43
44static cl::opt<bool> FactorCommonPreds("split-critical-paths-tweak",
45                                       cl::init(false), cl::Hidden);
46
47namespace {
48  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
49    /// TLI - Keep a pointer of a TargetLowering to consult for determining
50    /// transformation profitability.
51    const TargetLowering *TLI;
52
53    /// BackEdges - Keep a set of all the loop back edges.
54    ///
55    SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges;
56  public:
57    static char ID; // Pass identification, replacement for typeid
58    explicit CodeGenPrepare(const TargetLowering *tli = 0)
59      : FunctionPass(&ID), TLI(tli) {}
60    bool runOnFunction(Function &F);
61
62  private:
63    bool EliminateMostlyEmptyBlocks(Function &F);
64    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
65    void EliminateMostlyEmptyBlock(BasicBlock *BB);
66    bool OptimizeBlock(BasicBlock &BB);
67    bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
68                            DenseMap<Value*,Value*> &SunkAddrs);
69    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
70                               DenseMap<Value*,Value*> &SunkAddrs);
71    bool OptimizeExtUses(Instruction *I);
72    void findLoopBackEdges(const Function &F);
73  };
74}
75
76char CodeGenPrepare::ID = 0;
77static RegisterPass<CodeGenPrepare> X("codegenprepare",
78                                      "Optimize for code generation");
79
80FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
81  return new CodeGenPrepare(TLI);
82}
83
84/// findLoopBackEdges - Do a DFS walk to find loop back edges.
85///
86void CodeGenPrepare::findLoopBackEdges(const Function &F) {
87  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
88  FindFunctionBackedges(F, Edges);
89
90  BackEdges.insert(Edges.begin(), Edges.end());
91}
92
93
94bool CodeGenPrepare::runOnFunction(Function &F) {
95  bool EverMadeChange = false;
96
97  // First pass, eliminate blocks that contain only PHI nodes and an
98  // unconditional branch.
99  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
100
101  // Now find loop back edges.
102  findLoopBackEdges(F);
103
104  bool MadeChange = true;
105  while (MadeChange) {
106    MadeChange = false;
107    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
108      MadeChange |= OptimizeBlock(*BB);
109    EverMadeChange |= MadeChange;
110  }
111  return EverMadeChange;
112}
113
114/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
115/// debug info directives, and an unconditional branch.  Passes before isel
116/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
117/// isel.  Start by eliminating these blocks so we can split them the way we
118/// want them.
119bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
120  bool MadeChange = false;
121  // Note that this intentionally skips the entry block.
122  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
123    BasicBlock *BB = I++;
124
125    // If this block doesn't end with an uncond branch, ignore it.
126    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
127    if (!BI || !BI->isUnconditional())
128      continue;
129
130    // If the instruction before the branch (skipping debug info) isn't a phi
131    // node, then other stuff is happening here.
132    BasicBlock::iterator BBI = BI;
133    if (BBI != BB->begin()) {
134      --BBI;
135      while (isa<DbgInfoIntrinsic>(BBI)) {
136        if (BBI == BB->begin())
137          break;
138        --BBI;
139      }
140      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
141        continue;
142    }
143
144    // Do not break infinite loops.
145    BasicBlock *DestBB = BI->getSuccessor(0);
146    if (DestBB == BB)
147      continue;
148
149    if (!CanMergeBlocks(BB, DestBB))
150      continue;
151
152    EliminateMostlyEmptyBlock(BB);
153    MadeChange = true;
154  }
155  return MadeChange;
156}
157
158/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
159/// single uncond branch between them, and BB contains no other non-phi
160/// instructions.
161bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
162                                    const BasicBlock *DestBB) const {
163  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
164  // the successor.  If there are more complex condition (e.g. preheaders),
165  // don't mess around with them.
166  BasicBlock::const_iterator BBI = BB->begin();
167  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
168    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
169         UI != E; ++UI) {
170      const Instruction *User = cast<Instruction>(*UI);
171      if (User->getParent() != DestBB || !isa<PHINode>(User))
172        return false;
173      // If User is inside DestBB block and it is a PHINode then check
174      // incoming value. If incoming value is not from BB then this is
175      // a complex condition (e.g. preheaders) we want to avoid here.
176      if (User->getParent() == DestBB) {
177        if (const PHINode *UPN = dyn_cast<PHINode>(User))
178          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
179            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
180            if (Insn && Insn->getParent() == BB &&
181                Insn->getParent() != UPN->getIncomingBlock(I))
182              return false;
183          }
184      }
185    }
186  }
187
188  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
189  // and DestBB may have conflicting incoming values for the block.  If so, we
190  // can't merge the block.
191  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
192  if (!DestBBPN) return true;  // no conflict.
193
194  // Collect the preds of BB.
195  SmallPtrSet<const BasicBlock*, 16> BBPreds;
196  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
197    // It is faster to get preds from a PHI than with pred_iterator.
198    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
199      BBPreds.insert(BBPN->getIncomingBlock(i));
200  } else {
201    BBPreds.insert(pred_begin(BB), pred_end(BB));
202  }
203
204  // Walk the preds of DestBB.
205  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
206    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
207    if (BBPreds.count(Pred)) {   // Common predecessor?
208      BBI = DestBB->begin();
209      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
210        const Value *V1 = PN->getIncomingValueForBlock(Pred);
211        const Value *V2 = PN->getIncomingValueForBlock(BB);
212
213        // If V2 is a phi node in BB, look up what the mapped value will be.
214        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
215          if (V2PN->getParent() == BB)
216            V2 = V2PN->getIncomingValueForBlock(Pred);
217
218        // If there is a conflict, bail out.
219        if (V1 != V2) return false;
220      }
221    }
222  }
223
224  return true;
225}
226
227
228/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
229/// an unconditional branch in it.
230void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
231  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
232  BasicBlock *DestBB = BI->getSuccessor(0);
233
234  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
235
236  // If the destination block has a single pred, then this is a trivial edge,
237  // just collapse it.
238  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
239    if (SinglePred != DestBB) {
240      // Remember if SinglePred was the entry block of the function.  If so, we
241      // will need to move BB back to the entry position.
242      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
243      MergeBasicBlockIntoOnlyPred(DestBB);
244
245      if (isEntry && BB != &BB->getParent()->getEntryBlock())
246        BB->moveBefore(&BB->getParent()->getEntryBlock());
247
248      DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
249      return;
250    }
251  }
252
253  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
254  // to handle the new incoming edges it is about to have.
255  PHINode *PN;
256  for (BasicBlock::iterator BBI = DestBB->begin();
257       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
258    // Remove the incoming value for BB, and remember it.
259    Value *InVal = PN->removeIncomingValue(BB, false);
260
261    // Two options: either the InVal is a phi node defined in BB or it is some
262    // value that dominates BB.
263    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
264    if (InValPhi && InValPhi->getParent() == BB) {
265      // Add all of the input values of the input PHI as inputs of this phi.
266      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
267        PN->addIncoming(InValPhi->getIncomingValue(i),
268                        InValPhi->getIncomingBlock(i));
269    } else {
270      // Otherwise, add one instance of the dominating value for each edge that
271      // we will be adding.
272      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
273        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
274          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
275      } else {
276        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
277          PN->addIncoming(InVal, *PI);
278      }
279    }
280  }
281
282  // The PHIs are now updated, change everything that refers to BB to use
283  // DestBB and remove BB.
284  BB->replaceAllUsesWith(DestBB);
285  BB->eraseFromParent();
286
287  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
288}
289
290
291/// SplitEdgeNicely - Split the critical edge from TI to its specified
292/// successor if it will improve codegen.  We only do this if the successor has
293/// phi nodes (otherwise critical edges are ok).  If there is already another
294/// predecessor of the succ that is empty (and thus has no phi nodes), use it
295/// instead of introducing a new block.
296static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
297                     SmallSet<std::pair<const BasicBlock*,
298                                        const BasicBlock*>, 8> &BackEdges,
299                             Pass *P) {
300  BasicBlock *TIBB = TI->getParent();
301  BasicBlock *Dest = TI->getSuccessor(SuccNum);
302  assert(isa<PHINode>(Dest->begin()) &&
303         "This should only be called if Dest has a PHI!");
304
305  // Do not split edges to EH landing pads.
306  if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI)) {
307    if (Invoke->getSuccessor(1) == Dest)
308      return;
309  }
310
311  // As a hack, never split backedges of loops.  Even though the copy for any
312  // PHIs inserted on the backedge would be dead for exits from the loop, we
313  // assume that the cost of *splitting* the backedge would be too high.
314  if (BackEdges.count(std::make_pair(TIBB, Dest)))
315    return;
316
317  if (!FactorCommonPreds) {
318    /// TIPHIValues - This array is lazily computed to determine the values of
319    /// PHIs in Dest that TI would provide.
320    SmallVector<Value*, 32> TIPHIValues;
321
322    // Check to see if Dest has any blocks that can be used as a split edge for
323    // this terminator.
324    for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
325      BasicBlock *Pred = *PI;
326      // To be usable, the pred has to end with an uncond branch to the dest.
327      BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
328      if (!PredBr || !PredBr->isUnconditional())
329        continue;
330      // Must be empty other than the branch and debug info.
331      BasicBlock::iterator I = Pred->begin();
332      while (isa<DbgInfoIntrinsic>(I))
333        I++;
334      if (dyn_cast<Instruction>(I) != PredBr)
335        continue;
336      // Cannot be the entry block; its label does not get emitted.
337      if (Pred == &(Dest->getParent()->getEntryBlock()))
338        continue;
339
340      // Finally, since we know that Dest has phi nodes in it, we have to make
341      // sure that jumping to Pred will have the same effect as going to Dest in
342      // terms of PHI values.
343      PHINode *PN;
344      unsigned PHINo = 0;
345      bool FoundMatch = true;
346      for (BasicBlock::iterator I = Dest->begin();
347           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
348        if (PHINo == TIPHIValues.size())
349          TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
350
351        // If the PHI entry doesn't work, we can't use this pred.
352        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
353          FoundMatch = false;
354          break;
355        }
356      }
357
358      // If we found a workable predecessor, change TI to branch to Succ.
359      if (FoundMatch) {
360        Dest->removePredecessor(TIBB);
361        TI->setSuccessor(SuccNum, Pred);
362        return;
363      }
364    }
365
366    SplitCriticalEdge(TI, SuccNum, P, true);
367    return;
368  }
369
370  PHINode *PN;
371  SmallVector<Value*, 8> TIPHIValues;
372  for (BasicBlock::iterator I = Dest->begin();
373       (PN = dyn_cast<PHINode>(I)); ++I)
374    TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
375
376  SmallVector<BasicBlock*, 8> IdenticalPreds;
377  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
378    BasicBlock *Pred = *PI;
379    if (BackEdges.count(std::make_pair(Pred, Dest)))
380      continue;
381    if (PI == TIBB)
382      IdenticalPreds.push_back(Pred);
383    else {
384      bool Identical = true;
385      unsigned PHINo = 0;
386      for (BasicBlock::iterator I = Dest->begin();
387           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo)
388        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
389          Identical = false;
390          break;
391        }
392      if (Identical)
393        IdenticalPreds.push_back(Pred);
394    }
395  }
396
397  assert(!IdenticalPreds.empty());
398  SplitBlockPredecessors(Dest, &IdenticalPreds[0], IdenticalPreds.size(),
399                         ".critedge", P);
400}
401
402
403/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
404/// copy (e.g. it's casting from one pointer type to another, int->uint, or
405/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
406/// registers that must be created and coalesced.
407///
408/// Return true if any changes are made.
409///
410static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
411  // If this is a noop copy,
412  MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
413  MVT DstVT = TLI.getValueType(CI->getType());
414
415  // This is an fp<->int conversion?
416  if (SrcVT.isInteger() != DstVT.isInteger())
417    return false;
418
419  // If this is an extension, it will be a zero or sign extension, which
420  // isn't a noop.
421  if (SrcVT.bitsLT(DstVT)) return false;
422
423  // If these values will be promoted, find out what they will be promoted
424  // to.  This helps us consider truncates on PPC as noop copies when they
425  // are.
426  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
427    SrcVT = TLI.getTypeToTransformTo(SrcVT);
428  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
429    DstVT = TLI.getTypeToTransformTo(DstVT);
430
431  // If, after promotion, these are the same types, this is a noop copy.
432  if (SrcVT != DstVT)
433    return false;
434
435  BasicBlock *DefBB = CI->getParent();
436
437  /// InsertedCasts - Only insert a cast in each block once.
438  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
439
440  bool MadeChange = false;
441  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
442       UI != E; ) {
443    Use &TheUse = UI.getUse();
444    Instruction *User = cast<Instruction>(*UI);
445
446    // Figure out which BB this cast is used in.  For PHI's this is the
447    // appropriate predecessor block.
448    BasicBlock *UserBB = User->getParent();
449    if (PHINode *PN = dyn_cast<PHINode>(User)) {
450      UserBB = PN->getIncomingBlock(UI);
451    }
452
453    // Preincrement use iterator so we don't invalidate it.
454    ++UI;
455
456    // If this user is in the same block as the cast, don't change the cast.
457    if (UserBB == DefBB) continue;
458
459    // If we have already inserted a cast into this block, use it.
460    CastInst *&InsertedCast = InsertedCasts[UserBB];
461
462    if (!InsertedCast) {
463      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
464
465      InsertedCast =
466        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
467                         InsertPt);
468      MadeChange = true;
469    }
470
471    // Replace a use of the cast with a use of the new cast.
472    TheUse = InsertedCast;
473  }
474
475  // If we removed all uses, nuke the cast.
476  if (CI->use_empty()) {
477    CI->eraseFromParent();
478    MadeChange = true;
479  }
480
481  return MadeChange;
482}
483
484/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
485/// the number of virtual registers that must be created and coalesced.  This is
486/// a clear win except on targets with multiple condition code registers
487///  (PowerPC), where it might lose; some adjustment may be wanted there.
488///
489/// Return true if any changes are made.
490static bool OptimizeCmpExpression(CmpInst *CI) {
491  BasicBlock *DefBB = CI->getParent();
492
493  /// InsertedCmp - Only insert a cmp in each block once.
494  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
495
496  bool MadeChange = false;
497  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
498       UI != E; ) {
499    Use &TheUse = UI.getUse();
500    Instruction *User = cast<Instruction>(*UI);
501
502    // Preincrement use iterator so we don't invalidate it.
503    ++UI;
504
505    // Don't bother for PHI nodes.
506    if (isa<PHINode>(User))
507      continue;
508
509    // Figure out which BB this cmp is used in.
510    BasicBlock *UserBB = User->getParent();
511
512    // If this user is in the same block as the cmp, don't change the cmp.
513    if (UserBB == DefBB) continue;
514
515    // If we have already inserted a cmp into this block, use it.
516    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
517
518    if (!InsertedCmp) {
519      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
520
521      InsertedCmp =
522        CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0),
523                        CI->getOperand(1), "", InsertPt);
524      MadeChange = true;
525    }
526
527    // Replace a use of the cmp with a use of the new cmp.
528    TheUse = InsertedCmp;
529  }
530
531  // If we removed all uses, nuke the cmp.
532  if (CI->use_empty())
533    CI->eraseFromParent();
534
535  return MadeChange;
536}
537
538//===----------------------------------------------------------------------===//
539// Memory Optimization
540//===----------------------------------------------------------------------===//
541
542/// IsNonLocalValue - Return true if the specified values are defined in a
543/// different basic block than BB.
544static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
545  if (Instruction *I = dyn_cast<Instruction>(V))
546    return I->getParent() != BB;
547  return false;
548}
549
550/// OptimizeMemoryInst - Load and Store Instructions have often have
551/// addressing modes that can do significant amounts of computation.  As such,
552/// instruction selection will try to get the load or store to do as much
553/// computation as possible for the program.  The problem is that isel can only
554/// see within a single block.  As such, we sink as much legal addressing mode
555/// stuff into the block as possible.
556///
557/// This method is used to optimize both load/store and inline asms with memory
558/// operands.
559bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
560                                        const Type *AccessTy,
561                                        DenseMap<Value*,Value*> &SunkAddrs) {
562  // Figure out what addressing mode will be built up for this operation.
563  SmallVector<Instruction*, 16> AddrModeInsts;
564  ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
565                                                      AddrModeInsts, *TLI);
566
567  // Check to see if any of the instructions supersumed by this addr mode are
568  // non-local to I's BB.
569  bool AnyNonLocal = false;
570  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
571    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
572      AnyNonLocal = true;
573      break;
574    }
575  }
576
577  // If all the instructions matched are already in this BB, don't do anything.
578  if (!AnyNonLocal) {
579    DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
580    return false;
581  }
582
583  // Insert this computation right after this user.  Since our caller is
584  // scanning from the top of the BB to the bottom, reuse of the expr are
585  // guaranteed to happen later.
586  BasicBlock::iterator InsertPt = MemoryInst;
587
588  // Now that we determined the addressing expression we want to use and know
589  // that we have to sink it into this block.  Check to see if we have already
590  // done this for some other load/store instr in this block.  If so, reuse the
591  // computation.
592  Value *&SunkAddr = SunkAddrs[Addr];
593  if (SunkAddr) {
594    DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
595               << *MemoryInst);
596    if (SunkAddr->getType() != Addr->getType())
597      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
598  } else {
599    DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
600               << *MemoryInst);
601    const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
602
603    Value *Result = 0;
604    // Start with the scale value.
605    if (AddrMode.Scale) {
606      Value *V = AddrMode.ScaledReg;
607      if (V->getType() == IntPtrTy) {
608        // done.
609      } else if (isa<PointerType>(V->getType())) {
610        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
611      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
612                 cast<IntegerType>(V->getType())->getBitWidth()) {
613        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
614      } else {
615        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
616      }
617      if (AddrMode.Scale != 1)
618        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
619                                                          AddrMode.Scale),
620                                      "sunkaddr", InsertPt);
621      Result = V;
622    }
623
624    // Add in the base register.
625    if (AddrMode.BaseReg) {
626      Value *V = AddrMode.BaseReg;
627      if (isa<PointerType>(V->getType()))
628        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
629      if (V->getType() != IntPtrTy)
630        V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
631                                        "sunkaddr", InsertPt);
632      if (Result)
633        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
634      else
635        Result = V;
636    }
637
638    // Add in the BaseGV if present.
639    if (AddrMode.BaseGV) {
640      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
641                                  InsertPt);
642      if (Result)
643        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
644      else
645        Result = V;
646    }
647
648    // Add in the Base Offset if present.
649    if (AddrMode.BaseOffs) {
650      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
651      if (Result)
652        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
653      else
654        Result = V;
655    }
656
657    if (Result == 0)
658      SunkAddr = Constant::getNullValue(Addr->getType());
659    else
660      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
661  }
662
663  MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
664
665  if (Addr->use_empty())
666    RecursivelyDeleteTriviallyDeadInstructions(Addr);
667  return true;
668}
669
670/// OptimizeInlineAsmInst - If there are any memory operands, use
671/// OptimizeMemoryInst to sink their address computing into the block when
672/// possible / profitable.
673bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
674                                           DenseMap<Value*,Value*> &SunkAddrs) {
675  bool MadeChange = false;
676  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
677
678  // Do a prepass over the constraints, canonicalizing them, and building up the
679  // ConstraintOperands list.
680  std::vector<InlineAsm::ConstraintInfo>
681    ConstraintInfos = IA->ParseConstraints();
682
683  /// ConstraintOperands - Information about all of the constraints.
684  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
685  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
686  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
687    ConstraintOperands.
688      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
689    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
690
691    // Compute the value type for each operand.
692    switch (OpInfo.Type) {
693    case InlineAsm::isOutput:
694      if (OpInfo.isIndirect)
695        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
696      break;
697    case InlineAsm::isInput:
698      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
699      break;
700    case InlineAsm::isClobber:
701      // Nothing to do.
702      break;
703    }
704
705    // Compute the constraint code and ConstraintType to use.
706    TLI->ComputeConstraintToUse(OpInfo, SDValue(),
707                             OpInfo.ConstraintType == TargetLowering::C_Memory);
708
709    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
710        OpInfo.isIndirect) {
711      Value *OpVal = OpInfo.CallOperandVal;
712      MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
713    }
714  }
715
716  return MadeChange;
717}
718
719bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
720  BasicBlock *DefBB = I->getParent();
721
722  // If both result of the {s|z}xt and its source are live out, rewrite all
723  // other uses of the source with result of extension.
724  Value *Src = I->getOperand(0);
725  if (Src->hasOneUse())
726    return false;
727
728  // Only do this xform if truncating is free.
729  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
730    return false;
731
732  // Only safe to perform the optimization if the source is also defined in
733  // this block.
734  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
735    return false;
736
737  bool DefIsLiveOut = false;
738  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
739       UI != E; ++UI) {
740    Instruction *User = cast<Instruction>(*UI);
741
742    // Figure out which BB this ext is used in.
743    BasicBlock *UserBB = User->getParent();
744    if (UserBB == DefBB) continue;
745    DefIsLiveOut = true;
746    break;
747  }
748  if (!DefIsLiveOut)
749    return false;
750
751  // Make sure non of the uses are PHI nodes.
752  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
753       UI != E; ++UI) {
754    Instruction *User = cast<Instruction>(*UI);
755    BasicBlock *UserBB = User->getParent();
756    if (UserBB == DefBB) continue;
757    // Be conservative. We don't want this xform to end up introducing
758    // reloads just before load / store instructions.
759    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
760      return false;
761  }
762
763  // InsertedTruncs - Only insert one trunc in each block once.
764  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
765
766  bool MadeChange = false;
767  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
768       UI != E; ++UI) {
769    Use &TheUse = UI.getUse();
770    Instruction *User = cast<Instruction>(*UI);
771
772    // Figure out which BB this ext is used in.
773    BasicBlock *UserBB = User->getParent();
774    if (UserBB == DefBB) continue;
775
776    // Both src and def are live in this block. Rewrite the use.
777    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
778
779    if (!InsertedTrunc) {
780      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
781
782      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
783    }
784
785    // Replace a use of the {s|z}ext source with a use of the result.
786    TheUse = InsertedTrunc;
787
788    MadeChange = true;
789  }
790
791  return MadeChange;
792}
793
794// In this pass we look for GEP and cast instructions that are used
795// across basic blocks and rewrite them to improve basic-block-at-a-time
796// selection.
797bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
798  bool MadeChange = false;
799
800  // Split all critical edges where the dest block has a PHI.
801  TerminatorInst *BBTI = BB.getTerminator();
802  if (BBTI->getNumSuccessors() > 1) {
803    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
804      BasicBlock *SuccBB = BBTI->getSuccessor(i);
805      if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
806        SplitEdgeNicely(BBTI, i, BackEdges, this);
807    }
808  }
809
810  // Keep track of non-local addresses that have been sunk into this block.
811  // This allows us to avoid inserting duplicate code for blocks with multiple
812  // load/stores of the same address.
813  DenseMap<Value*, Value*> SunkAddrs;
814
815  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
816    Instruction *I = BBI++;
817
818    if (CastInst *CI = dyn_cast<CastInst>(I)) {
819      // If the source of the cast is a constant, then this should have
820      // already been constant folded.  The only reason NOT to constant fold
821      // it is if something (e.g. LSR) was careful to place the constant
822      // evaluation in a block other than then one that uses it (e.g. to hoist
823      // the address of globals out of a loop).  If this is the case, we don't
824      // want to forward-subst the cast.
825      if (isa<Constant>(CI->getOperand(0)))
826        continue;
827
828      bool Change = false;
829      if (TLI) {
830        Change = OptimizeNoopCopyExpression(CI, *TLI);
831        MadeChange |= Change;
832      }
833
834      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I)))
835        MadeChange |= OptimizeExtUses(I);
836    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
837      MadeChange |= OptimizeCmpExpression(CI);
838    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
839      if (TLI)
840        MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
841                                         SunkAddrs);
842    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
843      if (TLI)
844        MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
845                                         SI->getOperand(0)->getType(),
846                                         SunkAddrs);
847    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
848      if (GEPI->hasAllZeroIndices()) {
849        /// The GEP operand must be a pointer, so must its result -> BitCast
850        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
851                                          GEPI->getName(), GEPI);
852        GEPI->replaceAllUsesWith(NC);
853        GEPI->eraseFromParent();
854        MadeChange = true;
855        BBI = NC;
856      }
857    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
858      // If we found an inline asm expession, and if the target knows how to
859      // lower it to normal LLVM code, do so now.
860      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
861        if (const TargetAsmInfo *TAI =
862            TLI->getTargetMachine().getTargetAsmInfo()) {
863          if (TAI->ExpandInlineAsm(CI)) {
864            BBI = BB.begin();
865            // Avoid processing instructions out of order, which could cause
866            // reuse before a value is defined.
867            SunkAddrs.clear();
868          } else
869            // Sink address computing for memory operands into the block.
870            MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
871        }
872    }
873  }
874
875  return MadeChange;
876}
877