CodeGenPrepare.cpp revision a4b04210d4a838e5a48b0c128bdfe42c3055633f
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/LLVMContext.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ProfileInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Transforms/Utils/AddrModeMatcher.h"
30#include "llvm/Transforms/Utils/BasicBlockUtils.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/Assembly/Writer.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/PatternMatch.h"
40#include "llvm/Support/raw_ostream.h"
41using namespace llvm;
42using namespace llvm::PatternMatch;
43
44static cl::opt<bool> FactorCommonPreds("split-critical-paths-tweak",
45                                       cl::init(false), cl::Hidden);
46
47namespace {
48  class CodeGenPrepare : public FunctionPass {
49    /// TLI - Keep a pointer of a TargetLowering to consult for determining
50    /// transformation profitability.
51    const TargetLowering *TLI;
52    ProfileInfo *PI;
53
54    /// BackEdges - Keep a set of all the loop back edges.
55    ///
56    SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges;
57  public:
58    static char ID; // Pass identification, replacement for typeid
59    explicit CodeGenPrepare(const TargetLowering *tli = 0)
60      : FunctionPass(&ID), TLI(tli) {}
61    bool runOnFunction(Function &F);
62
63    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64      AU.addPreserved<ProfileInfo>();
65    }
66
67  private:
68    bool EliminateMostlyEmptyBlocks(Function &F);
69    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
70    void EliminateMostlyEmptyBlock(BasicBlock *BB);
71    bool OptimizeBlock(BasicBlock &BB);
72    bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
73                            DenseMap<Value*,Value*> &SunkAddrs);
74    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
75                               DenseMap<Value*,Value*> &SunkAddrs);
76    bool MoveExtToFormExtLoad(Instruction *I);
77    bool OptimizeExtUses(Instruction *I);
78    void findLoopBackEdges(const Function &F);
79  };
80}
81
82char CodeGenPrepare::ID = 0;
83static RegisterPass<CodeGenPrepare> X("codegenprepare",
84                                      "Optimize for code generation");
85
86FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
87  return new CodeGenPrepare(TLI);
88}
89
90/// findLoopBackEdges - Do a DFS walk to find loop back edges.
91///
92void CodeGenPrepare::findLoopBackEdges(const Function &F) {
93  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
94  FindFunctionBackedges(F, Edges);
95
96  BackEdges.insert(Edges.begin(), Edges.end());
97}
98
99
100bool CodeGenPrepare::runOnFunction(Function &F) {
101  bool EverMadeChange = false;
102
103  PI = getAnalysisIfAvailable<ProfileInfo>();
104  // First pass, eliminate blocks that contain only PHI nodes and an
105  // unconditional branch.
106  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
107
108  // Now find loop back edges.
109  findLoopBackEdges(F);
110
111  bool MadeChange = true;
112  while (MadeChange) {
113    MadeChange = false;
114    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
115      MadeChange |= OptimizeBlock(*BB);
116    EverMadeChange |= MadeChange;
117  }
118  return EverMadeChange;
119}
120
121/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
122/// debug info directives, and an unconditional branch.  Passes before isel
123/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
124/// isel.  Start by eliminating these blocks so we can split them the way we
125/// want them.
126bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
127  bool MadeChange = false;
128  // Note that this intentionally skips the entry block.
129  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
130    BasicBlock *BB = I++;
131
132    // If this block doesn't end with an uncond branch, ignore it.
133    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
134    if (!BI || !BI->isUnconditional())
135      continue;
136
137    // If the instruction before the branch (skipping debug info) isn't a phi
138    // node, then other stuff is happening here.
139    BasicBlock::iterator BBI = BI;
140    if (BBI != BB->begin()) {
141      --BBI;
142      while (isa<DbgInfoIntrinsic>(BBI)) {
143        if (BBI == BB->begin())
144          break;
145        --BBI;
146      }
147      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
148        continue;
149    }
150
151    // Do not break infinite loops.
152    BasicBlock *DestBB = BI->getSuccessor(0);
153    if (DestBB == BB)
154      continue;
155
156    if (!CanMergeBlocks(BB, DestBB))
157      continue;
158
159    EliminateMostlyEmptyBlock(BB);
160    MadeChange = true;
161  }
162  return MadeChange;
163}
164
165/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
166/// single uncond branch between them, and BB contains no other non-phi
167/// instructions.
168bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
169                                    const BasicBlock *DestBB) const {
170  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
171  // the successor.  If there are more complex condition (e.g. preheaders),
172  // don't mess around with them.
173  BasicBlock::const_iterator BBI = BB->begin();
174  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
175    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
176         UI != E; ++UI) {
177      const Instruction *User = cast<Instruction>(*UI);
178      if (User->getParent() != DestBB || !isa<PHINode>(User))
179        return false;
180      // If User is inside DestBB block and it is a PHINode then check
181      // incoming value. If incoming value is not from BB then this is
182      // a complex condition (e.g. preheaders) we want to avoid here.
183      if (User->getParent() == DestBB) {
184        if (const PHINode *UPN = dyn_cast<PHINode>(User))
185          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
186            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
187            if (Insn && Insn->getParent() == BB &&
188                Insn->getParent() != UPN->getIncomingBlock(I))
189              return false;
190          }
191      }
192    }
193  }
194
195  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
196  // and DestBB may have conflicting incoming values for the block.  If so, we
197  // can't merge the block.
198  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
199  if (!DestBBPN) return true;  // no conflict.
200
201  // Collect the preds of BB.
202  SmallPtrSet<const BasicBlock*, 16> BBPreds;
203  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
204    // It is faster to get preds from a PHI than with pred_iterator.
205    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
206      BBPreds.insert(BBPN->getIncomingBlock(i));
207  } else {
208    BBPreds.insert(pred_begin(BB), pred_end(BB));
209  }
210
211  // Walk the preds of DestBB.
212  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
213    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
214    if (BBPreds.count(Pred)) {   // Common predecessor?
215      BBI = DestBB->begin();
216      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
217        const Value *V1 = PN->getIncomingValueForBlock(Pred);
218        const Value *V2 = PN->getIncomingValueForBlock(BB);
219
220        // If V2 is a phi node in BB, look up what the mapped value will be.
221        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
222          if (V2PN->getParent() == BB)
223            V2 = V2PN->getIncomingValueForBlock(Pred);
224
225        // If there is a conflict, bail out.
226        if (V1 != V2) return false;
227      }
228    }
229  }
230
231  return true;
232}
233
234
235/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
236/// an unconditional branch in it.
237void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
238  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
239  BasicBlock *DestBB = BI->getSuccessor(0);
240
241  DEBUG(errs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
242
243  // If the destination block has a single pred, then this is a trivial edge,
244  // just collapse it.
245  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
246    if (SinglePred != DestBB) {
247      // Remember if SinglePred was the entry block of the function.  If so, we
248      // will need to move BB back to the entry position.
249      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
250      MergeBasicBlockIntoOnlyPred(DestBB, this);
251
252      if (isEntry && BB != &BB->getParent()->getEntryBlock())
253        BB->moveBefore(&BB->getParent()->getEntryBlock());
254
255      DEBUG(errs() << "AFTER:\n" << *DestBB << "\n\n\n");
256      return;
257    }
258  }
259
260  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
261  // to handle the new incoming edges it is about to have.
262  PHINode *PN;
263  for (BasicBlock::iterator BBI = DestBB->begin();
264       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
265    // Remove the incoming value for BB, and remember it.
266    Value *InVal = PN->removeIncomingValue(BB, false);
267
268    // Two options: either the InVal is a phi node defined in BB or it is some
269    // value that dominates BB.
270    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
271    if (InValPhi && InValPhi->getParent() == BB) {
272      // Add all of the input values of the input PHI as inputs of this phi.
273      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
274        PN->addIncoming(InValPhi->getIncomingValue(i),
275                        InValPhi->getIncomingBlock(i));
276    } else {
277      // Otherwise, add one instance of the dominating value for each edge that
278      // we will be adding.
279      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
280        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
281          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
282      } else {
283        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
284          PN->addIncoming(InVal, *PI);
285      }
286    }
287  }
288
289  // The PHIs are now updated, change everything that refers to BB to use
290  // DestBB and remove BB.
291  BB->replaceAllUsesWith(DestBB);
292  if (PI) {
293    PI->replaceAllUses(BB, DestBB);
294    PI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
295  }
296  BB->eraseFromParent();
297
298  DEBUG(errs() << "AFTER:\n" << *DestBB << "\n\n\n");
299}
300
301
302/// SplitEdgeNicely - Split the critical edge from TI to its specified
303/// successor if it will improve codegen.  We only do this if the successor has
304/// phi nodes (otherwise critical edges are ok).  If there is already another
305/// predecessor of the succ that is empty (and thus has no phi nodes), use it
306/// instead of introducing a new block.
307static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
308                     SmallSet<std::pair<const BasicBlock*,
309                                        const BasicBlock*>, 8> &BackEdges,
310                             Pass *P) {
311  BasicBlock *TIBB = TI->getParent();
312  BasicBlock *Dest = TI->getSuccessor(SuccNum);
313  assert(isa<PHINode>(Dest->begin()) &&
314         "This should only be called if Dest has a PHI!");
315
316  // Do not split edges to EH landing pads.
317  if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI)) {
318    if (Invoke->getSuccessor(1) == Dest)
319      return;
320  }
321
322
323  // As a hack, never split backedges of loops.  Even though the copy for any
324  // PHIs inserted on the backedge would be dead for exits from the loop, we
325  // assume that the cost of *splitting* the backedge would be too high.
326  if (BackEdges.count(std::make_pair(TIBB, Dest)))
327    return;
328
329  if (!FactorCommonPreds) {
330    /// TIPHIValues - This array is lazily computed to determine the values of
331    /// PHIs in Dest that TI would provide.
332    SmallVector<Value*, 32> TIPHIValues;
333
334    // Check to see if Dest has any blocks that can be used as a split edge for
335    // this terminator.
336    for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
337      BasicBlock *Pred = *PI;
338      // To be usable, the pred has to end with an uncond branch to the dest.
339      BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
340      if (!PredBr || !PredBr->isUnconditional())
341        continue;
342      // Must be empty other than the branch and debug info.
343      BasicBlock::iterator I = Pred->begin();
344      while (isa<DbgInfoIntrinsic>(I))
345        I++;
346      if (dyn_cast<Instruction>(I) != PredBr)
347        continue;
348      // Cannot be the entry block; its label does not get emitted.
349      if (Pred == &(Dest->getParent()->getEntryBlock()))
350        continue;
351
352      // Finally, since we know that Dest has phi nodes in it, we have to make
353      // sure that jumping to Pred will have the same effect as going to Dest in
354      // terms of PHI values.
355      PHINode *PN;
356      unsigned PHINo = 0;
357      bool FoundMatch = true;
358      for (BasicBlock::iterator I = Dest->begin();
359           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
360        if (PHINo == TIPHIValues.size())
361          TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
362
363        // If the PHI entry doesn't work, we can't use this pred.
364        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
365          FoundMatch = false;
366          break;
367        }
368      }
369
370      // If we found a workable predecessor, change TI to branch to Succ.
371      if (FoundMatch) {
372        ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
373        if (PI)
374          PI->splitEdge(TIBB, Dest, Pred);
375        Dest->removePredecessor(TIBB);
376        TI->setSuccessor(SuccNum, Pred);
377        return;
378      }
379    }
380
381    SplitCriticalEdge(TI, SuccNum, P, true);
382    return;
383  }
384
385  PHINode *PN;
386  SmallVector<Value*, 8> TIPHIValues;
387  for (BasicBlock::iterator I = Dest->begin();
388       (PN = dyn_cast<PHINode>(I)); ++I)
389    TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
390
391  SmallVector<BasicBlock*, 8> IdenticalPreds;
392  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
393    BasicBlock *Pred = *PI;
394    if (BackEdges.count(std::make_pair(Pred, Dest)))
395      continue;
396    if (PI == TIBB)
397      IdenticalPreds.push_back(Pred);
398    else {
399      bool Identical = true;
400      unsigned PHINo = 0;
401      for (BasicBlock::iterator I = Dest->begin();
402           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo)
403        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
404          Identical = false;
405          break;
406        }
407      if (Identical)
408        IdenticalPreds.push_back(Pred);
409    }
410  }
411
412  assert(!IdenticalPreds.empty());
413  SplitBlockPredecessors(Dest, &IdenticalPreds[0], IdenticalPreds.size(),
414                         ".critedge", P);
415}
416
417
418/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
419/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
420/// sink it into user blocks to reduce the number of virtual
421/// registers that must be created and coalesced.
422///
423/// Return true if any changes are made.
424///
425static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
426  // If this is a noop copy,
427  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
428  EVT DstVT = TLI.getValueType(CI->getType());
429
430  // This is an fp<->int conversion?
431  if (SrcVT.isInteger() != DstVT.isInteger())
432    return false;
433
434  // If this is an extension, it will be a zero or sign extension, which
435  // isn't a noop.
436  if (SrcVT.bitsLT(DstVT)) return false;
437
438  // If these values will be promoted, find out what they will be promoted
439  // to.  This helps us consider truncates on PPC as noop copies when they
440  // are.
441  if (TLI.getTypeAction(CI->getContext(), SrcVT) == TargetLowering::Promote)
442    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
443  if (TLI.getTypeAction(CI->getContext(), DstVT) == TargetLowering::Promote)
444    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
445
446  // If, after promotion, these are the same types, this is a noop copy.
447  if (SrcVT != DstVT)
448    return false;
449
450  BasicBlock *DefBB = CI->getParent();
451
452  /// InsertedCasts - Only insert a cast in each block once.
453  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
454
455  bool MadeChange = false;
456  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
457       UI != E; ) {
458    Use &TheUse = UI.getUse();
459    Instruction *User = cast<Instruction>(*UI);
460
461    // Figure out which BB this cast is used in.  For PHI's this is the
462    // appropriate predecessor block.
463    BasicBlock *UserBB = User->getParent();
464    if (PHINode *PN = dyn_cast<PHINode>(User)) {
465      UserBB = PN->getIncomingBlock(UI);
466    }
467
468    // Preincrement use iterator so we don't invalidate it.
469    ++UI;
470
471    // If this user is in the same block as the cast, don't change the cast.
472    if (UserBB == DefBB) continue;
473
474    // If we have already inserted a cast into this block, use it.
475    CastInst *&InsertedCast = InsertedCasts[UserBB];
476
477    if (!InsertedCast) {
478      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
479
480      InsertedCast =
481        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
482                         InsertPt);
483      MadeChange = true;
484    }
485
486    // Replace a use of the cast with a use of the new cast.
487    TheUse = InsertedCast;
488  }
489
490  // If we removed all uses, nuke the cast.
491  if (CI->use_empty()) {
492    CI->eraseFromParent();
493    MadeChange = true;
494  }
495
496  return MadeChange;
497}
498
499/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
500/// the number of virtual registers that must be created and coalesced.  This is
501/// a clear win except on targets with multiple condition code registers
502///  (PowerPC), where it might lose; some adjustment may be wanted there.
503///
504/// Return true if any changes are made.
505static bool OptimizeCmpExpression(CmpInst *CI) {
506  BasicBlock *DefBB = CI->getParent();
507
508  /// InsertedCmp - Only insert a cmp in each block once.
509  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
510
511  bool MadeChange = false;
512  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
513       UI != E; ) {
514    Use &TheUse = UI.getUse();
515    Instruction *User = cast<Instruction>(*UI);
516
517    // Preincrement use iterator so we don't invalidate it.
518    ++UI;
519
520    // Don't bother for PHI nodes.
521    if (isa<PHINode>(User))
522      continue;
523
524    // Figure out which BB this cmp is used in.
525    BasicBlock *UserBB = User->getParent();
526
527    // If this user is in the same block as the cmp, don't change the cmp.
528    if (UserBB == DefBB) continue;
529
530    // If we have already inserted a cmp into this block, use it.
531    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
532
533    if (!InsertedCmp) {
534      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
535
536      InsertedCmp =
537        CmpInst::Create(CI->getOpcode(),
538                        CI->getPredicate(),  CI->getOperand(0),
539                        CI->getOperand(1), "", InsertPt);
540      MadeChange = true;
541    }
542
543    // Replace a use of the cmp with a use of the new cmp.
544    TheUse = InsertedCmp;
545  }
546
547  // If we removed all uses, nuke the cmp.
548  if (CI->use_empty())
549    CI->eraseFromParent();
550
551  return MadeChange;
552}
553
554//===----------------------------------------------------------------------===//
555// Memory Optimization
556//===----------------------------------------------------------------------===//
557
558/// IsNonLocalValue - Return true if the specified values are defined in a
559/// different basic block than BB.
560static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
561  if (Instruction *I = dyn_cast<Instruction>(V))
562    return I->getParent() != BB;
563  return false;
564}
565
566/// OptimizeMemoryInst - Load and Store Instructions have often have
567/// addressing modes that can do significant amounts of computation.  As such,
568/// instruction selection will try to get the load or store to do as much
569/// computation as possible for the program.  The problem is that isel can only
570/// see within a single block.  As such, we sink as much legal addressing mode
571/// stuff into the block as possible.
572///
573/// This method is used to optimize both load/store and inline asms with memory
574/// operands.
575bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
576                                        const Type *AccessTy,
577                                        DenseMap<Value*,Value*> &SunkAddrs) {
578  // Figure out what addressing mode will be built up for this operation.
579  SmallVector<Instruction*, 16> AddrModeInsts;
580  ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
581                                                      AddrModeInsts, *TLI);
582
583  // Check to see if any of the instructions supersumed by this addr mode are
584  // non-local to I's BB.
585  bool AnyNonLocal = false;
586  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
587    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
588      AnyNonLocal = true;
589      break;
590    }
591  }
592
593  // If all the instructions matched are already in this BB, don't do anything.
594  if (!AnyNonLocal) {
595    DEBUG(errs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
596    return false;
597  }
598
599  // Insert this computation right after this user.  Since our caller is
600  // scanning from the top of the BB to the bottom, reuse of the expr are
601  // guaranteed to happen later.
602  BasicBlock::iterator InsertPt = MemoryInst;
603
604  // Now that we determined the addressing expression we want to use and know
605  // that we have to sink it into this block.  Check to see if we have already
606  // done this for some other load/store instr in this block.  If so, reuse the
607  // computation.
608  Value *&SunkAddr = SunkAddrs[Addr];
609  if (SunkAddr) {
610    DEBUG(errs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
611                 << *MemoryInst);
612    if (SunkAddr->getType() != Addr->getType())
613      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
614  } else {
615    DEBUG(errs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
616                 << *MemoryInst);
617    const Type *IntPtrTy =
618          TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
619
620    Value *Result = 0;
621    // Start with the scale value.
622    if (AddrMode.Scale) {
623      Value *V = AddrMode.ScaledReg;
624      if (V->getType() == IntPtrTy) {
625        // done.
626      } else if (isa<PointerType>(V->getType())) {
627        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
628      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
629                 cast<IntegerType>(V->getType())->getBitWidth()) {
630        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
631      } else {
632        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
633      }
634      if (AddrMode.Scale != 1)
635        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
636                                                                AddrMode.Scale),
637                                      "sunkaddr", InsertPt);
638      Result = V;
639    }
640
641    // Add in the base register.
642    if (AddrMode.BaseReg) {
643      Value *V = AddrMode.BaseReg;
644      if (isa<PointerType>(V->getType()))
645        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
646      if (V->getType() != IntPtrTy)
647        V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
648                                        "sunkaddr", InsertPt);
649      if (Result)
650        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
651      else
652        Result = V;
653    }
654
655    // Add in the BaseGV if present.
656    if (AddrMode.BaseGV) {
657      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
658                                  InsertPt);
659      if (Result)
660        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
661      else
662        Result = V;
663    }
664
665    // Add in the Base Offset if present.
666    if (AddrMode.BaseOffs) {
667      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
668      if (Result)
669        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
670      else
671        Result = V;
672    }
673
674    if (Result == 0)
675      SunkAddr = Constant::getNullValue(Addr->getType());
676    else
677      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
678  }
679
680  MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
681
682  if (Addr->use_empty())
683    RecursivelyDeleteTriviallyDeadInstructions(Addr);
684  return true;
685}
686
687/// OptimizeInlineAsmInst - If there are any memory operands, use
688/// OptimizeMemoryInst to sink their address computing into the block when
689/// possible / profitable.
690bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
691                                           DenseMap<Value*,Value*> &SunkAddrs) {
692  bool MadeChange = false;
693  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
694
695  // Do a prepass over the constraints, canonicalizing them, and building up the
696  // ConstraintOperands list.
697  std::vector<InlineAsm::ConstraintInfo>
698    ConstraintInfos = IA->ParseConstraints();
699
700  /// ConstraintOperands - Information about all of the constraints.
701  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
702  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
703  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
704    ConstraintOperands.
705      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
706    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
707
708    // Compute the value type for each operand.
709    switch (OpInfo.Type) {
710    case InlineAsm::isOutput:
711      if (OpInfo.isIndirect)
712        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
713      break;
714    case InlineAsm::isInput:
715      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
716      break;
717    case InlineAsm::isClobber:
718      // Nothing to do.
719      break;
720    }
721
722    // Compute the constraint code and ConstraintType to use.
723    TLI->ComputeConstraintToUse(OpInfo, SDValue(),
724                             OpInfo.ConstraintType == TargetLowering::C_Memory);
725
726    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
727        OpInfo.isIndirect) {
728      Value *OpVal = OpInfo.CallOperandVal;
729      MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
730    }
731  }
732
733  return MadeChange;
734}
735
736/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
737/// basic block as the load, unless conditions are unfavorable. This allows
738/// SelectionDAG to fold the extend into the load.
739///
740bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
741  // Look for a load being extended.
742  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
743  if (!LI) return false;
744
745  // If they're already in the same block, there's nothing to do.
746  if (LI->getParent() == I->getParent())
747    return false;
748
749  // If the load has other users and the truncate is not free, this probably
750  // isn't worthwhile.
751  if (!LI->hasOneUse() &&
752      TLI && !TLI->isTruncateFree(I->getType(), LI->getType()))
753    return false;
754
755  // Check whether the target supports casts folded into loads.
756  unsigned LType;
757  if (isa<ZExtInst>(I))
758    LType = ISD::ZEXTLOAD;
759  else {
760    assert(isa<SExtInst>(I) && "Unexpected ext type!");
761    LType = ISD::SEXTLOAD;
762  }
763  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
764    return false;
765
766  // Move the extend into the same block as the load, so that SelectionDAG
767  // can fold it.
768  I->removeFromParent();
769  I->insertAfter(LI);
770  return true;
771}
772
773bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
774  BasicBlock *DefBB = I->getParent();
775
776  // If both result of the {s|z}xt and its source are live out, rewrite all
777  // other uses of the source with result of extension.
778  Value *Src = I->getOperand(0);
779  if (Src->hasOneUse())
780    return false;
781
782  // Only do this xform if truncating is free.
783  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
784    return false;
785
786  // Only safe to perform the optimization if the source is also defined in
787  // this block.
788  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
789    return false;
790
791  bool DefIsLiveOut = false;
792  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
793       UI != E; ++UI) {
794    Instruction *User = cast<Instruction>(*UI);
795
796    // Figure out which BB this ext is used in.
797    BasicBlock *UserBB = User->getParent();
798    if (UserBB == DefBB) continue;
799    DefIsLiveOut = true;
800    break;
801  }
802  if (!DefIsLiveOut)
803    return false;
804
805  // Make sure non of the uses are PHI nodes.
806  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
807       UI != E; ++UI) {
808    Instruction *User = cast<Instruction>(*UI);
809    BasicBlock *UserBB = User->getParent();
810    if (UserBB == DefBB) continue;
811    // Be conservative. We don't want this xform to end up introducing
812    // reloads just before load / store instructions.
813    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
814      return false;
815  }
816
817  // InsertedTruncs - Only insert one trunc in each block once.
818  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
819
820  bool MadeChange = false;
821  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
822       UI != E; ++UI) {
823    Use &TheUse = UI.getUse();
824    Instruction *User = cast<Instruction>(*UI);
825
826    // Figure out which BB this ext is used in.
827    BasicBlock *UserBB = User->getParent();
828    if (UserBB == DefBB) continue;
829
830    // Both src and def are live in this block. Rewrite the use.
831    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
832
833    if (!InsertedTrunc) {
834      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
835
836      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
837    }
838
839    // Replace a use of the {s|z}ext source with a use of the result.
840    TheUse = InsertedTrunc;
841
842    MadeChange = true;
843  }
844
845  return MadeChange;
846}
847
848// In this pass we look for GEP and cast instructions that are used
849// across basic blocks and rewrite them to improve basic-block-at-a-time
850// selection.
851bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
852  bool MadeChange = false;
853
854  // Split all critical edges where the dest block has a PHI.
855  TerminatorInst *BBTI = BB.getTerminator();
856  if (BBTI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(BBTI)) {
857    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
858      BasicBlock *SuccBB = BBTI->getSuccessor(i);
859      if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
860        SplitEdgeNicely(BBTI, i, BackEdges, this);
861    }
862  }
863
864  // Keep track of non-local addresses that have been sunk into this block.
865  // This allows us to avoid inserting duplicate code for blocks with multiple
866  // load/stores of the same address.
867  DenseMap<Value*, Value*> SunkAddrs;
868
869  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
870    Instruction *I = BBI++;
871
872    if (CastInst *CI = dyn_cast<CastInst>(I)) {
873      // If the source of the cast is a constant, then this should have
874      // already been constant folded.  The only reason NOT to constant fold
875      // it is if something (e.g. LSR) was careful to place the constant
876      // evaluation in a block other than then one that uses it (e.g. to hoist
877      // the address of globals out of a loop).  If this is the case, we don't
878      // want to forward-subst the cast.
879      if (isa<Constant>(CI->getOperand(0)))
880        continue;
881
882      bool Change = false;
883      if (TLI) {
884        Change = OptimizeNoopCopyExpression(CI, *TLI);
885        MadeChange |= Change;
886      }
887
888      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I))) {
889        MadeChange |= MoveExtToFormExtLoad(I);
890        MadeChange |= OptimizeExtUses(I);
891      }
892    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
893      MadeChange |= OptimizeCmpExpression(CI);
894    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
895      if (TLI)
896        MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
897                                         SunkAddrs);
898    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
899      if (TLI)
900        MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
901                                         SI->getOperand(0)->getType(),
902                                         SunkAddrs);
903    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
904      if (GEPI->hasAllZeroIndices()) {
905        /// The GEP operand must be a pointer, so must its result -> BitCast
906        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
907                                          GEPI->getName(), GEPI);
908        GEPI->replaceAllUsesWith(NC);
909        GEPI->eraseFromParent();
910        MadeChange = true;
911        BBI = NC;
912      }
913    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
914      // If we found an inline asm expession, and if the target knows how to
915      // lower it to normal LLVM code, do so now.
916      if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
917        if (TLI->ExpandInlineAsm(CI)) {
918          BBI = BB.begin();
919          // Avoid processing instructions out of order, which could cause
920          // reuse before a value is defined.
921          SunkAddrs.clear();
922        } else
923          // Sink address computing for memory operands into the block.
924          MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
925      }
926    }
927  }
928
929  return MadeChange;
930}
931