CodeGenPrepare.cpp revision ad80981a106c9d0ec83351e63ee3ac75ed646bf4
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/LLVMContext.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ProfileInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Transforms/Utils/AddrModeMatcher.h"
30#include "llvm/Transforms/Utils/BasicBlockUtils.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/Assembly/Writer.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/PatternMatch.h"
40#include "llvm/Support/raw_ostream.h"
41using namespace llvm;
42using namespace llvm::PatternMatch;
43
44static cl::opt<bool> FactorCommonPreds("split-critical-paths-tweak",
45                                       cl::init(false), cl::Hidden);
46
47namespace {
48  class CodeGenPrepare : public FunctionPass {
49    /// TLI - Keep a pointer of a TargetLowering to consult for determining
50    /// transformation profitability.
51    const TargetLowering *TLI;
52    ProfileInfo *PI;
53
54    /// BackEdges - Keep a set of all the loop back edges.
55    ///
56    SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges;
57  public:
58    static char ID; // Pass identification, replacement for typeid
59    explicit CodeGenPrepare(const TargetLowering *tli = 0)
60      : FunctionPass(&ID), TLI(tli) {}
61    bool runOnFunction(Function &F);
62
63    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64      AU.addPreserved<ProfileInfo>();
65    }
66
67  private:
68    bool EliminateMostlyEmptyBlocks(Function &F);
69    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
70    void EliminateMostlyEmptyBlock(BasicBlock *BB);
71    bool OptimizeBlock(BasicBlock &BB);
72    bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
73                            DenseMap<Value*,Value*> &SunkAddrs);
74    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
75                               DenseMap<Value*,Value*> &SunkAddrs);
76    bool OptimizeExtUses(Instruction *I);
77    void findLoopBackEdges(const Function &F);
78  };
79}
80
81char CodeGenPrepare::ID = 0;
82static RegisterPass<CodeGenPrepare> X("codegenprepare",
83                                      "Optimize for code generation");
84
85FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
86  return new CodeGenPrepare(TLI);
87}
88
89/// findLoopBackEdges - Do a DFS walk to find loop back edges.
90///
91void CodeGenPrepare::findLoopBackEdges(const Function &F) {
92  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
93  FindFunctionBackedges(F, Edges);
94
95  BackEdges.insert(Edges.begin(), Edges.end());
96}
97
98
99bool CodeGenPrepare::runOnFunction(Function &F) {
100  bool EverMadeChange = false;
101
102  PI = getAnalysisIfAvailable<ProfileInfo>();
103  // First pass, eliminate blocks that contain only PHI nodes and an
104  // unconditional branch.
105  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
106
107  // Now find loop back edges.
108  findLoopBackEdges(F);
109
110  bool MadeChange = true;
111  while (MadeChange) {
112    MadeChange = false;
113    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
114      MadeChange |= OptimizeBlock(*BB);
115    EverMadeChange |= MadeChange;
116  }
117  return EverMadeChange;
118}
119
120/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
121/// debug info directives, and an unconditional branch.  Passes before isel
122/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
123/// isel.  Start by eliminating these blocks so we can split them the way we
124/// want them.
125bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
126  bool MadeChange = false;
127  // Note that this intentionally skips the entry block.
128  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
129    BasicBlock *BB = I++;
130
131    // If this block doesn't end with an uncond branch, ignore it.
132    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
133    if (!BI || !BI->isUnconditional())
134      continue;
135
136    // If the instruction before the branch (skipping debug info) isn't a phi
137    // node, then other stuff is happening here.
138    BasicBlock::iterator BBI = BI;
139    if (BBI != BB->begin()) {
140      --BBI;
141      while (isa<DbgInfoIntrinsic>(BBI)) {
142        if (BBI == BB->begin())
143          break;
144        --BBI;
145      }
146      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
147        continue;
148    }
149
150    // Do not break infinite loops.
151    BasicBlock *DestBB = BI->getSuccessor(0);
152    if (DestBB == BB)
153      continue;
154
155    if (!CanMergeBlocks(BB, DestBB))
156      continue;
157
158    EliminateMostlyEmptyBlock(BB);
159    MadeChange = true;
160  }
161  return MadeChange;
162}
163
164/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
165/// single uncond branch between them, and BB contains no other non-phi
166/// instructions.
167bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
168                                    const BasicBlock *DestBB) const {
169  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
170  // the successor.  If there are more complex condition (e.g. preheaders),
171  // don't mess around with them.
172  BasicBlock::const_iterator BBI = BB->begin();
173  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
174    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
175         UI != E; ++UI) {
176      const Instruction *User = cast<Instruction>(*UI);
177      if (User->getParent() != DestBB || !isa<PHINode>(User))
178        return false;
179      // If User is inside DestBB block and it is a PHINode then check
180      // incoming value. If incoming value is not from BB then this is
181      // a complex condition (e.g. preheaders) we want to avoid here.
182      if (User->getParent() == DestBB) {
183        if (const PHINode *UPN = dyn_cast<PHINode>(User))
184          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
185            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
186            if (Insn && Insn->getParent() == BB &&
187                Insn->getParent() != UPN->getIncomingBlock(I))
188              return false;
189          }
190      }
191    }
192  }
193
194  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
195  // and DestBB may have conflicting incoming values for the block.  If so, we
196  // can't merge the block.
197  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
198  if (!DestBBPN) return true;  // no conflict.
199
200  // Collect the preds of BB.
201  SmallPtrSet<const BasicBlock*, 16> BBPreds;
202  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
203    // It is faster to get preds from a PHI than with pred_iterator.
204    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
205      BBPreds.insert(BBPN->getIncomingBlock(i));
206  } else {
207    BBPreds.insert(pred_begin(BB), pred_end(BB));
208  }
209
210  // Walk the preds of DestBB.
211  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
212    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
213    if (BBPreds.count(Pred)) {   // Common predecessor?
214      BBI = DestBB->begin();
215      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
216        const Value *V1 = PN->getIncomingValueForBlock(Pred);
217        const Value *V2 = PN->getIncomingValueForBlock(BB);
218
219        // If V2 is a phi node in BB, look up what the mapped value will be.
220        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
221          if (V2PN->getParent() == BB)
222            V2 = V2PN->getIncomingValueForBlock(Pred);
223
224        // If there is a conflict, bail out.
225        if (V1 != V2) return false;
226      }
227    }
228  }
229
230  return true;
231}
232
233
234/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
235/// an unconditional branch in it.
236void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
237  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
238  BasicBlock *DestBB = BI->getSuccessor(0);
239
240  DEBUG(errs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
241
242  // If the destination block has a single pred, then this is a trivial edge,
243  // just collapse it.
244  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
245    if (SinglePred != DestBB) {
246      // Remember if SinglePred was the entry block of the function.  If so, we
247      // will need to move BB back to the entry position.
248      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
249      MergeBasicBlockIntoOnlyPred(DestBB, this);
250
251      if (isEntry && BB != &BB->getParent()->getEntryBlock())
252        BB->moveBefore(&BB->getParent()->getEntryBlock());
253
254      DEBUG(errs() << "AFTER:\n" << *DestBB << "\n\n\n");
255      return;
256    }
257  }
258
259  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
260  // to handle the new incoming edges it is about to have.
261  PHINode *PN;
262  for (BasicBlock::iterator BBI = DestBB->begin();
263       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
264    // Remove the incoming value for BB, and remember it.
265    Value *InVal = PN->removeIncomingValue(BB, false);
266
267    // Two options: either the InVal is a phi node defined in BB or it is some
268    // value that dominates BB.
269    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
270    if (InValPhi && InValPhi->getParent() == BB) {
271      // Add all of the input values of the input PHI as inputs of this phi.
272      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
273        PN->addIncoming(InValPhi->getIncomingValue(i),
274                        InValPhi->getIncomingBlock(i));
275    } else {
276      // Otherwise, add one instance of the dominating value for each edge that
277      // we will be adding.
278      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
279        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
280          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
281      } else {
282        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
283          PN->addIncoming(InVal, *PI);
284      }
285    }
286  }
287
288  // The PHIs are now updated, change everything that refers to BB to use
289  // DestBB and remove BB.
290  BB->replaceAllUsesWith(DestBB);
291  if (PI) {
292    PI->replaceAllUses(BB, DestBB);
293    PI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
294  }
295  BB->eraseFromParent();
296
297  DEBUG(errs() << "AFTER:\n" << *DestBB << "\n\n\n");
298}
299
300
301/// SplitEdgeNicely - Split the critical edge from TI to its specified
302/// successor if it will improve codegen.  We only do this if the successor has
303/// phi nodes (otherwise critical edges are ok).  If there is already another
304/// predecessor of the succ that is empty (and thus has no phi nodes), use it
305/// instead of introducing a new block.
306static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
307                     SmallSet<std::pair<const BasicBlock*,
308                                        const BasicBlock*>, 8> &BackEdges,
309                             Pass *P) {
310  BasicBlock *TIBB = TI->getParent();
311  BasicBlock *Dest = TI->getSuccessor(SuccNum);
312  assert(isa<PHINode>(Dest->begin()) &&
313         "This should only be called if Dest has a PHI!");
314
315  // Do not split edges to EH landing pads.
316  if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI)) {
317    if (Invoke->getSuccessor(1) == Dest)
318      return;
319  }
320
321  // As a hack, never split backedges of loops.  Even though the copy for any
322  // PHIs inserted on the backedge would be dead for exits from the loop, we
323  // assume that the cost of *splitting* the backedge would be too high.
324  if (BackEdges.count(std::make_pair(TIBB, Dest)))
325    return;
326
327  if (!FactorCommonPreds) {
328    /// TIPHIValues - This array is lazily computed to determine the values of
329    /// PHIs in Dest that TI would provide.
330    SmallVector<Value*, 32> TIPHIValues;
331
332    // Check to see if Dest has any blocks that can be used as a split edge for
333    // this terminator.
334    for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
335      BasicBlock *Pred = *PI;
336      // To be usable, the pred has to end with an uncond branch to the dest.
337      BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
338      if (!PredBr || !PredBr->isUnconditional())
339        continue;
340      // Must be empty other than the branch and debug info.
341      BasicBlock::iterator I = Pred->begin();
342      while (isa<DbgInfoIntrinsic>(I))
343        I++;
344      if (dyn_cast<Instruction>(I) != PredBr)
345        continue;
346      // Cannot be the entry block; its label does not get emitted.
347      if (Pred == &(Dest->getParent()->getEntryBlock()))
348        continue;
349
350      // Finally, since we know that Dest has phi nodes in it, we have to make
351      // sure that jumping to Pred will have the same effect as going to Dest in
352      // terms of PHI values.
353      PHINode *PN;
354      unsigned PHINo = 0;
355      bool FoundMatch = true;
356      for (BasicBlock::iterator I = Dest->begin();
357           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
358        if (PHINo == TIPHIValues.size())
359          TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
360
361        // If the PHI entry doesn't work, we can't use this pred.
362        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
363          FoundMatch = false;
364          break;
365        }
366      }
367
368      // If we found a workable predecessor, change TI to branch to Succ.
369      if (FoundMatch) {
370        ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
371        if (PI)
372          PI->splitEdge(TIBB, Dest, Pred);
373        Dest->removePredecessor(TIBB);
374        TI->setSuccessor(SuccNum, Pred);
375        return;
376      }
377    }
378
379    SplitCriticalEdge(TI, SuccNum, P, true);
380    return;
381  }
382
383  PHINode *PN;
384  SmallVector<Value*, 8> TIPHIValues;
385  for (BasicBlock::iterator I = Dest->begin();
386       (PN = dyn_cast<PHINode>(I)); ++I)
387    TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
388
389  SmallVector<BasicBlock*, 8> IdenticalPreds;
390  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
391    BasicBlock *Pred = *PI;
392    if (BackEdges.count(std::make_pair(Pred, Dest)))
393      continue;
394    if (PI == TIBB)
395      IdenticalPreds.push_back(Pred);
396    else {
397      bool Identical = true;
398      unsigned PHINo = 0;
399      for (BasicBlock::iterator I = Dest->begin();
400           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo)
401        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
402          Identical = false;
403          break;
404        }
405      if (Identical)
406        IdenticalPreds.push_back(Pred);
407    }
408  }
409
410  assert(!IdenticalPreds.empty());
411  SplitBlockPredecessors(Dest, &IdenticalPreds[0], IdenticalPreds.size(),
412                         ".critedge", P);
413}
414
415
416/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
417/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
418/// sink it into user blocks to reduce the number of virtual
419/// registers that must be created and coalesced.
420///
421/// Return true if any changes are made.
422///
423static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
424  // If this is a noop copy,
425  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
426  EVT DstVT = TLI.getValueType(CI->getType());
427
428  // This is an fp<->int conversion?
429  if (SrcVT.isInteger() != DstVT.isInteger())
430    return false;
431
432  // If this is an extension, it will be a zero or sign extension, which
433  // isn't a noop.
434  if (SrcVT.bitsLT(DstVT)) return false;
435
436  // If these values will be promoted, find out what they will be promoted
437  // to.  This helps us consider truncates on PPC as noop copies when they
438  // are.
439  if (TLI.getTypeAction(CI->getContext(), SrcVT) == TargetLowering::Promote)
440    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
441  if (TLI.getTypeAction(CI->getContext(), DstVT) == TargetLowering::Promote)
442    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
443
444  // If, after promotion, these are the same types, this is a noop copy.
445  if (SrcVT != DstVT)
446    return false;
447
448  BasicBlock *DefBB = CI->getParent();
449
450  /// InsertedCasts - Only insert a cast in each block once.
451  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
452
453  bool MadeChange = false;
454  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
455       UI != E; ) {
456    Use &TheUse = UI.getUse();
457    Instruction *User = cast<Instruction>(*UI);
458
459    // Figure out which BB this cast is used in.  For PHI's this is the
460    // appropriate predecessor block.
461    BasicBlock *UserBB = User->getParent();
462    if (PHINode *PN = dyn_cast<PHINode>(User)) {
463      UserBB = PN->getIncomingBlock(UI);
464    }
465
466    // Preincrement use iterator so we don't invalidate it.
467    ++UI;
468
469    // If this user is in the same block as the cast, don't change the cast.
470    if (UserBB == DefBB) continue;
471
472    // If we have already inserted a cast into this block, use it.
473    CastInst *&InsertedCast = InsertedCasts[UserBB];
474
475    if (!InsertedCast) {
476      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
477
478      InsertedCast =
479        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
480                         InsertPt);
481      MadeChange = true;
482    }
483
484    // Replace a use of the cast with a use of the new cast.
485    TheUse = InsertedCast;
486  }
487
488  // If we removed all uses, nuke the cast.
489  if (CI->use_empty()) {
490    CI->eraseFromParent();
491    MadeChange = true;
492  }
493
494  return MadeChange;
495}
496
497/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
498/// the number of virtual registers that must be created and coalesced.  This is
499/// a clear win except on targets with multiple condition code registers
500///  (PowerPC), where it might lose; some adjustment may be wanted there.
501///
502/// Return true if any changes are made.
503static bool OptimizeCmpExpression(CmpInst *CI) {
504  BasicBlock *DefBB = CI->getParent();
505
506  /// InsertedCmp - Only insert a cmp in each block once.
507  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
508
509  bool MadeChange = false;
510  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
511       UI != E; ) {
512    Use &TheUse = UI.getUse();
513    Instruction *User = cast<Instruction>(*UI);
514
515    // Preincrement use iterator so we don't invalidate it.
516    ++UI;
517
518    // Don't bother for PHI nodes.
519    if (isa<PHINode>(User))
520      continue;
521
522    // Figure out which BB this cmp is used in.
523    BasicBlock *UserBB = User->getParent();
524
525    // If this user is in the same block as the cmp, don't change the cmp.
526    if (UserBB == DefBB) continue;
527
528    // If we have already inserted a cmp into this block, use it.
529    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
530
531    if (!InsertedCmp) {
532      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
533
534      InsertedCmp =
535        CmpInst::Create(CI->getOpcode(),
536                        CI->getPredicate(),  CI->getOperand(0),
537                        CI->getOperand(1), "", InsertPt);
538      MadeChange = true;
539    }
540
541    // Replace a use of the cmp with a use of the new cmp.
542    TheUse = InsertedCmp;
543  }
544
545  // If we removed all uses, nuke the cmp.
546  if (CI->use_empty())
547    CI->eraseFromParent();
548
549  return MadeChange;
550}
551
552//===----------------------------------------------------------------------===//
553// Memory Optimization
554//===----------------------------------------------------------------------===//
555
556/// IsNonLocalValue - Return true if the specified values are defined in a
557/// different basic block than BB.
558static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
559  if (Instruction *I = dyn_cast<Instruction>(V))
560    return I->getParent() != BB;
561  return false;
562}
563
564/// OptimizeMemoryInst - Load and Store Instructions have often have
565/// addressing modes that can do significant amounts of computation.  As such,
566/// instruction selection will try to get the load or store to do as much
567/// computation as possible for the program.  The problem is that isel can only
568/// see within a single block.  As such, we sink as much legal addressing mode
569/// stuff into the block as possible.
570///
571/// This method is used to optimize both load/store and inline asms with memory
572/// operands.
573bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
574                                        const Type *AccessTy,
575                                        DenseMap<Value*,Value*> &SunkAddrs) {
576  // Figure out what addressing mode will be built up for this operation.
577  SmallVector<Instruction*, 16> AddrModeInsts;
578  ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
579                                                      AddrModeInsts, *TLI);
580
581  // Check to see if any of the instructions supersumed by this addr mode are
582  // non-local to I's BB.
583  bool AnyNonLocal = false;
584  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
585    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
586      AnyNonLocal = true;
587      break;
588    }
589  }
590
591  // If all the instructions matched are already in this BB, don't do anything.
592  if (!AnyNonLocal) {
593    DEBUG(errs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
594    return false;
595  }
596
597  // Insert this computation right after this user.  Since our caller is
598  // scanning from the top of the BB to the bottom, reuse of the expr are
599  // guaranteed to happen later.
600  BasicBlock::iterator InsertPt = MemoryInst;
601
602  // Now that we determined the addressing expression we want to use and know
603  // that we have to sink it into this block.  Check to see if we have already
604  // done this for some other load/store instr in this block.  If so, reuse the
605  // computation.
606  Value *&SunkAddr = SunkAddrs[Addr];
607  if (SunkAddr) {
608    DEBUG(errs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
609                 << *MemoryInst);
610    if (SunkAddr->getType() != Addr->getType())
611      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
612  } else {
613    DEBUG(errs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
614                 << *MemoryInst);
615    const Type *IntPtrTy =
616          TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
617
618    Value *Result = 0;
619    // Start with the scale value.
620    if (AddrMode.Scale) {
621      Value *V = AddrMode.ScaledReg;
622      if (V->getType() == IntPtrTy) {
623        // done.
624      } else if (isa<PointerType>(V->getType())) {
625        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
626      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
627                 cast<IntegerType>(V->getType())->getBitWidth()) {
628        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
629      } else {
630        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
631      }
632      if (AddrMode.Scale != 1)
633        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
634                                                                AddrMode.Scale),
635                                      "sunkaddr", InsertPt);
636      Result = V;
637    }
638
639    // Add in the base register.
640    if (AddrMode.BaseReg) {
641      Value *V = AddrMode.BaseReg;
642      if (isa<PointerType>(V->getType()))
643        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
644      if (V->getType() != IntPtrTy)
645        V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
646                                        "sunkaddr", InsertPt);
647      if (Result)
648        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
649      else
650        Result = V;
651    }
652
653    // Add in the BaseGV if present.
654    if (AddrMode.BaseGV) {
655      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
656                                  InsertPt);
657      if (Result)
658        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
659      else
660        Result = V;
661    }
662
663    // Add in the Base Offset if present.
664    if (AddrMode.BaseOffs) {
665      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
666      if (Result)
667        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
668      else
669        Result = V;
670    }
671
672    if (Result == 0)
673      SunkAddr = Constant::getNullValue(Addr->getType());
674    else
675      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
676  }
677
678  MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
679
680  if (Addr->use_empty())
681    RecursivelyDeleteTriviallyDeadInstructions(Addr);
682  return true;
683}
684
685/// OptimizeInlineAsmInst - If there are any memory operands, use
686/// OptimizeMemoryInst to sink their address computing into the block when
687/// possible / profitable.
688bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
689                                           DenseMap<Value*,Value*> &SunkAddrs) {
690  bool MadeChange = false;
691  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
692
693  // Do a prepass over the constraints, canonicalizing them, and building up the
694  // ConstraintOperands list.
695  std::vector<InlineAsm::ConstraintInfo>
696    ConstraintInfos = IA->ParseConstraints();
697
698  /// ConstraintOperands - Information about all of the constraints.
699  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
700  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
701  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
702    ConstraintOperands.
703      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
704    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
705
706    // Compute the value type for each operand.
707    switch (OpInfo.Type) {
708    case InlineAsm::isOutput:
709      if (OpInfo.isIndirect)
710        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
711      break;
712    case InlineAsm::isInput:
713      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
714      break;
715    case InlineAsm::isClobber:
716      // Nothing to do.
717      break;
718    }
719
720    // Compute the constraint code and ConstraintType to use.
721    TLI->ComputeConstraintToUse(OpInfo, SDValue(),
722                             OpInfo.ConstraintType == TargetLowering::C_Memory);
723
724    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
725        OpInfo.isIndirect) {
726      Value *OpVal = OpInfo.CallOperandVal;
727      MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
728    }
729  }
730
731  return MadeChange;
732}
733
734bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
735  BasicBlock *DefBB = I->getParent();
736
737  // If both result of the {s|z}xt and its source are live out, rewrite all
738  // other uses of the source with result of extension.
739  Value *Src = I->getOperand(0);
740  if (Src->hasOneUse())
741    return false;
742
743  // Only do this xform if truncating is free.
744  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
745    return false;
746
747  // Only safe to perform the optimization if the source is also defined in
748  // this block.
749  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
750    return false;
751
752  bool DefIsLiveOut = false;
753  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
754       UI != E; ++UI) {
755    Instruction *User = cast<Instruction>(*UI);
756
757    // Figure out which BB this ext is used in.
758    BasicBlock *UserBB = User->getParent();
759    if (UserBB == DefBB) continue;
760    DefIsLiveOut = true;
761    break;
762  }
763  if (!DefIsLiveOut)
764    return false;
765
766  // Make sure non of the uses are PHI nodes.
767  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
768       UI != E; ++UI) {
769    Instruction *User = cast<Instruction>(*UI);
770    BasicBlock *UserBB = User->getParent();
771    if (UserBB == DefBB) continue;
772    // Be conservative. We don't want this xform to end up introducing
773    // reloads just before load / store instructions.
774    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
775      return false;
776  }
777
778  // InsertedTruncs - Only insert one trunc in each block once.
779  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
780
781  bool MadeChange = false;
782  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
783       UI != E; ++UI) {
784    Use &TheUse = UI.getUse();
785    Instruction *User = cast<Instruction>(*UI);
786
787    // Figure out which BB this ext is used in.
788    BasicBlock *UserBB = User->getParent();
789    if (UserBB == DefBB) continue;
790
791    // Both src and def are live in this block. Rewrite the use.
792    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
793
794    if (!InsertedTrunc) {
795      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
796
797      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
798    }
799
800    // Replace a use of the {s|z}ext source with a use of the result.
801    TheUse = InsertedTrunc;
802
803    MadeChange = true;
804  }
805
806  return MadeChange;
807}
808
809// In this pass we look for GEP and cast instructions that are used
810// across basic blocks and rewrite them to improve basic-block-at-a-time
811// selection.
812bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
813  bool MadeChange = false;
814
815  // Split all critical edges where the dest block has a PHI.
816  TerminatorInst *BBTI = BB.getTerminator();
817  if (BBTI->getNumSuccessors() > 1) {
818    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
819      BasicBlock *SuccBB = BBTI->getSuccessor(i);
820      if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
821        SplitEdgeNicely(BBTI, i, BackEdges, this);
822    }
823  }
824
825  // Keep track of non-local addresses that have been sunk into this block.
826  // This allows us to avoid inserting duplicate code for blocks with multiple
827  // load/stores of the same address.
828  DenseMap<Value*, Value*> SunkAddrs;
829
830  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
831    Instruction *I = BBI++;
832
833    if (CastInst *CI = dyn_cast<CastInst>(I)) {
834      // If the source of the cast is a constant, then this should have
835      // already been constant folded.  The only reason NOT to constant fold
836      // it is if something (e.g. LSR) was careful to place the constant
837      // evaluation in a block other than then one that uses it (e.g. to hoist
838      // the address of globals out of a loop).  If this is the case, we don't
839      // want to forward-subst the cast.
840      if (isa<Constant>(CI->getOperand(0)))
841        continue;
842
843      bool Change = false;
844      if (TLI) {
845        Change = OptimizeNoopCopyExpression(CI, *TLI);
846        MadeChange |= Change;
847      }
848
849      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I)))
850        MadeChange |= OptimizeExtUses(I);
851    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
852      MadeChange |= OptimizeCmpExpression(CI);
853    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
854      if (TLI)
855        MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
856                                         SunkAddrs);
857    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
858      if (TLI)
859        MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
860                                         SI->getOperand(0)->getType(),
861                                         SunkAddrs);
862    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
863      if (GEPI->hasAllZeroIndices()) {
864        /// The GEP operand must be a pointer, so must its result -> BitCast
865        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
866                                          GEPI->getName(), GEPI);
867        GEPI->replaceAllUsesWith(NC);
868        GEPI->eraseFromParent();
869        MadeChange = true;
870        BBI = NC;
871      }
872    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
873      // If we found an inline asm expession, and if the target knows how to
874      // lower it to normal LLVM code, do so now.
875      if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
876        if (TLI->ExpandInlineAsm(CI)) {
877          BBI = BB.begin();
878          // Avoid processing instructions out of order, which could cause
879          // reuse before a value is defined.
880          SunkAddrs.clear();
881        } else
882          // Sink address computing for memory operands into the block.
883          MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
884      }
885    }
886  }
887
888  return MadeChange;
889}
890