CodeGenPrepare.cpp revision ae73dc1448d25b02cabc7c64c86c64371453dda8
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/InlineAsm.h"
22#include "llvm/Instructions.h"
23#include "llvm/Pass.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36using namespace llvm;
37
38namespace {
39  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
40    /// TLI - Keep a pointer of a TargetLowering to consult for determining
41    /// transformation profitability.
42    const TargetLowering *TLI;
43  public:
44    static char ID; // Pass identification, replacement for typeid
45    explicit CodeGenPrepare(const TargetLowering *tli = 0)
46      : FunctionPass(&ID), TLI(tli) {}
47    bool runOnFunction(Function &F);
48
49  private:
50    bool EliminateMostlyEmptyBlocks(Function &F);
51    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
52    void EliminateMostlyEmptyBlock(BasicBlock *BB);
53    bool OptimizeBlock(BasicBlock &BB);
54    bool OptimizeLoadStoreInst(Instruction *I, Value *Addr,
55                               const Type *AccessTy,
56                               DenseMap<Value*,Value*> &SunkAddrs);
57    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
58                               DenseMap<Value*,Value*> &SunkAddrs);
59    bool OptimizeExtUses(Instruction *I);
60  };
61}
62
63char CodeGenPrepare::ID = 0;
64static RegisterPass<CodeGenPrepare> X("codegenprepare",
65                                      "Optimize for code generation");
66
67FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
68  return new CodeGenPrepare(TLI);
69}
70
71
72bool CodeGenPrepare::runOnFunction(Function &F) {
73  bool EverMadeChange = false;
74
75  // First pass, eliminate blocks that contain only PHI nodes and an
76  // unconditional branch.
77  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
78
79  bool MadeChange = true;
80  while (MadeChange) {
81    MadeChange = false;
82    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
83      MadeChange |= OptimizeBlock(*BB);
84    EverMadeChange |= MadeChange;
85  }
86  return EverMadeChange;
87}
88
89/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
90/// and an unconditional branch.  Passes before isel (e.g. LSR/loopsimplify)
91/// often split edges in ways that are non-optimal for isel.  Start by
92/// eliminating these blocks so we can split them the way we want them.
93bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
94  bool MadeChange = false;
95  // Note that this intentionally skips the entry block.
96  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
97    BasicBlock *BB = I++;
98
99    // If this block doesn't end with an uncond branch, ignore it.
100    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
101    if (!BI || !BI->isUnconditional())
102      continue;
103
104    // If the instruction before the branch isn't a phi node, then other stuff
105    // is happening here.
106    BasicBlock::iterator BBI = BI;
107    if (BBI != BB->begin()) {
108      --BBI;
109      if (!isa<PHINode>(BBI)) continue;
110    }
111
112    // Do not break infinite loops.
113    BasicBlock *DestBB = BI->getSuccessor(0);
114    if (DestBB == BB)
115      continue;
116
117    if (!CanMergeBlocks(BB, DestBB))
118      continue;
119
120    EliminateMostlyEmptyBlock(BB);
121    MadeChange = true;
122  }
123  return MadeChange;
124}
125
126/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
127/// single uncond branch between them, and BB contains no other non-phi
128/// instructions.
129bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
130                                    const BasicBlock *DestBB) const {
131  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
132  // the successor.  If there are more complex condition (e.g. preheaders),
133  // don't mess around with them.
134  BasicBlock::const_iterator BBI = BB->begin();
135  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
136    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
137         UI != E; ++UI) {
138      const Instruction *User = cast<Instruction>(*UI);
139      if (User->getParent() != DestBB || !isa<PHINode>(User))
140        return false;
141      // If User is inside DestBB block and it is a PHINode then check
142      // incoming value. If incoming value is not from BB then this is
143      // a complex condition (e.g. preheaders) we want to avoid here.
144      if (User->getParent() == DestBB) {
145        if (const PHINode *UPN = dyn_cast<PHINode>(User))
146          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
147            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
148            if (Insn && Insn->getParent() == BB &&
149                Insn->getParent() != UPN->getIncomingBlock(I))
150              return false;
151          }
152      }
153    }
154  }
155
156  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
157  // and DestBB may have conflicting incoming values for the block.  If so, we
158  // can't merge the block.
159  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
160  if (!DestBBPN) return true;  // no conflict.
161
162  // Collect the preds of BB.
163  SmallPtrSet<const BasicBlock*, 16> BBPreds;
164  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
165    // It is faster to get preds from a PHI than with pred_iterator.
166    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
167      BBPreds.insert(BBPN->getIncomingBlock(i));
168  } else {
169    BBPreds.insert(pred_begin(BB), pred_end(BB));
170  }
171
172  // Walk the preds of DestBB.
173  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
174    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
175    if (BBPreds.count(Pred)) {   // Common predecessor?
176      BBI = DestBB->begin();
177      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
178        const Value *V1 = PN->getIncomingValueForBlock(Pred);
179        const Value *V2 = PN->getIncomingValueForBlock(BB);
180
181        // If V2 is a phi node in BB, look up what the mapped value will be.
182        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
183          if (V2PN->getParent() == BB)
184            V2 = V2PN->getIncomingValueForBlock(Pred);
185
186        // If there is a conflict, bail out.
187        if (V1 != V2) return false;
188      }
189    }
190  }
191
192  return true;
193}
194
195
196/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
197/// an unconditional branch in it.
198void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
199  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
200  BasicBlock *DestBB = BI->getSuccessor(0);
201
202  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
203
204  // If the destination block has a single pred, then this is a trivial edge,
205  // just collapse it.
206  if (DestBB->getSinglePredecessor()) {
207    // If DestBB has single-entry PHI nodes, fold them.
208    while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
209      PN->replaceAllUsesWith(PN->getIncomingValue(0));
210      PN->eraseFromParent();
211    }
212
213    // Splice all the PHI nodes from BB over to DestBB.
214    DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
215                                 BB->begin(), BI);
216
217    // Anything that branched to BB now branches to DestBB.
218    BB->replaceAllUsesWith(DestBB);
219
220    // Nuke BB.
221    BB->eraseFromParent();
222
223    DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
224    return;
225  }
226
227  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
228  // to handle the new incoming edges it is about to have.
229  PHINode *PN;
230  for (BasicBlock::iterator BBI = DestBB->begin();
231       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
232    // Remove the incoming value for BB, and remember it.
233    Value *InVal = PN->removeIncomingValue(BB, false);
234
235    // Two options: either the InVal is a phi node defined in BB or it is some
236    // value that dominates BB.
237    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
238    if (InValPhi && InValPhi->getParent() == BB) {
239      // Add all of the input values of the input PHI as inputs of this phi.
240      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
241        PN->addIncoming(InValPhi->getIncomingValue(i),
242                        InValPhi->getIncomingBlock(i));
243    } else {
244      // Otherwise, add one instance of the dominating value for each edge that
245      // we will be adding.
246      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
247        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
248          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
249      } else {
250        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
251          PN->addIncoming(InVal, *PI);
252      }
253    }
254  }
255
256  // The PHIs are now updated, change everything that refers to BB to use
257  // DestBB and remove BB.
258  BB->replaceAllUsesWith(DestBB);
259  BB->eraseFromParent();
260
261  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
262}
263
264
265/// SplitEdgeNicely - Split the critical edge from TI to its specified
266/// successor if it will improve codegen.  We only do this if the successor has
267/// phi nodes (otherwise critical edges are ok).  If there is already another
268/// predecessor of the succ that is empty (and thus has no phi nodes), use it
269/// instead of introducing a new block.
270static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
271  BasicBlock *TIBB = TI->getParent();
272  BasicBlock *Dest = TI->getSuccessor(SuccNum);
273  assert(isa<PHINode>(Dest->begin()) &&
274         "This should only be called if Dest has a PHI!");
275
276  // As a hack, never split backedges of loops.  Even though the copy for any
277  // PHIs inserted on the backedge would be dead for exits from the loop, we
278  // assume that the cost of *splitting* the backedge would be too high.
279  if (Dest == TIBB)
280    return;
281
282  /// TIPHIValues - This array is lazily computed to determine the values of
283  /// PHIs in Dest that TI would provide.
284  SmallVector<Value*, 32> TIPHIValues;
285
286  // Check to see if Dest has any blocks that can be used as a split edge for
287  // this terminator.
288  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
289    BasicBlock *Pred = *PI;
290    // To be usable, the pred has to end with an uncond branch to the dest.
291    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
292    if (!PredBr || !PredBr->isUnconditional() ||
293        // Must be empty other than the branch.
294        &Pred->front() != PredBr ||
295        // Cannot be the entry block; its label does not get emitted.
296        Pred == &(Dest->getParent()->getEntryBlock()))
297      continue;
298
299    // Finally, since we know that Dest has phi nodes in it, we have to make
300    // sure that jumping to Pred will have the same affect as going to Dest in
301    // terms of PHI values.
302    PHINode *PN;
303    unsigned PHINo = 0;
304    bool FoundMatch = true;
305    for (BasicBlock::iterator I = Dest->begin();
306         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
307      if (PHINo == TIPHIValues.size())
308        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
309
310      // If the PHI entry doesn't work, we can't use this pred.
311      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
312        FoundMatch = false;
313        break;
314      }
315    }
316
317    // If we found a workable predecessor, change TI to branch to Succ.
318    if (FoundMatch) {
319      Dest->removePredecessor(TIBB);
320      TI->setSuccessor(SuccNum, Pred);
321      return;
322    }
323  }
324
325  SplitCriticalEdge(TI, SuccNum, P, true);
326}
327
328/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
329/// copy (e.g. it's casting from one pointer type to another, int->uint, or
330/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
331/// registers that must be created and coalesced.
332///
333/// Return true if any changes are made.
334static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
335  // If this is a noop copy,
336  MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
337  MVT DstVT = TLI.getValueType(CI->getType());
338
339  // This is an fp<->int conversion?
340  if (SrcVT.isInteger() != DstVT.isInteger())
341    return false;
342
343  // If this is an extension, it will be a zero or sign extension, which
344  // isn't a noop.
345  if (SrcVT.bitsLT(DstVT)) return false;
346
347  // If these values will be promoted, find out what they will be promoted
348  // to.  This helps us consider truncates on PPC as noop copies when they
349  // are.
350  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
351    SrcVT = TLI.getTypeToTransformTo(SrcVT);
352  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
353    DstVT = TLI.getTypeToTransformTo(DstVT);
354
355  // If, after promotion, these are the same types, this is a noop copy.
356  if (SrcVT != DstVT)
357    return false;
358
359  BasicBlock *DefBB = CI->getParent();
360
361  /// InsertedCasts - Only insert a cast in each block once.
362  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
363
364  bool MadeChange = false;
365  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
366       UI != E; ) {
367    Use &TheUse = UI.getUse();
368    Instruction *User = cast<Instruction>(*UI);
369
370    // Figure out which BB this cast is used in.  For PHI's this is the
371    // appropriate predecessor block.
372    BasicBlock *UserBB = User->getParent();
373    if (PHINode *PN = dyn_cast<PHINode>(User)) {
374      unsigned OpVal = UI.getOperandNo()/2;
375      UserBB = PN->getIncomingBlock(OpVal);
376    }
377
378    // Preincrement use iterator so we don't invalidate it.
379    ++UI;
380
381    // If this user is in the same block as the cast, don't change the cast.
382    if (UserBB == DefBB) continue;
383
384    // If we have already inserted a cast into this block, use it.
385    CastInst *&InsertedCast = InsertedCasts[UserBB];
386
387    if (!InsertedCast) {
388      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
389
390      InsertedCast =
391        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
392                         InsertPt);
393      MadeChange = true;
394    }
395
396    // Replace a use of the cast with a use of the new cast.
397    TheUse = InsertedCast;
398  }
399
400  // If we removed all uses, nuke the cast.
401  if (CI->use_empty()) {
402    CI->eraseFromParent();
403    MadeChange = true;
404  }
405
406  return MadeChange;
407}
408
409/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
410/// the number of virtual registers that must be created and coalesced.  This is
411/// a clear win except on targets with multiple condition code registers
412///  (PowerPC), where it might lose; some adjustment may be wanted there.
413///
414/// Return true if any changes are made.
415static bool OptimizeCmpExpression(CmpInst *CI){
416
417  BasicBlock *DefBB = CI->getParent();
418
419  /// InsertedCmp - Only insert a cmp in each block once.
420  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
421
422  bool MadeChange = false;
423  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
424       UI != E; ) {
425    Use &TheUse = UI.getUse();
426    Instruction *User = cast<Instruction>(*UI);
427
428    // Preincrement use iterator so we don't invalidate it.
429    ++UI;
430
431    // Don't bother for PHI nodes.
432    if (isa<PHINode>(User))
433      continue;
434
435    // Figure out which BB this cmp is used in.
436    BasicBlock *UserBB = User->getParent();
437
438    // If this user is in the same block as the cmp, don't change the cmp.
439    if (UserBB == DefBB) continue;
440
441    // If we have already inserted a cmp into this block, use it.
442    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
443
444    if (!InsertedCmp) {
445      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
446
447      InsertedCmp =
448        CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0),
449                        CI->getOperand(1), "", InsertPt);
450      MadeChange = true;
451    }
452
453    // Replace a use of the cmp with a use of the new cmp.
454    TheUse = InsertedCmp;
455  }
456
457  // If we removed all uses, nuke the cmp.
458  if (CI->use_empty())
459    CI->eraseFromParent();
460
461  return MadeChange;
462}
463
464/// EraseDeadInstructions - Erase any dead instructions
465static void EraseDeadInstructions(Value *V) {
466  Instruction *I = dyn_cast<Instruction>(V);
467  if (!I || !I->use_empty()) return;
468
469  SmallPtrSet<Instruction*, 16> Insts;
470  Insts.insert(I);
471
472  while (!Insts.empty()) {
473    I = *Insts.begin();
474    Insts.erase(I);
475    if (isInstructionTriviallyDead(I)) {
476      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
477        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
478          Insts.insert(U);
479      I->eraseFromParent();
480    }
481  }
482}
483
484namespace {
485
486/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which
487/// holds actual Value*'s for register values.
488struct ExtAddrMode : public TargetLowering::AddrMode {
489  Value *BaseReg;
490  Value *ScaledReg;
491  ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
492  void dump() const;
493};
494
495static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) {
496  bool NeedPlus = false;
497  OS << "[";
498  if (AM.BaseGV)
499    OS << (NeedPlus ? " + " : "")
500       << "GV:%" << AM.BaseGV->getName(), NeedPlus = true;
501
502  if (AM.BaseOffs)
503    OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true;
504
505  if (AM.BaseReg)
506    OS << (NeedPlus ? " + " : "")
507       << "Base:%" << AM.BaseReg->getName(), NeedPlus = true;
508  if (AM.Scale)
509    OS << (NeedPlus ? " + " : "")
510       << AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true;
511
512  return OS << "]";
513}
514
515void ExtAddrMode::dump() const {
516  cerr << *this << "\n";
517}
518
519}
520
521static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
522                                   const Type *AccessTy, ExtAddrMode &AddrMode,
523                                   SmallVector<Instruction*, 16> &AddrModeInsts,
524                                   const TargetLowering &TLI, unsigned Depth);
525
526/// FindMaximalLegalAddressingMode - If we can, try to merge the computation of
527/// Addr into the specified addressing mode.  If Addr can't be added to AddrMode
528/// this returns false.  This assumes that Addr is either a pointer type or
529/// intptr_t for the target.
530static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy,
531                                           ExtAddrMode &AddrMode,
532                                   SmallVector<Instruction*, 16> &AddrModeInsts,
533                                           const TargetLowering &TLI,
534                                           unsigned Depth) {
535
536  // If this is a global variable, fold it into the addressing mode if possible.
537  if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
538    if (AddrMode.BaseGV == 0) {
539      AddrMode.BaseGV = GV;
540      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
541        return true;
542      AddrMode.BaseGV = 0;
543    }
544  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
545    AddrMode.BaseOffs += CI->getSExtValue();
546    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
547      return true;
548    AddrMode.BaseOffs -= CI->getSExtValue();
549  } else if (isa<ConstantPointerNull>(Addr)) {
550    return true;
551  }
552
553  // Look through constant exprs and instructions.
554  unsigned Opcode = ~0U;
555  User *AddrInst = 0;
556  if (Instruction *I = dyn_cast<Instruction>(Addr)) {
557    Opcode = I->getOpcode();
558    AddrInst = I;
559  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
560    Opcode = CE->getOpcode();
561    AddrInst = CE;
562  }
563
564  // Limit recursion to avoid exponential behavior.
565  if (Depth == 5) { AddrInst = 0; Opcode = ~0U; }
566
567  // If this is really an instruction, add it to our list of related
568  // instructions.
569  if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst))
570    AddrModeInsts.push_back(I);
571
572  switch (Opcode) {
573  case Instruction::PtrToInt:
574    // PtrToInt is always a noop, as we know that the int type is pointer sized.
575    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
576                                       AddrMode, AddrModeInsts, TLI, Depth))
577      return true;
578    break;
579  case Instruction::IntToPtr:
580    // This inttoptr is a no-op if the integer type is pointer sized.
581    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
582        TLI.getPointerTy()) {
583      if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
584                                         AddrMode, AddrModeInsts, TLI, Depth))
585        return true;
586    }
587    break;
588  case Instruction::Add: {
589    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
590    ExtAddrMode BackupAddrMode = AddrMode;
591    unsigned OldSize = AddrModeInsts.size();
592    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
593                                       AddrMode, AddrModeInsts, TLI, Depth+1) &&
594        FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
595                                       AddrMode, AddrModeInsts, TLI, Depth+1))
596      return true;
597
598    // Restore the old addr mode info.
599    AddrMode = BackupAddrMode;
600    AddrModeInsts.resize(OldSize);
601
602    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
603    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
604                                       AddrMode, AddrModeInsts, TLI, Depth+1) &&
605        FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
606                                       AddrMode, AddrModeInsts, TLI, Depth+1))
607      return true;
608
609    // Otherwise we definitely can't merge the ADD in.
610    AddrMode = BackupAddrMode;
611    AddrModeInsts.resize(OldSize);
612    break;
613  }
614  case Instruction::Or: {
615    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
616    if (!RHS) break;
617    // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
618    break;
619  }
620  case Instruction::Mul:
621  case Instruction::Shl: {
622    // Can only handle X*C and X << C, and can only handle this when the scale
623    // field is available.
624    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
625    if (!RHS) break;
626    int64_t Scale = RHS->getSExtValue();
627    if (Opcode == Instruction::Shl)
628      Scale = 1 << Scale;
629
630    if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy,
631                               AddrMode, AddrModeInsts, TLI, Depth))
632      return true;
633    break;
634  }
635  case Instruction::GetElementPtr: {
636    // Scan the GEP.  We check it if it contains constant offsets and at most
637    // one variable offset.
638    int VariableOperand = -1;
639    unsigned VariableScale = 0;
640
641    int64_t ConstantOffset = 0;
642    const TargetData *TD = TLI.getTargetData();
643    gep_type_iterator GTI = gep_type_begin(AddrInst);
644    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
645      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
646        const StructLayout *SL = TD->getStructLayout(STy);
647        unsigned Idx =
648          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
649        ConstantOffset += SL->getElementOffset(Idx);
650      } else {
651        uint64_t TypeSize = TD->getABITypeSize(GTI.getIndexedType());
652        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
653          ConstantOffset += CI->getSExtValue()*TypeSize;
654        } else if (TypeSize) {  // Scales of zero don't do anything.
655          // We only allow one variable index at the moment.
656          if (VariableOperand != -1) {
657            VariableOperand = -2;
658            break;
659          }
660
661          // Remember the variable index.
662          VariableOperand = i;
663          VariableScale = TypeSize;
664        }
665      }
666    }
667
668    // If the GEP had multiple variable indices, punt.
669    if (VariableOperand == -2)
670      break;
671
672    // A common case is for the GEP to only do a constant offset.  In this case,
673    // just add it to the disp field and check validity.
674    if (VariableOperand == -1) {
675      AddrMode.BaseOffs += ConstantOffset;
676      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
677        // Check to see if we can fold the base pointer in too.
678        if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
679                                           AddrMode, AddrModeInsts, TLI,
680                                           Depth+1))
681          return true;
682      }
683      AddrMode.BaseOffs -= ConstantOffset;
684    } else {
685      // Check that this has no base reg yet.  If so, we won't have a place to
686      // put the base of the GEP (assuming it is not a null ptr).
687      bool SetBaseReg = false;
688      if (AddrMode.HasBaseReg) {
689        if (!isa<ConstantPointerNull>(AddrInst->getOperand(0)))
690          break;
691      } else {
692        AddrMode.HasBaseReg = true;
693        AddrMode.BaseReg = AddrInst->getOperand(0);
694        SetBaseReg = true;
695      }
696
697      // See if the scale amount is valid for this target.
698      AddrMode.BaseOffs += ConstantOffset;
699      if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand),
700                                 VariableScale, AccessTy, AddrMode,
701                                 AddrModeInsts, TLI, Depth)) {
702        if (!SetBaseReg) return true;
703
704        // If this match succeeded, we know that we can form an address with the
705        // GepBase as the basereg.  See if we can match *more*.
706        AddrMode.HasBaseReg = false;
707        AddrMode.BaseReg = 0;
708        if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
709                                           AddrMode, AddrModeInsts, TLI,
710                                           Depth+1))
711          return true;
712        // Strange, shouldn't happen.  Restore the base reg and succeed the easy
713        // way.
714        AddrMode.HasBaseReg = true;
715        AddrMode.BaseReg = AddrInst->getOperand(0);
716        return true;
717      }
718
719      AddrMode.BaseOffs -= ConstantOffset;
720      if (SetBaseReg) {
721        AddrMode.HasBaseReg = false;
722        AddrMode.BaseReg = 0;
723      }
724    }
725    break;
726  }
727  }
728
729  if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst)) {
730    assert(AddrModeInsts.back() == I && "Stack imbalance"); I = I;
731    AddrModeInsts.pop_back();
732  }
733
734  // Worse case, the target should support [reg] addressing modes. :)
735  if (!AddrMode.HasBaseReg) {
736    AddrMode.HasBaseReg = true;
737    // Still check for legality in case the target supports [imm] but not [i+r].
738    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
739      AddrMode.BaseReg = Addr;
740      return true;
741    }
742    AddrMode.HasBaseReg = false;
743  }
744
745  // If the base register is already taken, see if we can do [r+r].
746  if (AddrMode.Scale == 0) {
747    AddrMode.Scale = 1;
748    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
749      AddrMode.ScaledReg = Addr;
750      return true;
751    }
752    AddrMode.Scale = 0;
753  }
754  // Couldn't match.
755  return false;
756}
757
758/// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified
759/// addressing mode.  Return true if this addr mode is legal for the target,
760/// false if not.
761static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
762                                   const Type *AccessTy, ExtAddrMode &AddrMode,
763                                   SmallVector<Instruction*, 16> &AddrModeInsts,
764                                   const TargetLowering &TLI, unsigned Depth) {
765  // If we already have a scale of this value, we can add to it, otherwise, we
766  // need an available scale field.
767  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
768    return false;
769
770  ExtAddrMode InputAddrMode = AddrMode;
771
772  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
773  // [A+B + A*7] -> [B+A*8].
774  AddrMode.Scale += Scale;
775  AddrMode.ScaledReg = ScaleReg;
776
777  if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
778    // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
779    // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
780    // X*Scale + C*Scale to addr mode.
781    BinaryOperator *BinOp = dyn_cast<BinaryOperator>(ScaleReg);
782    if (BinOp && BinOp->getOpcode() == Instruction::Add &&
783        isa<ConstantInt>(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) {
784
785      InputAddrMode.Scale = Scale;
786      InputAddrMode.ScaledReg = BinOp->getOperand(0);
787      InputAddrMode.BaseOffs +=
788        cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue()*Scale;
789      if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) {
790        AddrModeInsts.push_back(BinOp);
791        AddrMode = InputAddrMode;
792        return true;
793      }
794    }
795
796    // Otherwise, not (x+c)*scale, just return what we have.
797    return true;
798  }
799
800  // Otherwise, back this attempt out.
801  AddrMode.Scale -= Scale;
802  if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0;
803
804  return false;
805}
806
807
808/// IsNonLocalValue - Return true if the specified values are defined in a
809/// different basic block than BB.
810static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
811  if (Instruction *I = dyn_cast<Instruction>(V))
812    return I->getParent() != BB;
813  return false;
814}
815
816/// OptimizeLoadStoreInst - Load and Store Instructions have often have
817/// addressing modes that can do significant amounts of computation.  As such,
818/// instruction selection will try to get the load or store to do as much
819/// computation as possible for the program.  The problem is that isel can only
820/// see within a single block.  As such, we sink as much legal addressing mode
821/// stuff into the block as possible.
822bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr,
823                                           const Type *AccessTy,
824                                           DenseMap<Value*,Value*> &SunkAddrs) {
825  // Figure out what addressing mode will be built up for this operation.
826  SmallVector<Instruction*, 16> AddrModeInsts;
827  ExtAddrMode AddrMode;
828  bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode,
829                                                AddrModeInsts, *TLI, 0);
830  Success = Success; assert(Success && "Couldn't select *anything*?");
831
832  // Check to see if any of the instructions supersumed by this addr mode are
833  // non-local to I's BB.
834  bool AnyNonLocal = false;
835  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
836    if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) {
837      AnyNonLocal = true;
838      break;
839    }
840  }
841
842  // If all the instructions matched are already in this BB, don't do anything.
843  if (!AnyNonLocal) {
844    DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
845    return false;
846  }
847
848  // Insert this computation right after this user.  Since our caller is
849  // scanning from the top of the BB to the bottom, reuse of the expr are
850  // guaranteed to happen later.
851  BasicBlock::iterator InsertPt = LdStInst;
852
853  // Now that we determined the addressing expression we want to use and know
854  // that we have to sink it into this block.  Check to see if we have already
855  // done this for some other load/store instr in this block.  If so, reuse the
856  // computation.
857  Value *&SunkAddr = SunkAddrs[Addr];
858  if (SunkAddr) {
859    DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
860    if (SunkAddr->getType() != Addr->getType())
861      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
862  } else {
863    DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
864    const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
865
866    Value *Result = 0;
867    // Start with the scale value.
868    if (AddrMode.Scale) {
869      Value *V = AddrMode.ScaledReg;
870      if (V->getType() == IntPtrTy) {
871        // done.
872      } else if (isa<PointerType>(V->getType())) {
873        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
874      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
875                 cast<IntegerType>(V->getType())->getBitWidth()) {
876        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
877      } else {
878        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
879      }
880      if (AddrMode.Scale != 1)
881        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
882                                                          AddrMode.Scale),
883                                      "sunkaddr", InsertPt);
884      Result = V;
885    }
886
887    // Add in the base register.
888    if (AddrMode.BaseReg) {
889      Value *V = AddrMode.BaseReg;
890      if (V->getType() != IntPtrTy)
891        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
892      if (Result)
893        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
894      else
895        Result = V;
896    }
897
898    // Add in the BaseGV if present.
899    if (AddrMode.BaseGV) {
900      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
901                                  InsertPt);
902      if (Result)
903        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
904      else
905        Result = V;
906    }
907
908    // Add in the Base Offset if present.
909    if (AddrMode.BaseOffs) {
910      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
911      if (Result)
912        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
913      else
914        Result = V;
915    }
916
917    if (Result == 0)
918      SunkAddr = Constant::getNullValue(Addr->getType());
919    else
920      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
921  }
922
923  LdStInst->replaceUsesOfWith(Addr, SunkAddr);
924
925  if (Addr->use_empty())
926    EraseDeadInstructions(Addr);
927  return true;
928}
929
930/// OptimizeInlineAsmInst - If there are any memory operands, use
931/// OptimizeLoadStoreInt to sink their address computing into the block when
932/// possible / profitable.
933bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
934                                           DenseMap<Value*,Value*> &SunkAddrs) {
935  bool MadeChange = false;
936  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
937
938  // Do a prepass over the constraints, canonicalizing them, and building up the
939  // ConstraintOperands list.
940  std::vector<InlineAsm::ConstraintInfo>
941    ConstraintInfos = IA->ParseConstraints();
942
943  /// ConstraintOperands - Information about all of the constraints.
944  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
945  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
946  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
947    ConstraintOperands.
948      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
949    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
950
951    // Compute the value type for each operand.
952    switch (OpInfo.Type) {
953    case InlineAsm::isOutput:
954      if (OpInfo.isIndirect)
955        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
956      break;
957    case InlineAsm::isInput:
958      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
959      break;
960    case InlineAsm::isClobber:
961      // Nothing to do.
962      break;
963    }
964
965    // Compute the constraint code and ConstraintType to use.
966    TLI->ComputeConstraintToUse(OpInfo, SDValue());
967
968    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
969        OpInfo.isIndirect) {
970      Value *OpVal = OpInfo.CallOperandVal;
971      MadeChange |= OptimizeLoadStoreInst(I, OpVal, OpVal->getType(),
972                                          SunkAddrs);
973    }
974  }
975
976  return MadeChange;
977}
978
979bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
980  BasicBlock *DefBB = I->getParent();
981
982  // If both result of the {s|z}xt and its source are live out, rewrite all
983  // other uses of the source with result of extension.
984  Value *Src = I->getOperand(0);
985  if (Src->hasOneUse())
986    return false;
987
988  // Only do this xform if truncating is free.
989  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
990    return false;
991
992  // Only safe to perform the optimization if the source is also defined in
993  // this block.
994  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
995    return false;
996
997  bool DefIsLiveOut = false;
998  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
999       UI != E; ++UI) {
1000    Instruction *User = cast<Instruction>(*UI);
1001
1002    // Figure out which BB this ext is used in.
1003    BasicBlock *UserBB = User->getParent();
1004    if (UserBB == DefBB) continue;
1005    DefIsLiveOut = true;
1006    break;
1007  }
1008  if (!DefIsLiveOut)
1009    return false;
1010
1011  // Make sure non of the uses are PHI nodes.
1012  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1013       UI != E; ++UI) {
1014    Instruction *User = cast<Instruction>(*UI);
1015    BasicBlock *UserBB = User->getParent();
1016    if (UserBB == DefBB) continue;
1017    // Be conservative. We don't want this xform to end up introducing
1018    // reloads just before load / store instructions.
1019    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
1020      return false;
1021  }
1022
1023  // InsertedTruncs - Only insert one trunc in each block once.
1024  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
1025
1026  bool MadeChange = false;
1027  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1028       UI != E; ++UI) {
1029    Use &TheUse = UI.getUse();
1030    Instruction *User = cast<Instruction>(*UI);
1031
1032    // Figure out which BB this ext is used in.
1033    BasicBlock *UserBB = User->getParent();
1034    if (UserBB == DefBB) continue;
1035
1036    // Both src and def are live in this block. Rewrite the use.
1037    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
1038
1039    if (!InsertedTrunc) {
1040      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
1041
1042      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
1043    }
1044
1045    // Replace a use of the {s|z}ext source with a use of the result.
1046    TheUse = InsertedTrunc;
1047
1048    MadeChange = true;
1049  }
1050
1051  return MadeChange;
1052}
1053
1054// In this pass we look for GEP and cast instructions that are used
1055// across basic blocks and rewrite them to improve basic-block-at-a-time
1056// selection.
1057bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
1058  bool MadeChange = false;
1059
1060  // Split all critical edges where the dest block has a PHI and where the phi
1061  // has shared immediate operands.
1062  TerminatorInst *BBTI = BB.getTerminator();
1063  if (BBTI->getNumSuccessors() > 1) {
1064    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
1065      if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
1066          isCriticalEdge(BBTI, i, true))
1067        SplitEdgeNicely(BBTI, i, this);
1068  }
1069
1070
1071  // Keep track of non-local addresses that have been sunk into this block.
1072  // This allows us to avoid inserting duplicate code for blocks with multiple
1073  // load/stores of the same address.
1074  DenseMap<Value*, Value*> SunkAddrs;
1075
1076  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
1077    Instruction *I = BBI++;
1078
1079    if (CastInst *CI = dyn_cast<CastInst>(I)) {
1080      // If the source of the cast is a constant, then this should have
1081      // already been constant folded.  The only reason NOT to constant fold
1082      // it is if something (e.g. LSR) was careful to place the constant
1083      // evaluation in a block other than then one that uses it (e.g. to hoist
1084      // the address of globals out of a loop).  If this is the case, we don't
1085      // want to forward-subst the cast.
1086      if (isa<Constant>(CI->getOperand(0)))
1087        continue;
1088
1089      bool Change = false;
1090      if (TLI) {
1091        Change = OptimizeNoopCopyExpression(CI, *TLI);
1092        MadeChange |= Change;
1093      }
1094
1095      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I)))
1096        MadeChange |= OptimizeExtUses(I);
1097    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
1098      MadeChange |= OptimizeCmpExpression(CI);
1099    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1100      if (TLI)
1101        MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(),
1102                                            SunkAddrs);
1103    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1104      if (TLI)
1105        MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1),
1106                                            SI->getOperand(0)->getType(),
1107                                            SunkAddrs);
1108    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1109      if (GEPI->hasAllZeroIndices()) {
1110        /// The GEP operand must be a pointer, so must its result -> BitCast
1111        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
1112                                          GEPI->getName(), GEPI);
1113        GEPI->replaceAllUsesWith(NC);
1114        GEPI->eraseFromParent();
1115        MadeChange = true;
1116        BBI = NC;
1117      }
1118    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
1119      // If we found an inline asm expession, and if the target knows how to
1120      // lower it to normal LLVM code, do so now.
1121      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
1122        if (const TargetAsmInfo *TAI =
1123            TLI->getTargetMachine().getTargetAsmInfo()) {
1124          if (TAI->ExpandInlineAsm(CI))
1125            BBI = BB.begin();
1126          else
1127            // Sink address computing for memory operands into the block.
1128            MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
1129        }
1130    }
1131  }
1132
1133  return MadeChange;
1134}
1135
1136