CodeGenPrepare.cpp revision dbe0deca339585dfbaed5951ef0ca2c6a0df173c
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation.  This works around limitations in it's
12// basic-block-at-a-time approach.  It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/Instructions.h"
22#include "llvm/Pass.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32namespace {
33  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
34    /// TLI - Keep a pointer of a TargetLowering to consult for determining
35    /// transformation profitability.
36    const TargetLowering *TLI;
37  public:
38    CodeGenPrepare(const TargetLowering *tli = 0) : TLI(tli) {}
39    bool runOnFunction(Function &F);
40
41  private:
42    bool OptimizeBlock(BasicBlock &BB);
43    bool OptimizeGEPExpression(GetElementPtrInst *GEPI);
44  };
45}
46static RegisterPass<CodeGenPrepare> X("codegenprepare",
47                                      "Optimize for code generation");
48
49FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
50  return new CodeGenPrepare(TLI);
51}
52
53
54bool CodeGenPrepare::runOnFunction(Function &F) {
55  bool MadeChange = true;
56  bool EverMadeChange = false;
57  while (MadeChange) {
58    MadeChange = false;
59    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
60      MadeChange |= OptimizeBlock(*BB);
61    EverMadeChange |= MadeChange;
62  }
63  return EverMadeChange;
64}
65
66/// SplitEdgeNicely - Split the critical edge from TI to it's specified
67/// successor if it will improve codegen.  We only do this if the successor has
68/// phi nodes (otherwise critical edges are ok).  If there is already another
69/// predecessor of the succ that is empty (and thus has no phi nodes), use it
70/// instead of introducing a new block.
71static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
72  BasicBlock *TIBB = TI->getParent();
73  BasicBlock *Dest = TI->getSuccessor(SuccNum);
74  assert(isa<PHINode>(Dest->begin()) &&
75         "This should only be called if Dest has a PHI!");
76
77  /// TIPHIValues - This array is lazily computed to determine the values of
78  /// PHIs in Dest that TI would provide.
79  std::vector<Value*> TIPHIValues;
80
81  // Check to see if Dest has any blocks that can be used as a split edge for
82  // this terminator.
83  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
84    BasicBlock *Pred = *PI;
85    // To be usable, the pred has to end with an uncond branch to the dest.
86    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
87    if (!PredBr || !PredBr->isUnconditional() ||
88        // Must be empty other than the branch.
89        &Pred->front() != PredBr)
90      continue;
91
92    // Finally, since we know that Dest has phi nodes in it, we have to make
93    // sure that jumping to Pred will have the same affect as going to Dest in
94    // terms of PHI values.
95    PHINode *PN;
96    unsigned PHINo = 0;
97    bool FoundMatch = true;
98    for (BasicBlock::iterator I = Dest->begin();
99         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
100      if (PHINo == TIPHIValues.size())
101        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
102
103      // If the PHI entry doesn't work, we can't use this pred.
104      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
105        FoundMatch = false;
106        break;
107      }
108    }
109
110    // If we found a workable predecessor, change TI to branch to Succ.
111    if (FoundMatch) {
112      Dest->removePredecessor(TIBB);
113      TI->setSuccessor(SuccNum, Pred);
114      return;
115    }
116  }
117
118  SplitCriticalEdge(TI, SuccNum, P, true);
119}
120
121
122/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
123/// casting to the type of GEPI.
124static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
125                                         Instruction *GEPI, Value *Ptr,
126                                         Value *PtrOffset) {
127  if (V) return V;   // Already computed.
128
129  // Figure out the insertion point
130  BasicBlock::iterator InsertPt;
131  if (BB == GEPI->getParent()) {
132    // If GEP is already inserted into BB, insert right after the GEP.
133    InsertPt = GEPI;
134    ++InsertPt;
135  } else {
136    // Otherwise, insert at the top of BB, after any PHI nodes
137    InsertPt = BB->begin();
138    while (isa<PHINode>(InsertPt)) ++InsertPt;
139  }
140
141  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
142  // BB so that there is only one value live across basic blocks (the cast
143  // operand).
144  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
145    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
146      Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
147                             "", InsertPt);
148
149  // Add the offset, cast it to the right type.
150  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
151  // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
152  return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
153                              "", InsertPt);
154}
155
156/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
157/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
158/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
159/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
160/// sink PtrOffset into user blocks where doing so will likely allow us to fold
161/// the constant add into a load or store instruction.  Additionally, if a user
162/// is a pointer-pointer cast, we look through it to find its users.
163static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
164                                 Constant *PtrOffset, BasicBlock *DefBB,
165                                 GetElementPtrInst *GEPI,
166                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
167  while (!RepPtr->use_empty()) {
168    Instruction *User = cast<Instruction>(RepPtr->use_back());
169
170    // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
171    // used for a Pointer-Pointer cast.
172    if (isa<BitCastInst>(User)) {
173      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
174
175      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
176      // could invalidate an iterator.
177      User->setOperand(0, UndefValue::get(RepPtr->getType()));
178      continue;
179    }
180
181    // If this is a load of the pointer, or a store through the pointer, emit
182    // the increment into the load/store block.
183    Instruction *NewVal;
184    if (isa<LoadInst>(User) ||
185        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
186      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
187                                    User->getParent(), GEPI,
188                                    Ptr, PtrOffset);
189    } else {
190      // If this use is not foldable into the addressing mode, use a version
191      // emitted in the GEP block.
192      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
193                                    Ptr, PtrOffset);
194    }
195
196    if (GEPI->getType() != RepPtr->getType()) {
197      BasicBlock::iterator IP = NewVal;
198      ++IP;
199      // NewVal must be a GEP which must be pointer type, so BitCast
200      NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
201    }
202    User->replaceUsesOfWith(RepPtr, NewVal);
203  }
204}
205
206/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
207/// selection, we want to be a bit careful about some things.  In particular, if
208/// we have a GEP instruction that is used in a different block than it is
209/// defined, the addressing expression of the GEP cannot be folded into loads or
210/// stores that use it.  In this case, decompose the GEP and move constant
211/// indices into blocks that use it.
212bool CodeGenPrepare::OptimizeGEPExpression(GetElementPtrInst *GEPI) {
213  // If this GEP is only used inside the block it is defined in, there is no
214  // need to rewrite it.
215  bool isUsedOutsideDefBB = false;
216  BasicBlock *DefBB = GEPI->getParent();
217  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
218       UI != E; ++UI) {
219    if (cast<Instruction>(*UI)->getParent() != DefBB) {
220      isUsedOutsideDefBB = true;
221      break;
222    }
223  }
224  if (!isUsedOutsideDefBB) return false;
225
226  // If this GEP has no non-zero constant indices, there is nothing we can do,
227  // ignore it.
228  bool hasConstantIndex = false;
229  bool hasVariableIndex = false;
230  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
231       E = GEPI->op_end(); OI != E; ++OI) {
232    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
233      if (!CI->isZero()) {
234        hasConstantIndex = true;
235        break;
236      }
237    } else {
238      hasVariableIndex = true;
239    }
240  }
241
242  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
243  if (!hasConstantIndex && !hasVariableIndex) {
244    /// The GEP operand must be a pointer, so must its result -> BitCast
245    Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
246                                GEPI->getName(), GEPI);
247    GEPI->replaceAllUsesWith(NC);
248    GEPI->eraseFromParent();
249    return true;
250  }
251
252  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
253  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
254    return false;
255
256  // If we don't have target lowering info, we can't lower the GEP.
257  if (!TLI) return false;
258  const TargetData *TD = TLI->getTargetData();
259
260  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
261  // constant offset (which we now know is non-zero) and deal with it later.
262  uint64_t ConstantOffset = 0;
263  const Type *UIntPtrTy = TD->getIntPtrType();
264  Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
265  const Type *Ty = GEPI->getOperand(0)->getType();
266
267  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
268       E = GEPI->op_end(); OI != E; ++OI) {
269    Value *Idx = *OI;
270    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
271      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
272      if (Field)
273        ConstantOffset += TD->getStructLayout(StTy)->getElementOffset(Field);
274      Ty = StTy->getElementType(Field);
275    } else {
276      Ty = cast<SequentialType>(Ty)->getElementType();
277
278      // Handle constant subscripts.
279      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
280        if (CI->getZExtValue() == 0) continue;
281        ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
282        continue;
283      }
284
285      // Ptr = Ptr + Idx * ElementSize;
286
287      // Cast Idx to UIntPtrTy if needed.
288      Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
289
290      uint64_t ElementSize = TD->getTypeSize(Ty);
291      // Mask off bits that should not be set.
292      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
293      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
294
295      // Multiply by the element size and add to the base.
296      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
297      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
298    }
299  }
300
301  // Make sure that the offset fits in uintptr_t.
302  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
303  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
304
305  // Okay, we have now emitted all of the variable index parts to the BB that
306  // the GEP is defined in.  Loop over all of the using instructions, inserting
307  // an "add Ptr, ConstantOffset" into each block that uses it and update the
308  // instruction to use the newly computed value, making GEPI dead.  When the
309  // user is a load or store instruction address, we emit the add into the user
310  // block, otherwise we use a canonical version right next to the gep (these
311  // won't be foldable as addresses, so we might as well share the computation).
312
313  std::map<BasicBlock*,Instruction*> InsertedExprs;
314  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
315
316  // Finally, the GEP is dead, remove it.
317  GEPI->eraseFromParent();
318
319  return true;
320}
321
322/// SinkInvariantGEPIndex - If a GEP instruction has a variable index that has
323/// been hoisted out of the loop by LICM pass, sink it back into the use BB
324/// if it can be determined that the index computation can be folded into the
325/// addressing mode of the load / store uses.
326static bool SinkInvariantGEPIndex(BinaryOperator *BinOp,
327                                  const TargetLowering &TLI) {
328  // Only look at Add.
329  if (BinOp->getOpcode() != Instruction::Add)
330    return false;
331
332  // DestBBs - These are the blocks where a copy of BinOp will be inserted.
333  SmallSet<BasicBlock*, 8> DestBBs;
334  BasicBlock *DefBB = BinOp->getParent();
335  bool MadeChange = false;
336  for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end();
337       UI != E; ++UI) {
338    Instruction *GEPI = cast<Instruction>(*UI);
339    // Only look for GEP use in another block.
340    if (GEPI->getParent() == DefBB) continue;
341
342    if (isa<GetElementPtrInst>(GEPI)) {
343      // If the GEP has another variable index, abondon.
344      bool hasVariableIndex = false;
345      for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
346             OE = GEPI->op_end(); OI != OE; ++OI)
347        if (*OI != BinOp && !isa<ConstantInt>(*OI)) {
348          hasVariableIndex = true;
349          break;
350        }
351      if (hasVariableIndex)
352        break;
353
354      BasicBlock *GEPIBB = GEPI->getParent();
355      for (Value::use_iterator UUI = GEPI->use_begin(), UE = GEPI->use_end();
356           UUI != UE; ++UUI) {
357        Instruction *GEPIUser = cast<Instruction>(*UUI);
358        const Type *UseTy = NULL;
359        if (LoadInst *Load = dyn_cast<LoadInst>(GEPIUser))
360          UseTy = Load->getType();
361        else if (StoreInst *Store = dyn_cast<StoreInst>(GEPIUser))
362          UseTy = Store->getOperand(0)->getType();
363
364        // Check if it is possible to fold the expression to address mode.
365        if (UseTy && isa<ConstantInt>(BinOp->getOperand(1))) {
366          uint64_t Scale = TLI.getTargetData()->getTypeSize(UseTy);
367          int64_t Cst = cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue();
368          // e.g. load (gep i32 * %P, (X+42)) => load (%P + X*4 + 168).
369          if (TLI.isLegalAddressImmediate(Cst*Scale, UseTy) &&
370              (Scale == 1 || TLI.isLegalAddressScale(Scale, UseTy))) {
371            DestBBs.insert(GEPIBB);
372            MadeChange = true;
373            break;
374          }
375        }
376      }
377    }
378  }
379
380  // Nothing to do.
381  if (!MadeChange)
382    return false;
383
384  /// InsertedOps - Only insert a duplicate in each block once.
385  std::map<BasicBlock*, BinaryOperator*> InsertedOps;
386  for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end();
387       UI != E; ) {
388    Instruction *User = cast<Instruction>(*UI);
389    BasicBlock *UserBB = User->getParent();
390
391    // Preincrement use iterator so we don't invalidate it.
392    ++UI;
393
394    // If any user in this BB wants it, replace all the uses in the BB.
395    if (DestBBs.count(UserBB)) {
396      // Sink it into user block.
397      BinaryOperator *&InsertedOp = InsertedOps[UserBB];
398      if (!InsertedOp) {
399        BasicBlock::iterator InsertPt = UserBB->begin();
400        while (isa<PHINode>(InsertPt)) ++InsertPt;
401
402        InsertedOp =
403          BinaryOperator::create(BinOp->getOpcode(), BinOp->getOperand(0),
404                                 BinOp->getOperand(1), "", InsertPt);
405      }
406
407      User->replaceUsesOfWith(BinOp, InsertedOp);
408    }
409  }
410
411  if (BinOp->use_empty())
412      BinOp->eraseFromParent();
413
414  return true;
415}
416
417/// OptimizeNoopCopyExpression - We have determined that the specified cast
418/// instruction is a noop copy (e.g. it's casting from one pointer type to
419/// another, int->uint, or int->sbyte on PPC.
420///
421/// Return true if any changes are made.
422static bool OptimizeNoopCopyExpression(CastInst *CI) {
423  BasicBlock *DefBB = CI->getParent();
424
425  /// InsertedCasts - Only insert a cast in each block once.
426  std::map<BasicBlock*, CastInst*> InsertedCasts;
427
428  bool MadeChange = false;
429  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
430       UI != E; ) {
431    Use &TheUse = UI.getUse();
432    Instruction *User = cast<Instruction>(*UI);
433
434    // Figure out which BB this cast is used in.  For PHI's this is the
435    // appropriate predecessor block.
436    BasicBlock *UserBB = User->getParent();
437    if (PHINode *PN = dyn_cast<PHINode>(User)) {
438      unsigned OpVal = UI.getOperandNo()/2;
439      UserBB = PN->getIncomingBlock(OpVal);
440    }
441
442    // Preincrement use iterator so we don't invalidate it.
443    ++UI;
444
445    // If this user is in the same block as the cast, don't change the cast.
446    if (UserBB == DefBB) continue;
447
448    // If we have already inserted a cast into this block, use it.
449    CastInst *&InsertedCast = InsertedCasts[UserBB];
450
451    if (!InsertedCast) {
452      BasicBlock::iterator InsertPt = UserBB->begin();
453      while (isa<PHINode>(InsertPt)) ++InsertPt;
454
455      InsertedCast =
456        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
457                         InsertPt);
458      MadeChange = true;
459    }
460
461    // Replace a use of the cast with a use of the new casat.
462    TheUse = InsertedCast;
463  }
464
465  // If we removed all uses, nuke the cast.
466  if (CI->use_empty())
467    CI->eraseFromParent();
468
469  return MadeChange;
470}
471
472
473
474// In this pass we look for GEP and cast instructions that are used
475// across basic blocks and rewrite them to improve basic-block-at-a-time
476// selection.
477bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
478  bool MadeChange = false;
479
480  // Split all critical edges where the dest block has a PHI and where the phi
481  // has shared immediate operands.
482  TerminatorInst *BBTI = BB.getTerminator();
483  if (BBTI->getNumSuccessors() > 1) {
484    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
485      if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
486          isCriticalEdge(BBTI, i, true))
487        SplitEdgeNicely(BBTI, i, this);
488  }
489
490
491  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
492    Instruction *I = BBI++;
493
494    if (CallInst *CI = dyn_cast<CallInst>(I)) {
495      // If we found an inline asm expession, and if the target knows how to
496      // lower it to normal LLVM code, do so now.
497      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
498        if (const TargetAsmInfo *TAI =
499            TLI->getTargetMachine().getTargetAsmInfo()) {
500          if (TAI->ExpandInlineAsm(CI))
501            BBI = BB.begin();
502        }
503    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
504      MadeChange |= OptimizeGEPExpression(GEPI);
505    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
506      // If the source of the cast is a constant, then this should have
507      // already been constant folded.  The only reason NOT to constant fold
508      // it is if something (e.g. LSR) was careful to place the constant
509      // evaluation in a block other than then one that uses it (e.g. to hoist
510      // the address of globals out of a loop).  If this is the case, we don't
511      // want to forward-subst the cast.
512      if (isa<Constant>(CI->getOperand(0)))
513        continue;
514
515      if (!TLI) continue;
516
517      // If this is a noop copy, sink it into user blocks to reduce the number
518      // of virtual registers that must be created and coallesced.
519      MVT::ValueType SrcVT = TLI->getValueType(CI->getOperand(0)->getType());
520      MVT::ValueType DstVT = TLI->getValueType(CI->getType());
521
522      // This is an fp<->int conversion?
523      if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
524        continue;
525
526      // If this is an extension, it will be a zero or sign extension, which
527      // isn't a noop.
528      if (SrcVT < DstVT) continue;
529
530      // If these values will be promoted, find out what they will be promoted
531      // to.  This helps us consider truncates on PPC as noop copies when they
532      // are.
533      if (TLI->getTypeAction(SrcVT) == TargetLowering::Promote)
534        SrcVT = TLI->getTypeToTransformTo(SrcVT);
535      if (TLI->getTypeAction(DstVT) == TargetLowering::Promote)
536        DstVT = TLI->getTypeToTransformTo(DstVT);
537
538      // If, after promotion, these are the same types, this is a noop copy.
539      if (SrcVT == DstVT)
540        MadeChange |= OptimizeNoopCopyExpression(CI);
541    } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I)) {
542      if (TLI)
543        MadeChange |= SinkInvariantGEPIndex(BinOp, *TLI);
544    }
545  }
546  return MadeChange;
547}
548
549