DeadStoreElimination.cpp revision e3c611085ecb4bc1f30f445e6b1eb736cf29fee1
1//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a trivial dead store elimination that only considers
11// basic-block local redundant stores.
12//
13// FIXME: This should eventually be extended to be a post-dominator tree
14// traversal.  Doing so would be pretty trivial.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "dse"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Pass.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/MemoryDependenceAnalysis.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Transforms/Utils/Local.h"
33using namespace llvm;
34
35STATISTIC(NumFastStores, "Number of stores deleted");
36STATISTIC(NumFastOther , "Number of other instrs removed");
37
38namespace {
39  struct DSE : public FunctionPass {
40    AliasAnalysis *AA;
41    MemoryDependenceAnalysis *MD;
42
43    static char ID; // Pass identification, replacement for typeid
44    DSE() : FunctionPass(ID), AA(0), MD(0) {
45      initializeDSEPass(*PassRegistry::getPassRegistry());
46    }
47
48    virtual bool runOnFunction(Function &F) {
49      AA = &getAnalysis<AliasAnalysis>();
50      MD = &getAnalysis<MemoryDependenceAnalysis>();
51      DominatorTree &DT = getAnalysis<DominatorTree>();
52
53      bool Changed = false;
54      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
55        // Only check non-dead blocks.  Dead blocks may have strange pointer
56        // cycles that will confuse alias analysis.
57        if (DT.isReachableFromEntry(I))
58          Changed |= runOnBasicBlock(*I);
59
60      AA = 0; MD = 0;
61      return Changed;
62    }
63
64    bool runOnBasicBlock(BasicBlock &BB);
65    bool HandleFree(CallInst *F);
66    bool handleEndBlock(BasicBlock &BB);
67    bool RemoveUndeadPointers(Value *Ptr, uint64_t killPointerSize,
68                              BasicBlock::iterator &BBI,
69                              SmallPtrSet<Value*, 64> &deadPointers);
70    void DeleteDeadInstruction(Instruction *I,
71                               SmallPtrSet<Value*, 64> *deadPointers = 0);
72
73
74    // getAnalysisUsage - We require post dominance frontiers (aka Control
75    // Dependence Graph)
76    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77      AU.setPreservesCFG();
78      AU.addRequired<DominatorTree>();
79      AU.addRequired<AliasAnalysis>();
80      AU.addRequired<MemoryDependenceAnalysis>();
81      AU.addPreserved<AliasAnalysis>();
82      AU.addPreserved<DominatorTree>();
83      AU.addPreserved<MemoryDependenceAnalysis>();
84    }
85  };
86}
87
88char DSE::ID = 0;
89INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
90INITIALIZE_PASS_DEPENDENCY(DominatorTree)
91INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
92INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
93INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
94
95FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
96
97/// hasMemoryWrite - Does this instruction write some memory?  This only returns
98/// true for things that we can analyze with other helpers below.
99static bool hasMemoryWrite(Instruction *I) {
100  if (isa<StoreInst>(I))
101    return true;
102  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
103    switch (II->getIntrinsicID()) {
104    default:
105      return false;
106    case Intrinsic::memset:
107    case Intrinsic::memmove:
108    case Intrinsic::memcpy:
109    case Intrinsic::init_trampoline:
110    case Intrinsic::lifetime_end:
111      return true;
112    }
113  }
114  return false;
115}
116
117/// getLocForWrite - Return a Location stored to by the specified instruction.
118static AliasAnalysis::Location
119getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
120  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
121    return AA.getLocation(SI);
122
123  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
124    // memcpy/memmove/memset.
125    AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
126    // If we don't have target data around, an unknown size in Location means
127    // that we should use the size of the pointee type.  This isn't valid for
128    // memset/memcpy, which writes more than an i8.
129    if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
130      return AliasAnalysis::Location();
131    return Loc;
132  }
133
134  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
135  if (II == 0) return AliasAnalysis::Location();
136
137  switch (II->getIntrinsicID()) {
138  default: return AliasAnalysis::Location(); // Unhandled intrinsic.
139  case Intrinsic::init_trampoline:
140    // If we don't have target data around, an unknown size in Location means
141    // that we should use the size of the pointee type.  This isn't valid for
142    // init.trampoline, which writes more than an i8.
143    if (AA.getTargetData() == 0) return AliasAnalysis::Location();
144
145    // FIXME: We don't know the size of the trampoline, so we can't really
146    // handle it here.
147    return AliasAnalysis::Location(II->getArgOperand(0));
148  case Intrinsic::lifetime_end: {
149    uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
150    return AliasAnalysis::Location(II->getArgOperand(1), Len);
151  }
152  }
153}
154
155/// isRemovable - If the value of this instruction and the memory it writes to
156/// is unused, may we delete this instruction?
157static bool isRemovable(Instruction *I) {
158  // Don't remove volatile stores.
159  if (StoreInst *SI = dyn_cast<StoreInst>(I))
160    return !SI->isVolatile();
161
162  IntrinsicInst *II = cast<IntrinsicInst>(I);
163  switch (II->getIntrinsicID()) {
164  default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
165  case Intrinsic::lifetime_end:
166    // Never remove dead lifetime_end's, e.g. because it is followed by a
167    // free.
168    return false;
169  case Intrinsic::init_trampoline:
170    // Always safe to remove init_trampoline.
171    return true;
172
173  case Intrinsic::memset:
174  case Intrinsic::memmove:
175  case Intrinsic::memcpy:
176    // Don't remove volatile memory intrinsics.
177    return !cast<MemIntrinsic>(II)->isVolatile();
178  }
179}
180
181/// getPointerOperand - Return the pointer that is being written to.
182static Value *getPointerOperand(Instruction *I) {
183  assert(hasMemoryWrite(I));
184  if (StoreInst *SI = dyn_cast<StoreInst>(I))
185    return SI->getPointerOperand();
186  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
187    return MI->getArgOperand(0);
188
189  IntrinsicInst *II = cast<IntrinsicInst>(I);
190  switch (II->getIntrinsicID()) {
191  default: assert(false && "Unexpected intrinsic!");
192  case Intrinsic::init_trampoline:
193    return II->getArgOperand(0);
194  case Intrinsic::lifetime_end:
195    return II->getArgOperand(1);
196  }
197}
198
199static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
200  const TargetData *TD = AA.getTargetData();
201  if (TD == 0)
202    return AliasAnalysis::UnknownSize;
203
204  if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
205    // Get size information for the alloca
206    if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
207      return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
208    return AliasAnalysis::UnknownSize;
209  }
210
211  assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
212  const PointerType *PT = cast<PointerType>(V->getType());
213  return TD->getTypeAllocSize(PT->getElementType());
214}
215
216
217/// isCompleteOverwrite - Return true if a store to the 'Later' location
218/// completely overwrites a store to the 'Earlier' location.
219static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
220                                const AliasAnalysis::Location &Earlier,
221                                AliasAnalysis &AA) {
222  const Value *P1 = Later.Ptr->stripPointerCasts();
223  const Value *P2 = Earlier.Ptr->stripPointerCasts();
224
225  // Make sure that the start pointers are the same.
226  if (P1 != P2)
227    return false;
228
229  // If we don't know the sizes of either access, then we can't do a comparison.
230  if (Later.Size == AliasAnalysis::UnknownSize ||
231      Earlier.Size == AliasAnalysis::UnknownSize) {
232    // If we have no TargetData information around, then the size of the store
233    // is inferrable from the pointee type.  If they are the same type, then we
234    // know that the store is safe.
235    if (AA.getTargetData() == 0)
236      return Later.Ptr->getType() == Earlier.Ptr->getType();
237    return false;
238  }
239
240  // Make sure that the Later size is >= the Earlier size.
241  if (Later.Size < Earlier.Size)
242    return false;
243
244  return true;
245}
246
247bool DSE::runOnBasicBlock(BasicBlock &BB) {
248  bool MadeChange = false;
249
250  // Do a top-down walk on the BB.
251  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
252    Instruction *Inst = BBI++;
253
254    // Handle 'free' calls specially.
255    if (CallInst *F = isFreeCall(Inst)) {
256      MadeChange |= HandleFree(F);
257      continue;
258    }
259
260    // If we find something that writes memory, get its memory dependence.
261    if (!hasMemoryWrite(Inst))
262      continue;
263
264    MemDepResult InstDep = MD->getDependency(Inst);
265
266    // Ignore non-local store liveness.
267    // FIXME: cross-block DSE would be fun. :)
268    if (InstDep.isNonLocal() ||
269        // Ignore self dependence, which happens in the entry block of the
270        // function.
271        InstDep.getInst() == Inst)
272      continue;
273
274    // If we're storing the same value back to a pointer that we just
275    // loaded from, then the store can be removed.
276    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
277      if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
278        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
279            SI->getOperand(0) == DepLoad && !SI->isVolatile()) {
280          // DeleteDeadInstruction can delete the current instruction.  Save BBI
281          // in case we need it.
282          WeakVH NextInst(BBI);
283
284          DeleteDeadInstruction(SI);
285
286          if (NextInst == 0)  // Next instruction deleted.
287            BBI = BB.begin();
288          else if (BBI != BB.begin())  // Revisit this instruction if possible.
289            --BBI;
290          ++NumFastStores;
291          MadeChange = true;
292          continue;
293        }
294      }
295    }
296
297    // Figure out what location is being stored to.
298    AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
299
300    // If we didn't get a useful location, fail.
301    if (Loc.Ptr == 0)
302      continue;
303
304    while (!InstDep.isNonLocal()) {
305      // Get the memory clobbered by the instruction we depend on.  MemDep will
306      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
307      // end up depending on a may- or must-aliased load, then we can't optimize
308      // away the store and we bail out.  However, if we depend on on something
309      // that overwrites the memory location we *can* potentially optimize it.
310      //
311      // Find out what memory location the dependant instruction stores.
312      Instruction *DepWrite = InstDep.getInst();
313      AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
314      // If we didn't get a useful location, or if it isn't a size, bail out.
315      if (DepLoc.Ptr == 0)
316        break;
317
318      // If we find a removable write that is completely obliterated by the
319      // store to 'Loc' then we can remove it.
320      if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA)) {
321        // Delete the store and now-dead instructions that feed it.
322        DeleteDeadInstruction(DepWrite);
323        ++NumFastStores;
324        MadeChange = true;
325
326        // DeleteDeadInstruction can delete the current instruction in loop
327        // cases, reset BBI.
328        BBI = Inst;
329        if (BBI != BB.begin())
330          --BBI;
331        break;
332      }
333
334      // If this is a may-aliased store that is clobbering the store value, we
335      // can keep searching past it for another must-aliased pointer that stores
336      // to the same location.  For example, in:
337      //   store -> P
338      //   store -> Q
339      //   store -> P
340      // we can remove the first store to P even though we don't know if P and Q
341      // alias.
342      if (DepWrite == &BB.front()) break;
343
344      // Can't look past this instruction if it might read 'Loc'.
345      if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
346        break;
347
348      InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
349    }
350  }
351
352  // If this block ends in a return, unwind, or unreachable, all allocas are
353  // dead at its end, which means stores to them are also dead.
354  if (BB.getTerminator()->getNumSuccessors() == 0)
355    MadeChange |= handleEndBlock(BB);
356
357  return MadeChange;
358}
359
360/// HandleFree - Handle frees of entire structures whose dependency is a store
361/// to a field of that structure.
362bool DSE::HandleFree(CallInst *F) {
363  MemDepResult Dep = MD->getDependency(F);
364  do {
365    if (Dep.isNonLocal()) return false;
366
367    Instruction *Dependency = Dep.getInst();
368    if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
369      return false;
370
371    Value *DepPointer = getPointerOperand(Dependency)->getUnderlyingObject();
372
373    // Check for aliasing.
374    if (AA->alias(F->getArgOperand(0), 1, DepPointer, 1) !=
375          AliasAnalysis::MustAlias)
376      return false;
377
378    // DCE instructions only used to calculate that store
379    DeleteDeadInstruction(Dependency);
380    ++NumFastStores;
381
382    // Inst's old Dependency is now deleted. Compute the next dependency,
383    // which may also be dead, as in
384    //    s[0] = 0;
385    //    s[1] = 0; // This has just been deleted.
386    //    free(s);
387    Dep = MD->getDependency(F);
388  } while (!Dep.isNonLocal());
389
390  return true;
391}
392
393/// handleEndBlock - Remove dead stores to stack-allocated locations in the
394/// function end block.  Ex:
395/// %A = alloca i32
396/// ...
397/// store i32 1, i32* %A
398/// ret void
399bool DSE::handleEndBlock(BasicBlock &BB) {
400  bool MadeChange = false;
401
402  // Pointers alloca'd in this function are dead in the end block
403  SmallPtrSet<Value*, 64> deadPointers;
404
405  // Find all of the alloca'd pointers in the entry block.
406  BasicBlock *Entry = BB.getParent()->begin();
407  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
408    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
409      deadPointers.insert(AI);
410
411  // Treat byval arguments the same, stores to them are dead at the end of the
412  // function.
413  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
414       AE = BB.getParent()->arg_end(); AI != AE; ++AI)
415    if (AI->hasByValAttr())
416      deadPointers.insert(AI);
417
418  // Scan the basic block backwards
419  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
420    --BBI;
421
422    // If we find a store whose pointer is dead.
423    if (hasMemoryWrite(BBI)) {
424      if (isRemovable(BBI)) {
425        // See through pointer-to-pointer bitcasts
426        Value *pointerOperand = getPointerOperand(BBI)->getUnderlyingObject();
427
428        // Alloca'd pointers or byval arguments (which are functionally like
429        // alloca's) are valid candidates for removal.
430        if (deadPointers.count(pointerOperand)) {
431          // DCE instructions only used to calculate that store.
432          Instruction *Dead = BBI;
433          ++BBI;
434          DeleteDeadInstruction(Dead, &deadPointers);
435          ++NumFastStores;
436          MadeChange = true;
437          continue;
438        }
439      }
440
441      // Because a memcpy or memmove is also a load, we can't skip it if we
442      // didn't remove it.
443      if (!isa<MemTransferInst>(BBI))
444        continue;
445    }
446
447    Value *killPointer = 0;
448    uint64_t killPointerSize = AliasAnalysis::UnknownSize;
449
450    // If we encounter a use of the pointer, it is no longer considered dead
451    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
452      // However, if this load is unused and not volatile, we can go ahead and
453      // remove it, and not have to worry about it making our pointer undead!
454      if (L->use_empty() && !L->isVolatile()) {
455        ++BBI;
456        DeleteDeadInstruction(L, &deadPointers);
457        ++NumFastOther;
458        MadeChange = true;
459        continue;
460      }
461
462      killPointer = L->getPointerOperand();
463    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
464      killPointer = V->getOperand(0);
465    } else if (isa<MemTransferInst>(BBI) &&
466               isa<ConstantInt>(cast<MemTransferInst>(BBI)->getLength())) {
467      killPointer = cast<MemTransferInst>(BBI)->getSource();
468      killPointerSize = cast<ConstantInt>(
469                       cast<MemTransferInst>(BBI)->getLength())->getZExtValue();
470    } else if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
471      deadPointers.erase(A);
472
473      // Dead alloca's can be DCE'd when we reach them
474      if (A->use_empty()) {
475        ++BBI;
476        DeleteDeadInstruction(A, &deadPointers);
477        ++NumFastOther;
478        MadeChange = true;
479      }
480
481      continue;
482    } else if (CallSite CS = cast<Value>(BBI)) {
483      // If this call does not access memory, it can't
484      // be undeadifying any of our pointers.
485      if (AA->doesNotAccessMemory(CS))
486        continue;
487
488      unsigned modRef = 0;
489      unsigned other = 0;
490
491      // Remove any pointers made undead by the call from the dead set
492      std::vector<Value*> dead;
493      for (SmallPtrSet<Value*, 64>::iterator I = deadPointers.begin(),
494           E = deadPointers.end(); I != E; ++I) {
495        // HACK: if we detect that our AA is imprecise, it's not
496        // worth it to scan the rest of the deadPointers set.  Just
497        // assume that the AA will return ModRef for everything, and
498        // go ahead and bail.
499        if (modRef >= 16 && other == 0) {
500          deadPointers.clear();
501          return MadeChange;
502        }
503
504        // See if the call site touches it
505        AliasAnalysis::ModRefResult A =
506          AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
507
508        if (A == AliasAnalysis::ModRef)
509          ++modRef;
510        else
511          ++other;
512
513        if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
514          dead.push_back(*I);
515      }
516
517      for (std::vector<Value*>::iterator I = dead.begin(), E = dead.end();
518           I != E; ++I)
519        deadPointers.erase(*I);
520
521      continue;
522    } else if (isInstructionTriviallyDead(BBI)) {
523      // For any non-memory-affecting non-terminators, DCE them as we reach them
524      Instruction *Inst = BBI;
525      ++BBI;
526      DeleteDeadInstruction(Inst, &deadPointers);
527      ++NumFastOther;
528      MadeChange = true;
529      continue;
530    }
531
532    if (!killPointer)
533      continue;
534
535    killPointer = killPointer->getUnderlyingObject();
536
537    // Deal with undead pointers
538    MadeChange |= RemoveUndeadPointers(killPointer, killPointerSize, BBI,
539                                       deadPointers);
540  }
541
542  return MadeChange;
543}
544
545/// RemoveUndeadPointers - check for uses of a pointer that make it
546/// undead when scanning for dead stores to alloca's.
547bool DSE::RemoveUndeadPointers(Value *killPointer, uint64_t killPointerSize,
548                               BasicBlock::iterator &BBI,
549                               SmallPtrSet<Value*, 64> &deadPointers) {
550  // If the kill pointer can be easily reduced to an alloca,
551  // don't bother doing extraneous AA queries.
552  if (deadPointers.count(killPointer)) {
553    deadPointers.erase(killPointer);
554    return false;
555  }
556
557  // A global can't be in the dead pointer set.
558  if (isa<GlobalValue>(killPointer))
559    return false;
560
561  bool MadeChange = false;
562
563  SmallVector<Value*, 16> undead;
564
565  for (SmallPtrSet<Value*, 64>::iterator I = deadPointers.begin(),
566       E = deadPointers.end(); I != E; ++I) {
567    // See if this pointer could alias it
568    AliasAnalysis::AliasResult A = AA->alias(*I, getPointerSize(*I, *AA),
569                                             killPointer, killPointerSize);
570
571    // If it must-alias and a store, we can delete it
572    if (isa<StoreInst>(BBI) && A == AliasAnalysis::MustAlias) {
573      StoreInst *S = cast<StoreInst>(BBI);
574
575      // Remove it!
576      ++BBI;
577      DeleteDeadInstruction(S, &deadPointers);
578      ++NumFastStores;
579      MadeChange = true;
580
581      continue;
582
583      // Otherwise, it is undead
584    } else if (A != AliasAnalysis::NoAlias)
585      undead.push_back(*I);
586  }
587
588  for (SmallVector<Value*, 16>::iterator I = undead.begin(), E = undead.end();
589       I != E; ++I)
590    deadPointers.erase(*I);
591
592  return MadeChange;
593}
594
595/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
596/// and zero out all the operands of this instruction.  If any of them become
597/// dead, delete them and the computation tree that feeds them.
598///
599/// If ValueSet is non-null, remove any deleted instructions from it as well.
600///
601void DSE::DeleteDeadInstruction(Instruction *I,
602                                SmallPtrSet<Value*, 64> *ValueSet) {
603  SmallVector<Instruction*, 32> NowDeadInsts;
604
605  NowDeadInsts.push_back(I);
606  --NumFastOther;
607
608  // Before we touch this instruction, remove it from memdep!
609  do {
610    Instruction *DeadInst = NowDeadInsts.pop_back_val();
611
612    ++NumFastOther;
613
614    // This instruction is dead, zap it, in stages.  Start by removing it from
615    // MemDep, which needs to know the operands and needs it to be in the
616    // function.
617    MD->removeInstruction(DeadInst);
618
619    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
620      Value *Op = DeadInst->getOperand(op);
621      DeadInst->setOperand(op, 0);
622
623      // If this operand just became dead, add it to the NowDeadInsts list.
624      if (!Op->use_empty()) continue;
625
626      if (Instruction *OpI = dyn_cast<Instruction>(Op))
627        if (isInstructionTriviallyDead(OpI))
628          NowDeadInsts.push_back(OpI);
629    }
630
631    DeadInst->eraseFromParent();
632
633    if (ValueSet) ValueSet->erase(DeadInst);
634  } while (!NowDeadInsts.empty());
635}
636
637