GVN.cpp revision 19ad784dacc10247d47d0928f6222390c60fbb4b
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Value.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DepthFirstIterator.h"
30#include "llvm/ADT/PostOrderIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/MallocHelper.h"
37#include "llvm/Analysis/MemoryDependenceAnalysis.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include <cstdio>
48using namespace llvm;
49
50STATISTIC(NumGVNInstr,  "Number of instructions deleted");
51STATISTIC(NumGVNLoad,   "Number of loads deleted");
52STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
53STATISTIC(NumGVNBlocks, "Number of blocks merged");
54STATISTIC(NumPRELoad,   "Number of loads PRE'd");
55
56static cl::opt<bool> EnablePRE("enable-pre",
57                               cl::init(true), cl::Hidden);
58static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
59
60//===----------------------------------------------------------------------===//
61//                         ValueTable Class
62//===----------------------------------------------------------------------===//
63
64/// This class holds the mapping between values and value numbers.  It is used
65/// as an efficient mechanism to determine the expression-wise equivalence of
66/// two values.
67namespace {
68  struct Expression {
69    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
70                            UDIV, SDIV, FDIV, UREM, SREM,
71                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
72                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
73                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
74                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
75                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
76                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
77                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
78                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
79                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
80                            EMPTY, TOMBSTONE };
81
82    ExpressionOpcode opcode;
83    const Type* type;
84    uint32_t firstVN;
85    uint32_t secondVN;
86    uint32_t thirdVN;
87    SmallVector<uint32_t, 4> varargs;
88    Value *function;
89
90    Expression() { }
91    Expression(ExpressionOpcode o) : opcode(o) { }
92
93    bool operator==(const Expression &other) const {
94      if (opcode != other.opcode)
95        return false;
96      else if (opcode == EMPTY || opcode == TOMBSTONE)
97        return true;
98      else if (type != other.type)
99        return false;
100      else if (function != other.function)
101        return false;
102      else if (firstVN != other.firstVN)
103        return false;
104      else if (secondVN != other.secondVN)
105        return false;
106      else if (thirdVN != other.thirdVN)
107        return false;
108      else {
109        if (varargs.size() != other.varargs.size())
110          return false;
111
112        for (size_t i = 0; i < varargs.size(); ++i)
113          if (varargs[i] != other.varargs[i])
114            return false;
115
116        return true;
117      }
118    }
119
120    bool operator!=(const Expression &other) const {
121      return !(*this == other);
122    }
123  };
124
125  class ValueTable {
126    private:
127      DenseMap<Value*, uint32_t> valueNumbering;
128      DenseMap<Expression, uint32_t> expressionNumbering;
129      AliasAnalysis* AA;
130      MemoryDependenceAnalysis* MD;
131      DominatorTree* DT;
132
133      uint32_t nextValueNumber;
134
135      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
136      Expression::ExpressionOpcode getOpcode(CmpInst* C);
137      Expression::ExpressionOpcode getOpcode(CastInst* C);
138      Expression create_expression(BinaryOperator* BO);
139      Expression create_expression(CmpInst* C);
140      Expression create_expression(ShuffleVectorInst* V);
141      Expression create_expression(ExtractElementInst* C);
142      Expression create_expression(InsertElementInst* V);
143      Expression create_expression(SelectInst* V);
144      Expression create_expression(CastInst* C);
145      Expression create_expression(GetElementPtrInst* G);
146      Expression create_expression(CallInst* C);
147      Expression create_expression(Constant* C);
148    public:
149      ValueTable() : nextValueNumber(1) { }
150      uint32_t lookup_or_add(Value *V);
151      uint32_t lookup(Value *V) const;
152      void add(Value *V, uint32_t num);
153      void clear();
154      void erase(Value *v);
155      unsigned size();
156      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
157      AliasAnalysis *getAliasAnalysis() const { return AA; }
158      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
159      void setDomTree(DominatorTree* D) { DT = D; }
160      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
161      void verifyRemoved(const Value *) const;
162  };
163}
164
165namespace llvm {
166template <> struct DenseMapInfo<Expression> {
167  static inline Expression getEmptyKey() {
168    return Expression(Expression::EMPTY);
169  }
170
171  static inline Expression getTombstoneKey() {
172    return Expression(Expression::TOMBSTONE);
173  }
174
175  static unsigned getHashValue(const Expression e) {
176    unsigned hash = e.opcode;
177
178    hash = e.firstVN + hash * 37;
179    hash = e.secondVN + hash * 37;
180    hash = e.thirdVN + hash * 37;
181
182    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
183            (unsigned)((uintptr_t)e.type >> 9)) +
184           hash * 37;
185
186    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
187         E = e.varargs.end(); I != E; ++I)
188      hash = *I + hash * 37;
189
190    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
191            (unsigned)((uintptr_t)e.function >> 9)) +
192           hash * 37;
193
194    return hash;
195  }
196  static bool isEqual(const Expression &LHS, const Expression &RHS) {
197    return LHS == RHS;
198  }
199  static bool isPod() { return true; }
200};
201}
202
203//===----------------------------------------------------------------------===//
204//                     ValueTable Internal Functions
205//===----------------------------------------------------------------------===//
206Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
207  switch(BO->getOpcode()) {
208  default: // THIS SHOULD NEVER HAPPEN
209    llvm_unreachable("Binary operator with unknown opcode?");
210  case Instruction::Add:  return Expression::ADD;
211  case Instruction::FAdd: return Expression::FADD;
212  case Instruction::Sub:  return Expression::SUB;
213  case Instruction::FSub: return Expression::FSUB;
214  case Instruction::Mul:  return Expression::MUL;
215  case Instruction::FMul: return Expression::FMUL;
216  case Instruction::UDiv: return Expression::UDIV;
217  case Instruction::SDiv: return Expression::SDIV;
218  case Instruction::FDiv: return Expression::FDIV;
219  case Instruction::URem: return Expression::UREM;
220  case Instruction::SRem: return Expression::SREM;
221  case Instruction::FRem: return Expression::FREM;
222  case Instruction::Shl:  return Expression::SHL;
223  case Instruction::LShr: return Expression::LSHR;
224  case Instruction::AShr: return Expression::ASHR;
225  case Instruction::And:  return Expression::AND;
226  case Instruction::Or:   return Expression::OR;
227  case Instruction::Xor:  return Expression::XOR;
228  }
229}
230
231Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
232  if (isa<ICmpInst>(C)) {
233    switch (C->getPredicate()) {
234    default:  // THIS SHOULD NEVER HAPPEN
235      llvm_unreachable("Comparison with unknown predicate?");
236    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
237    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
238    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
239    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
240    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
241    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
242    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
243    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
244    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
245    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
246    }
247  } else {
248    switch (C->getPredicate()) {
249    default: // THIS SHOULD NEVER HAPPEN
250      llvm_unreachable("Comparison with unknown predicate?");
251    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
252    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
253    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
254    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
255    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
256    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
257    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
258    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
259    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
260    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
261    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
262    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
263    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
264    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
265    }
266  }
267}
268
269Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
270  switch(C->getOpcode()) {
271  default: // THIS SHOULD NEVER HAPPEN
272    llvm_unreachable("Cast operator with unknown opcode?");
273  case Instruction::Trunc:    return Expression::TRUNC;
274  case Instruction::ZExt:     return Expression::ZEXT;
275  case Instruction::SExt:     return Expression::SEXT;
276  case Instruction::FPToUI:   return Expression::FPTOUI;
277  case Instruction::FPToSI:   return Expression::FPTOSI;
278  case Instruction::UIToFP:   return Expression::UITOFP;
279  case Instruction::SIToFP:   return Expression::SITOFP;
280  case Instruction::FPTrunc:  return Expression::FPTRUNC;
281  case Instruction::FPExt:    return Expression::FPEXT;
282  case Instruction::PtrToInt: return Expression::PTRTOINT;
283  case Instruction::IntToPtr: return Expression::INTTOPTR;
284  case Instruction::BitCast:  return Expression::BITCAST;
285  }
286}
287
288Expression ValueTable::create_expression(CallInst* C) {
289  Expression e;
290
291  e.type = C->getType();
292  e.firstVN = 0;
293  e.secondVN = 0;
294  e.thirdVN = 0;
295  e.function = C->getCalledFunction();
296  e.opcode = Expression::CALL;
297
298  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
299       I != E; ++I)
300    e.varargs.push_back(lookup_or_add(*I));
301
302  return e;
303}
304
305Expression ValueTable::create_expression(BinaryOperator* BO) {
306  Expression e;
307
308  e.firstVN = lookup_or_add(BO->getOperand(0));
309  e.secondVN = lookup_or_add(BO->getOperand(1));
310  e.thirdVN = 0;
311  e.function = 0;
312  e.type = BO->getType();
313  e.opcode = getOpcode(BO);
314
315  return e;
316}
317
318Expression ValueTable::create_expression(CmpInst* C) {
319  Expression e;
320
321  e.firstVN = lookup_or_add(C->getOperand(0));
322  e.secondVN = lookup_or_add(C->getOperand(1));
323  e.thirdVN = 0;
324  e.function = 0;
325  e.type = C->getType();
326  e.opcode = getOpcode(C);
327
328  return e;
329}
330
331Expression ValueTable::create_expression(CastInst* C) {
332  Expression e;
333
334  e.firstVN = lookup_or_add(C->getOperand(0));
335  e.secondVN = 0;
336  e.thirdVN = 0;
337  e.function = 0;
338  e.type = C->getType();
339  e.opcode = getOpcode(C);
340
341  return e;
342}
343
344Expression ValueTable::create_expression(ShuffleVectorInst* S) {
345  Expression e;
346
347  e.firstVN = lookup_or_add(S->getOperand(0));
348  e.secondVN = lookup_or_add(S->getOperand(1));
349  e.thirdVN = lookup_or_add(S->getOperand(2));
350  e.function = 0;
351  e.type = S->getType();
352  e.opcode = Expression::SHUFFLE;
353
354  return e;
355}
356
357Expression ValueTable::create_expression(ExtractElementInst* E) {
358  Expression e;
359
360  e.firstVN = lookup_or_add(E->getOperand(0));
361  e.secondVN = lookup_or_add(E->getOperand(1));
362  e.thirdVN = 0;
363  e.function = 0;
364  e.type = E->getType();
365  e.opcode = Expression::EXTRACT;
366
367  return e;
368}
369
370Expression ValueTable::create_expression(InsertElementInst* I) {
371  Expression e;
372
373  e.firstVN = lookup_or_add(I->getOperand(0));
374  e.secondVN = lookup_or_add(I->getOperand(1));
375  e.thirdVN = lookup_or_add(I->getOperand(2));
376  e.function = 0;
377  e.type = I->getType();
378  e.opcode = Expression::INSERT;
379
380  return e;
381}
382
383Expression ValueTable::create_expression(SelectInst* I) {
384  Expression e;
385
386  e.firstVN = lookup_or_add(I->getCondition());
387  e.secondVN = lookup_or_add(I->getTrueValue());
388  e.thirdVN = lookup_or_add(I->getFalseValue());
389  e.function = 0;
390  e.type = I->getType();
391  e.opcode = Expression::SELECT;
392
393  return e;
394}
395
396Expression ValueTable::create_expression(GetElementPtrInst* G) {
397  Expression e;
398
399  e.firstVN = lookup_or_add(G->getPointerOperand());
400  e.secondVN = 0;
401  e.thirdVN = 0;
402  e.function = 0;
403  e.type = G->getType();
404  e.opcode = Expression::GEP;
405
406  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
407       I != E; ++I)
408    e.varargs.push_back(lookup_or_add(*I));
409
410  return e;
411}
412
413//===----------------------------------------------------------------------===//
414//                     ValueTable External Functions
415//===----------------------------------------------------------------------===//
416
417/// add - Insert a value into the table with a specified value number.
418void ValueTable::add(Value *V, uint32_t num) {
419  valueNumbering.insert(std::make_pair(V, num));
420}
421
422/// lookup_or_add - Returns the value number for the specified value, assigning
423/// it a new number if it did not have one before.
424uint32_t ValueTable::lookup_or_add(Value *V) {
425  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
426  if (VI != valueNumbering.end())
427    return VI->second;
428
429  if (CallInst* C = dyn_cast<CallInst>(V)) {
430    if (AA->doesNotAccessMemory(C)) {
431      Expression e = create_expression(C);
432
433      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
434      if (EI != expressionNumbering.end()) {
435        valueNumbering.insert(std::make_pair(V, EI->second));
436        return EI->second;
437      } else {
438        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
439        valueNumbering.insert(std::make_pair(V, nextValueNumber));
440
441        return nextValueNumber++;
442      }
443    } else if (AA->onlyReadsMemory(C)) {
444      Expression e = create_expression(C);
445
446      if (expressionNumbering.find(e) == expressionNumbering.end()) {
447        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
448        valueNumbering.insert(std::make_pair(V, nextValueNumber));
449        return nextValueNumber++;
450      }
451
452      MemDepResult local_dep = MD->getDependency(C);
453
454      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
455        valueNumbering.insert(std::make_pair(V, nextValueNumber));
456        return nextValueNumber++;
457      }
458
459      if (local_dep.isDef()) {
460        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
461
462        if (local_cdep->getNumOperands() != C->getNumOperands()) {
463          valueNumbering.insert(std::make_pair(V, nextValueNumber));
464          return nextValueNumber++;
465        }
466
467        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
468          uint32_t c_vn = lookup_or_add(C->getOperand(i));
469          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
470          if (c_vn != cd_vn) {
471            valueNumbering.insert(std::make_pair(V, nextValueNumber));
472            return nextValueNumber++;
473          }
474        }
475
476        uint32_t v = lookup_or_add(local_cdep);
477        valueNumbering.insert(std::make_pair(V, v));
478        return v;
479      }
480
481      // Non-local case.
482      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
483        MD->getNonLocalCallDependency(CallSite(C));
484      // FIXME: call/call dependencies for readonly calls should return def, not
485      // clobber!  Move the checking logic to MemDep!
486      CallInst* cdep = 0;
487
488      // Check to see if we have a single dominating call instruction that is
489      // identical to C.
490      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
491        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
492        // Ignore non-local dependencies.
493        if (I->second.isNonLocal())
494          continue;
495
496        // We don't handle non-depedencies.  If we already have a call, reject
497        // instruction dependencies.
498        if (I->second.isClobber() || cdep != 0) {
499          cdep = 0;
500          break;
501        }
502
503        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
504        // FIXME: All duplicated with non-local case.
505        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
506          cdep = NonLocalDepCall;
507          continue;
508        }
509
510        cdep = 0;
511        break;
512      }
513
514      if (!cdep) {
515        valueNumbering.insert(std::make_pair(V, nextValueNumber));
516        return nextValueNumber++;
517      }
518
519      if (cdep->getNumOperands() != C->getNumOperands()) {
520        valueNumbering.insert(std::make_pair(V, nextValueNumber));
521        return nextValueNumber++;
522      }
523      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
524        uint32_t c_vn = lookup_or_add(C->getOperand(i));
525        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
526        if (c_vn != cd_vn) {
527          valueNumbering.insert(std::make_pair(V, nextValueNumber));
528          return nextValueNumber++;
529        }
530      }
531
532      uint32_t v = lookup_or_add(cdep);
533      valueNumbering.insert(std::make_pair(V, v));
534      return v;
535
536    } else {
537      valueNumbering.insert(std::make_pair(V, nextValueNumber));
538      return nextValueNumber++;
539    }
540  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
541    Expression e = create_expression(BO);
542
543    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
544    if (EI != expressionNumbering.end()) {
545      valueNumbering.insert(std::make_pair(V, EI->second));
546      return EI->second;
547    } else {
548      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
549      valueNumbering.insert(std::make_pair(V, nextValueNumber));
550
551      return nextValueNumber++;
552    }
553  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
554    Expression e = create_expression(C);
555
556    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
557    if (EI != expressionNumbering.end()) {
558      valueNumbering.insert(std::make_pair(V, EI->second));
559      return EI->second;
560    } else {
561      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
562      valueNumbering.insert(std::make_pair(V, nextValueNumber));
563
564      return nextValueNumber++;
565    }
566  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
567    Expression e = create_expression(U);
568
569    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
570    if (EI != expressionNumbering.end()) {
571      valueNumbering.insert(std::make_pair(V, EI->second));
572      return EI->second;
573    } else {
574      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
575      valueNumbering.insert(std::make_pair(V, nextValueNumber));
576
577      return nextValueNumber++;
578    }
579  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
580    Expression e = create_expression(U);
581
582    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
583    if (EI != expressionNumbering.end()) {
584      valueNumbering.insert(std::make_pair(V, EI->second));
585      return EI->second;
586    } else {
587      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
588      valueNumbering.insert(std::make_pair(V, nextValueNumber));
589
590      return nextValueNumber++;
591    }
592  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
593    Expression e = create_expression(U);
594
595    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
596    if (EI != expressionNumbering.end()) {
597      valueNumbering.insert(std::make_pair(V, EI->second));
598      return EI->second;
599    } else {
600      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
601      valueNumbering.insert(std::make_pair(V, nextValueNumber));
602
603      return nextValueNumber++;
604    }
605  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
606    Expression e = create_expression(U);
607
608    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
609    if (EI != expressionNumbering.end()) {
610      valueNumbering.insert(std::make_pair(V, EI->second));
611      return EI->second;
612    } else {
613      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
614      valueNumbering.insert(std::make_pair(V, nextValueNumber));
615
616      return nextValueNumber++;
617    }
618  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
619    Expression e = create_expression(U);
620
621    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
622    if (EI != expressionNumbering.end()) {
623      valueNumbering.insert(std::make_pair(V, EI->second));
624      return EI->second;
625    } else {
626      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
627      valueNumbering.insert(std::make_pair(V, nextValueNumber));
628
629      return nextValueNumber++;
630    }
631  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
632    Expression e = create_expression(U);
633
634    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
635    if (EI != expressionNumbering.end()) {
636      valueNumbering.insert(std::make_pair(V, EI->second));
637      return EI->second;
638    } else {
639      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
640      valueNumbering.insert(std::make_pair(V, nextValueNumber));
641
642      return nextValueNumber++;
643    }
644  } else {
645    valueNumbering.insert(std::make_pair(V, nextValueNumber));
646    return nextValueNumber++;
647  }
648}
649
650/// lookup - Returns the value number of the specified value. Fails if
651/// the value has not yet been numbered.
652uint32_t ValueTable::lookup(Value *V) const {
653  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
654  assert(VI != valueNumbering.end() && "Value not numbered?");
655  return VI->second;
656}
657
658/// clear - Remove all entries from the ValueTable
659void ValueTable::clear() {
660  valueNumbering.clear();
661  expressionNumbering.clear();
662  nextValueNumber = 1;
663}
664
665/// erase - Remove a value from the value numbering
666void ValueTable::erase(Value *V) {
667  valueNumbering.erase(V);
668}
669
670/// verifyRemoved - Verify that the value is removed from all internal data
671/// structures.
672void ValueTable::verifyRemoved(const Value *V) const {
673  for (DenseMap<Value*, uint32_t>::iterator
674         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
675    assert(I->first != V && "Inst still occurs in value numbering map!");
676  }
677}
678
679//===----------------------------------------------------------------------===//
680//                                GVN Pass
681//===----------------------------------------------------------------------===//
682
683namespace {
684  struct ValueNumberScope {
685    ValueNumberScope* parent;
686    DenseMap<uint32_t, Value*> table;
687
688    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
689  };
690}
691
692namespace {
693
694  class GVN : public FunctionPass {
695    bool runOnFunction(Function &F);
696  public:
697    static char ID; // Pass identification, replacement for typeid
698    GVN() : FunctionPass(&ID) { }
699
700  private:
701    MemoryDependenceAnalysis *MD;
702    DominatorTree *DT;
703
704    ValueTable VN;
705    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
706
707    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
708    PhiMapType phiMap;
709
710
711    // This transformation requires dominator postdominator info
712    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
713      AU.addRequired<DominatorTree>();
714      AU.addRequired<MemoryDependenceAnalysis>();
715      AU.addRequired<AliasAnalysis>();
716
717      AU.addPreserved<DominatorTree>();
718      AU.addPreserved<AliasAnalysis>();
719    }
720
721    // Helper fuctions
722    // FIXME: eliminate or document these better
723    bool processLoad(LoadInst* L,
724                     SmallVectorImpl<Instruction*> &toErase);
725    bool processInstruction(Instruction *I,
726                            SmallVectorImpl<Instruction*> &toErase);
727    bool processNonLocalLoad(LoadInst* L,
728                             SmallVectorImpl<Instruction*> &toErase);
729    bool processBlock(BasicBlock *BB);
730    Value *GetValueForBlock(BasicBlock *BB, Instruction *orig,
731                            DenseMap<BasicBlock*, Value*> &Phis,
732                            bool top_level = false);
733    void dump(DenseMap<uint32_t, Value*>& d);
734    bool iterateOnFunction(Function &F);
735    Value *CollapsePhi(PHINode* p);
736    bool performPRE(Function& F);
737    Value *lookupNumber(BasicBlock *BB, uint32_t num);
738    Value *AttemptRedundancyElimination(Instruction *orig, unsigned valno);
739    void cleanupGlobalSets();
740    void verifyRemoved(const Instruction *I) const;
741  };
742
743  char GVN::ID = 0;
744}
745
746// createGVNPass - The public interface to this file...
747FunctionPass *llvm::createGVNPass() { return new GVN(); }
748
749static RegisterPass<GVN> X("gvn",
750                           "Global Value Numbering");
751
752void GVN::dump(DenseMap<uint32_t, Value*>& d) {
753  printf("{\n");
754  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
755       E = d.end(); I != E; ++I) {
756      printf("%d\n", I->first);
757      I->second->dump();
758  }
759  printf("}\n");
760}
761
762static bool isSafeReplacement(PHINode* p, Instruction *inst) {
763  if (!isa<PHINode>(inst))
764    return true;
765
766  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
767       UI != E; ++UI)
768    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
769      if (use_phi->getParent() == inst->getParent())
770        return false;
771
772  return true;
773}
774
775Value *GVN::CollapsePhi(PHINode *PN) {
776  Value *ConstVal = PN->hasConstantValue(DT);
777  if (!ConstVal) return 0;
778
779  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
780  if (!Inst)
781    return ConstVal;
782
783  if (DT->dominates(Inst, PN))
784    if (isSafeReplacement(PN, Inst))
785      return Inst;
786  return 0;
787}
788
789/// GetValueForBlock - Get the value to use within the specified basic block.
790/// available values are in Phis.
791Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction *Orig,
792                             DenseMap<BasicBlock*, Value*> &Phis,
793                             bool TopLevel) {
794
795  // If we have already computed this value, return the previously computed val.
796  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
797  if (V != Phis.end() && !TopLevel) return V->second;
798
799  // If the block is unreachable, just return undef, since this path
800  // can't actually occur at runtime.
801  if (!DT->isReachableFromEntry(BB))
802    return Phis[BB] = UndefValue::get(Orig->getType());
803
804  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
805    Value *ret = GetValueForBlock(Pred, Orig, Phis);
806    Phis[BB] = ret;
807    return ret;
808  }
809
810  // Get the number of predecessors of this block so we can reserve space later.
811  // If there is already a PHI in it, use the #preds from it, otherwise count.
812  // Getting it from the PHI is constant time.
813  unsigned NumPreds;
814  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
815    NumPreds = ExistingPN->getNumIncomingValues();
816  else
817    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
818
819  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
820  // now, then get values to fill in the incoming values for the PHI.
821  PHINode *PN = PHINode::Create(Orig->getType(), Orig->getName()+".rle",
822                                BB->begin());
823  PN->reserveOperandSpace(NumPreds);
824
825  Phis.insert(std::make_pair(BB, PN));
826
827  // Fill in the incoming values for the block.
828  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
829    Value *val = GetValueForBlock(*PI, Orig, Phis);
830    PN->addIncoming(val, *PI);
831  }
832
833  VN.getAliasAnalysis()->copyValue(Orig, PN);
834
835  // Attempt to collapse PHI nodes that are trivially redundant
836  Value *v = CollapsePhi(PN);
837  if (!v) {
838    // Cache our phi construction results
839    if (LoadInst* L = dyn_cast<LoadInst>(Orig))
840      phiMap[L->getPointerOperand()].insert(PN);
841    else
842      phiMap[Orig].insert(PN);
843
844    return PN;
845  }
846
847  PN->replaceAllUsesWith(v);
848  if (isa<PointerType>(v->getType()))
849    MD->invalidateCachedPointerInfo(v);
850
851  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
852       E = Phis.end(); I != E; ++I)
853    if (I->second == PN)
854      I->second = v;
855
856  DEBUG(errs() << "GVN removed: " << *PN << '\n');
857  MD->removeInstruction(PN);
858  PN->eraseFromParent();
859  DEBUG(verifyRemoved(PN));
860
861  Phis[BB] = v;
862  return v;
863}
864
865/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
866/// we're analyzing is fully available in the specified block.  As we go, keep
867/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
868/// map is actually a tri-state map with the following values:
869///   0) we know the block *is not* fully available.
870///   1) we know the block *is* fully available.
871///   2) we do not know whether the block is fully available or not, but we are
872///      currently speculating that it will be.
873///   3) we are speculating for this block and have used that to speculate for
874///      other blocks.
875static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
876                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
877  // Optimistically assume that the block is fully available and check to see
878  // if we already know about this block in one lookup.
879  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
880    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
881
882  // If the entry already existed for this block, return the precomputed value.
883  if (!IV.second) {
884    // If this is a speculative "available" value, mark it as being used for
885    // speculation of other blocks.
886    if (IV.first->second == 2)
887      IV.first->second = 3;
888    return IV.first->second != 0;
889  }
890
891  // Otherwise, see if it is fully available in all predecessors.
892  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
893
894  // If this block has no predecessors, it isn't live-in here.
895  if (PI == PE)
896    goto SpeculationFailure;
897
898  for (; PI != PE; ++PI)
899    // If the value isn't fully available in one of our predecessors, then it
900    // isn't fully available in this block either.  Undo our previous
901    // optimistic assumption and bail out.
902    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
903      goto SpeculationFailure;
904
905  return true;
906
907// SpeculationFailure - If we get here, we found out that this is not, after
908// all, a fully-available block.  We have a problem if we speculated on this and
909// used the speculation to mark other blocks as available.
910SpeculationFailure:
911  char &BBVal = FullyAvailableBlocks[BB];
912
913  // If we didn't speculate on this, just return with it set to false.
914  if (BBVal == 2) {
915    BBVal = 0;
916    return false;
917  }
918
919  // If we did speculate on this value, we could have blocks set to 1 that are
920  // incorrect.  Walk the (transitive) successors of this block and mark them as
921  // 0 if set to one.
922  SmallVector<BasicBlock*, 32> BBWorklist;
923  BBWorklist.push_back(BB);
924
925  while (!BBWorklist.empty()) {
926    BasicBlock *Entry = BBWorklist.pop_back_val();
927    // Note that this sets blocks to 0 (unavailable) if they happen to not
928    // already be in FullyAvailableBlocks.  This is safe.
929    char &EntryVal = FullyAvailableBlocks[Entry];
930    if (EntryVal == 0) continue;  // Already unavailable.
931
932    // Mark as unavailable.
933    EntryVal = 0;
934
935    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
936      BBWorklist.push_back(*I);
937  }
938
939  return false;
940}
941
942
943/// CanCoerceMustAliasedValueToLoad - Return true if
944/// CoerceAvailableValueToLoadType will succeed.
945static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
946                                            const Type *LoadTy,
947                                            const TargetData &TD) {
948  // If the loaded or stored value is an first class array or struct, don't try
949  // to transform them.  We need to be able to bitcast to integer.
950  if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
951      isa<StructType>(StoredVal->getType()) ||
952      isa<ArrayType>(StoredVal->getType()))
953    return false;
954
955  // The store has to be at least as big as the load.
956  if (TD.getTypeSizeInBits(StoredVal->getType()) <
957        TD.getTypeSizeInBits(LoadTy))
958    return false;
959
960  return true;
961}
962
963
964/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
965/// then a load from a must-aliased pointer of a different type, try to coerce
966/// the stored value.  LoadedTy is the type of the load we want to replace and
967/// InsertPt is the place to insert new instructions.
968///
969/// If we can't do it, return null.
970static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
971                                             const Type *LoadedTy,
972                                             Instruction *InsertPt,
973                                             const TargetData &TD) {
974  if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
975    return 0;
976
977  const Type *StoredValTy = StoredVal->getType();
978
979  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
980  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
981
982  // If the store and reload are the same size, we can always reuse it.
983  if (StoreSize == LoadSize) {
984    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
985      // Pointer to Pointer -> use bitcast.
986      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
987    }
988
989    // Convert source pointers to integers, which can be bitcast.
990    if (isa<PointerType>(StoredValTy)) {
991      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
992      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
993    }
994
995    const Type *TypeToCastTo = LoadedTy;
996    if (isa<PointerType>(TypeToCastTo))
997      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
998
999    if (StoredValTy != TypeToCastTo)
1000      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
1001
1002    // Cast to pointer if the load needs a pointer type.
1003    if (isa<PointerType>(LoadedTy))
1004      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
1005
1006    return StoredVal;
1007  }
1008
1009  // If the loaded value is smaller than the available value, then we can
1010  // extract out a piece from it.  If the available value is too small, then we
1011  // can't do anything.
1012  assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
1013
1014  // Convert source pointers to integers, which can be manipulated.
1015  if (isa<PointerType>(StoredValTy)) {
1016    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
1017    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
1018  }
1019
1020  // Convert vectors and fp to integer, which can be manipulated.
1021  if (!isa<IntegerType>(StoredValTy)) {
1022    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
1023    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
1024  }
1025
1026  // If this is a big-endian system, we need to shift the value down to the low
1027  // bits so that a truncate will work.
1028  if (TD.isBigEndian()) {
1029    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
1030    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
1031  }
1032
1033  // Truncate the integer to the right size now.
1034  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
1035  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
1036
1037  if (LoadedTy == NewIntTy)
1038    return StoredVal;
1039
1040  // If the result is a pointer, inttoptr.
1041  if (isa<PointerType>(LoadedTy))
1042    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
1043
1044  // Otherwise, bitcast.
1045  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
1046}
1047
1048/// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
1049/// be expressed as a base pointer plus a constant offset.  Return the base and
1050/// offset to the caller.
1051static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1052                                        const TargetData &TD) {
1053  Operator *PtrOp = dyn_cast<Operator>(Ptr);
1054  if (PtrOp == 0) return Ptr;
1055
1056  // Just look through bitcasts.
1057  if (PtrOp->getOpcode() == Instruction::BitCast)
1058    return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1059
1060  // If this is a GEP with constant indices, we can look through it.
1061  GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1062  if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1063
1064  gep_type_iterator GTI = gep_type_begin(GEP);
1065  for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1066       ++I, ++GTI) {
1067    ConstantInt *OpC = cast<ConstantInt>(*I);
1068    if (OpC->isZero()) continue;
1069
1070    // Handle a struct and array indices which add their offset to the pointer.
1071    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1072      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1073    } else {
1074      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1075      Offset += OpC->getSExtValue()*Size;
1076    }
1077  }
1078
1079  // Re-sign extend from the pointer size if needed to get overflow edge cases
1080  // right.
1081  unsigned PtrSize = TD.getPointerSizeInBits();
1082  if (PtrSize < 64)
1083    Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1084
1085  return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1086}
1087
1088
1089/// AnalyzeLoadFromClobberingStore - This function is called when we have a
1090/// memdep query of a load that ends up being a clobbering store.  This means
1091/// that the store *may* provide bits used by the load but we can't be sure
1092/// because the pointers don't mustalias.  Check this case to see if there is
1093/// anything more we can do before we give up.  This returns -1 if we have to
1094/// give up, or a byte number in the stored value of the piece that feeds the
1095/// load.
1096static int AnalyzeLoadFromClobberingStore(LoadInst *L, StoreInst *DepSI,
1097                                          const TargetData &TD) {
1098  // If the loaded or stored value is an first class array or struct, don't try
1099  // to transform them.  We need to be able to bitcast to integer.
1100  if (isa<StructType>(L->getType()) || isa<ArrayType>(L->getType()) ||
1101      isa<StructType>(DepSI->getOperand(0)->getType()) ||
1102      isa<ArrayType>(DepSI->getOperand(0)->getType()))
1103    return -1;
1104
1105  int64_t StoreOffset = 0, LoadOffset = 0;
1106  Value *StoreBase =
1107    GetBaseWithConstantOffset(DepSI->getPointerOperand(), StoreOffset, TD);
1108  Value *LoadBase =
1109    GetBaseWithConstantOffset(L->getPointerOperand(), LoadOffset, TD);
1110  if (StoreBase != LoadBase)
1111    return -1;
1112
1113  // If the load and store are to the exact same address, they should have been
1114  // a must alias.  AA must have gotten confused.
1115  // FIXME: Study to see if/when this happens.
1116  if (LoadOffset == StoreOffset) {
1117#if 0
1118    errs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
1119    << "Base       = " << *StoreBase << "\n"
1120    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1121    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1122    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1123    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1124    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1125    << *L->getParent();
1126#endif
1127    return -1;
1128  }
1129
1130  // If the load and store don't overlap at all, the store doesn't provide
1131  // anything to the load.  In this case, they really don't alias at all, AA
1132  // must have gotten confused.
1133  // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
1134  // remove this check, as it is duplicated with what we have below.
1135  uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
1136  uint64_t LoadSize = TD.getTypeSizeInBits(L->getType());
1137
1138  if ((StoreSize & 7) | (LoadSize & 7))
1139    return -1;
1140  StoreSize >>= 3;  // Convert to bytes.
1141  LoadSize >>= 3;
1142
1143
1144  bool isAAFailure = false;
1145  if (StoreOffset < LoadOffset) {
1146    isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
1147  } else {
1148    isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
1149  }
1150  if (isAAFailure) {
1151#if 0
1152    errs() << "STORE LOAD DEP WITH COMMON BASE:\n"
1153    << "Base       = " << *StoreBase << "\n"
1154    << "Store Ptr  = " << *DepSI->getPointerOperand() << "\n"
1155    << "Store Offs = " << StoreOffset << " - " << *DepSI << "\n"
1156    << "Load Ptr   = " << *L->getPointerOperand() << "\n"
1157    << "Load Offs  = " << LoadOffset << " - " << *L << "\n\n";
1158    errs() << "'" << L->getParent()->getParent()->getName() << "'"
1159    << *L->getParent();
1160#endif
1161    return -1;
1162  }
1163
1164  // If the Load isn't completely contained within the stored bits, we don't
1165  // have all the bits to feed it.  We could do something crazy in the future
1166  // (issue a smaller load then merge the bits in) but this seems unlikely to be
1167  // valuable.
1168  if (StoreOffset > LoadOffset ||
1169      StoreOffset+StoreSize < LoadOffset+LoadSize)
1170    return -1;
1171
1172  // Okay, we can do this transformation.  Return the number of bytes into the
1173  // store that the load is.
1174  return LoadOffset-StoreOffset;
1175}
1176
1177
1178/// GetStoreValueForLoad - This function is called when we have a
1179/// memdep query of a load that ends up being a clobbering store.  This means
1180/// that the store *may* provide bits used by the load but we can't be sure
1181/// because the pointers don't mustalias.  Check this case to see if there is
1182/// anything more we can do before we give up.
1183static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
1184                                   const Type *LoadTy,
1185                                   Instruction *InsertPt, const TargetData &TD){
1186  LLVMContext &Ctx = SrcVal->getType()->getContext();
1187
1188  uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
1189  uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
1190
1191
1192  // Compute which bits of the stored value are being used by the load.  Convert
1193  // to an integer type to start with.
1194  if (isa<PointerType>(SrcVal->getType()))
1195    SrcVal = new PtrToIntInst(SrcVal, TD.getIntPtrType(Ctx), "tmp", InsertPt);
1196  if (!isa<IntegerType>(SrcVal->getType()))
1197    SrcVal = new BitCastInst(SrcVal, IntegerType::get(Ctx, StoreSize*8),
1198                             "tmp", InsertPt);
1199
1200  // Shift the bits to the least significant depending on endianness.
1201  unsigned ShiftAmt;
1202  if (TD.isLittleEndian()) {
1203    ShiftAmt = Offset*8;
1204  } else {
1205    ShiftAmt = (StoreSize-LoadSize-Offset)*8;
1206  }
1207
1208  if (ShiftAmt)
1209    SrcVal = BinaryOperator::CreateLShr(SrcVal,
1210                ConstantInt::get(SrcVal->getType(), ShiftAmt), "tmp", InsertPt);
1211
1212  if (LoadSize != StoreSize)
1213    SrcVal = new TruncInst(SrcVal, IntegerType::get(Ctx, LoadSize*8),
1214                           "tmp", InsertPt);
1215
1216  return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
1217}
1218
1219struct AvailableValueInBlock {
1220  /// BB - The basic block in question.
1221  BasicBlock *BB;
1222  /// V - The value that is live out of the block.
1223  Value *V;
1224  /// Offset - The byte offset in V that is interesting for the load query.
1225  unsigned Offset;
1226
1227  static AvailableValueInBlock get(BasicBlock *BB, Value *V,
1228                                   unsigned Offset = 0) {
1229    AvailableValueInBlock Res;
1230    Res.BB = BB;
1231    Res.V = V;
1232    Res.Offset = Offset;
1233    return Res;
1234  }
1235};
1236
1237/// GetAvailableBlockValues - Given the ValuesPerBlock list, convert all of the
1238/// available values to values of the expected LoadTy in their blocks and insert
1239/// the new values into BlockReplValues.
1240static void
1241GetAvailableBlockValues(DenseMap<BasicBlock*, Value*> &BlockReplValues,
1242                  const SmallVector<AvailableValueInBlock, 16> &ValuesPerBlock,
1243                        const Type *LoadTy,
1244                        const TargetData *TD) {
1245
1246  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1247    BasicBlock *BB = ValuesPerBlock[i].BB;
1248    Value *AvailableVal = ValuesPerBlock[i].V;
1249    unsigned Offset = ValuesPerBlock[i].Offset;
1250
1251    Value *&BlockEntry = BlockReplValues[BB];
1252    if (BlockEntry) continue;
1253
1254    if (AvailableVal->getType() != LoadTy) {
1255      assert(TD && "Need target data to handle type mismatch case");
1256      AvailableVal = GetStoreValueForLoad(AvailableVal, Offset, LoadTy,
1257                                          BB->getTerminator(), *TD);
1258
1259      if (Offset) {
1260        DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1261            << *ValuesPerBlock[i].V << '\n'
1262            << *AvailableVal << '\n' << "\n\n\n");
1263      }
1264
1265
1266      DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1267                   << *ValuesPerBlock[i].V << '\n'
1268                   << *AvailableVal << '\n' << "\n\n\n");
1269    }
1270    BlockEntry = AvailableVal;
1271  }
1272}
1273
1274/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1275/// non-local by performing PHI construction.
1276bool GVN::processNonLocalLoad(LoadInst *LI,
1277                              SmallVectorImpl<Instruction*> &toErase) {
1278  // Find the non-local dependencies of the load.
1279  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1280  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1281                                   Deps);
1282  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1283  //             << Deps.size() << *LI << '\n');
1284
1285  // If we had to process more than one hundred blocks to find the
1286  // dependencies, this load isn't worth worrying about.  Optimizing
1287  // it will be too expensive.
1288  if (Deps.size() > 100)
1289    return false;
1290
1291  // If we had a phi translation failure, we'll have a single entry which is a
1292  // clobber in the current block.  Reject this early.
1293  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1294    DEBUG(
1295      errs() << "GVN: non-local load ";
1296      WriteAsOperand(errs(), LI);
1297      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1298    );
1299    return false;
1300  }
1301
1302  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1303  // where we have a value available in repl, also keep track of whether we see
1304  // dependencies that produce an unknown value for the load (such as a call
1305  // that could potentially clobber the load).
1306  SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
1307  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1308
1309  const TargetData *TD = 0;
1310
1311  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1312    BasicBlock *DepBB = Deps[i].first;
1313    MemDepResult DepInfo = Deps[i].second;
1314
1315    if (DepInfo.isClobber()) {
1316      // If the dependence is to a store that writes to a superset of the bits
1317      // read by the load, we can extract the bits we need for the load from the
1318      // stored value.
1319      if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
1320        if (TD == 0)
1321          TD = getAnalysisIfAvailable<TargetData>();
1322        if (TD) {
1323          int Offset = AnalyzeLoadFromClobberingStore(LI, DepSI, *TD);
1324          if (Offset != -1) {
1325            ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1326                                                           DepSI->getOperand(0),
1327                                                                Offset));
1328            continue;
1329          }
1330        }
1331      }
1332
1333      // FIXME: Handle memset/memcpy.
1334      UnavailableBlocks.push_back(DepBB);
1335      continue;
1336    }
1337
1338    Instruction *DepInst = DepInfo.getInst();
1339
1340    // Loading the allocation -> undef.
1341    if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1342      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1343                                             UndefValue::get(LI->getType())));
1344      continue;
1345    }
1346
1347    if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1348      // Reject loads and stores that are to the same address but are of
1349      // different types if we have to.
1350      if (S->getOperand(0)->getType() != LI->getType()) {
1351        if (TD == 0)
1352          TD = getAnalysisIfAvailable<TargetData>();
1353
1354        // If the stored value is larger or equal to the loaded value, we can
1355        // reuse it.
1356        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
1357                                                        LI->getType(), *TD)) {
1358          UnavailableBlocks.push_back(DepBB);
1359          continue;
1360        }
1361      }
1362
1363      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1364                                                          S->getOperand(0)));
1365      continue;
1366    }
1367
1368    if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1369      // If the types mismatch and we can't handle it, reject reuse of the load.
1370      if (LD->getType() != LI->getType()) {
1371        if (TD == 0)
1372          TD = getAnalysisIfAvailable<TargetData>();
1373
1374        // If the stored value is larger or equal to the loaded value, we can
1375        // reuse it.
1376        if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
1377          UnavailableBlocks.push_back(DepBB);
1378          continue;
1379        }
1380      }
1381      ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
1382      continue;
1383    }
1384
1385    UnavailableBlocks.push_back(DepBB);
1386    continue;
1387  }
1388
1389  // If we have no predecessors that produce a known value for this load, exit
1390  // early.
1391  if (ValuesPerBlock.empty()) return false;
1392
1393  // If all of the instructions we depend on produce a known value for this
1394  // load, then it is fully redundant and we can use PHI insertion to compute
1395  // its value.  Insert PHIs and remove the fully redundant value now.
1396  if (UnavailableBlocks.empty()) {
1397    // Use cached PHI construction information from previous runs
1398    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1399    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1400    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1401         I != E; ++I) {
1402      if ((*I)->getParent() == LI->getParent()) {
1403        DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD #1: " << *LI << '\n');
1404        LI->replaceAllUsesWith(*I);
1405        if (isa<PointerType>((*I)->getType()))
1406          MD->invalidateCachedPointerInfo(*I);
1407        toErase.push_back(LI);
1408        NumGVNLoad++;
1409        return true;
1410      }
1411
1412      ValuesPerBlock.push_back(AvailableValueInBlock::get((*I)->getParent(),
1413                                                          *I));
1414    }
1415
1416    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1417
1418    // Convert the block information to a map, and insert coersions as needed.
1419    DenseMap<BasicBlock*, Value*> BlockReplValues;
1420    GetAvailableBlockValues(BlockReplValues, ValuesPerBlock, LI->getType(), TD);
1421
1422    // Perform PHI construction.
1423    Value *V = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1424    LI->replaceAllUsesWith(V);
1425
1426    if (isa<PHINode>(V))
1427      V->takeName(LI);
1428    if (isa<PointerType>(V->getType()))
1429      MD->invalidateCachedPointerInfo(V);
1430    toErase.push_back(LI);
1431    NumGVNLoad++;
1432    return true;
1433  }
1434
1435  if (!EnablePRE || !EnableLoadPRE)
1436    return false;
1437
1438  // Okay, we have *some* definitions of the value.  This means that the value
1439  // is available in some of our (transitive) predecessors.  Lets think about
1440  // doing PRE of this load.  This will involve inserting a new load into the
1441  // predecessor when it's not available.  We could do this in general, but
1442  // prefer to not increase code size.  As such, we only do this when we know
1443  // that we only have to insert *one* load (which means we're basically moving
1444  // the load, not inserting a new one).
1445
1446  SmallPtrSet<BasicBlock *, 4> Blockers;
1447  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1448    Blockers.insert(UnavailableBlocks[i]);
1449
1450  // Lets find first basic block with more than one predecessor.  Walk backwards
1451  // through predecessors if needed.
1452  BasicBlock *LoadBB = LI->getParent();
1453  BasicBlock *TmpBB = LoadBB;
1454
1455  bool isSinglePred = false;
1456  bool allSingleSucc = true;
1457  while (TmpBB->getSinglePredecessor()) {
1458    isSinglePred = true;
1459    TmpBB = TmpBB->getSinglePredecessor();
1460    if (!TmpBB) // If haven't found any, bail now.
1461      return false;
1462    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1463      return false;
1464    if (Blockers.count(TmpBB))
1465      return false;
1466    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1467      allSingleSucc = false;
1468  }
1469
1470  assert(TmpBB);
1471  LoadBB = TmpBB;
1472
1473  // If we have a repl set with LI itself in it, this means we have a loop where
1474  // at least one of the values is LI.  Since this means that we won't be able
1475  // to eliminate LI even if we insert uses in the other predecessors, we will
1476  // end up increasing code size.  Reject this by scanning for LI.
1477  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1478    if (ValuesPerBlock[i].V == LI)
1479      return false;
1480
1481  if (isSinglePred) {
1482    bool isHot = false;
1483    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1484      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].V))
1485        // "Hot" Instruction is in some loop (because it dominates its dep.
1486        // instruction).
1487        if (DT->dominates(LI, I)) {
1488          isHot = true;
1489          break;
1490        }
1491
1492    // We are interested only in "hot" instructions. We don't want to do any
1493    // mis-optimizations here.
1494    if (!isHot)
1495      return false;
1496  }
1497
1498  // Okay, we have some hope :).  Check to see if the loaded value is fully
1499  // available in all but one predecessor.
1500  // FIXME: If we could restructure the CFG, we could make a common pred with
1501  // all the preds that don't have an available LI and insert a new load into
1502  // that one block.
1503  BasicBlock *UnavailablePred = 0;
1504
1505  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1506  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1507    FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
1508  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1509    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1510
1511  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1512       PI != E; ++PI) {
1513    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1514      continue;
1515
1516    // If this load is not available in multiple predecessors, reject it.
1517    if (UnavailablePred && UnavailablePred != *PI)
1518      return false;
1519    UnavailablePred = *PI;
1520  }
1521
1522  assert(UnavailablePred != 0 &&
1523         "Fully available value should be eliminated above!");
1524
1525  // If the loaded pointer is PHI node defined in this block, do PHI translation
1526  // to get its value in the predecessor.
1527  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1528
1529  // Make sure the value is live in the predecessor.  If it was defined by a
1530  // non-PHI instruction in this block, we don't know how to recompute it above.
1531  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1532    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1533      DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1534                   << *LPInst << '\n' << *LI << "\n");
1535      return false;
1536    }
1537
1538  // We don't currently handle critical edges :(
1539  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1540    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1541                 << UnavailablePred->getName() << "': " << *LI << '\n');
1542    return false;
1543  }
1544
1545  // Make sure it is valid to move this load here.  We have to watch out for:
1546  //  @1 = getelementptr (i8* p, ...
1547  //  test p and branch if == 0
1548  //  load @1
1549  // It is valid to have the getelementptr before the test, even if p can be 0,
1550  // as getelementptr only does address arithmetic.
1551  // If we are not pushing the value through any multiple-successor blocks
1552  // we do not have this case.  Otherwise, check that the load is safe to
1553  // put anywhere; this can be improved, but should be conservatively safe.
1554  if (!allSingleSucc &&
1555      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1556    return false;
1557
1558  // Okay, we can eliminate this load by inserting a reload in the predecessor
1559  // and using PHI construction to get the value in the other predecessors, do
1560  // it.
1561  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1562
1563  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1564                                LI->getAlignment(),
1565                                UnavailablePred->getTerminator());
1566
1567  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1568  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1569       I != E; ++I)
1570    ValuesPerBlock.push_back(AvailableValueInBlock::get((*I)->getParent(), *I));
1571
1572  DenseMap<BasicBlock*, Value*> BlockReplValues;
1573  GetAvailableBlockValues(BlockReplValues, ValuesPerBlock, LI->getType(), TD);
1574  BlockReplValues[UnavailablePred] = NewLoad;
1575
1576  // Perform PHI construction.
1577  Value *V = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1578  LI->replaceAllUsesWith(V);
1579  if (isa<PHINode>(V))
1580    V->takeName(LI);
1581  if (isa<PointerType>(V->getType()))
1582    MD->invalidateCachedPointerInfo(V);
1583  toErase.push_back(LI);
1584  NumPRELoad++;
1585  return true;
1586}
1587
1588/// processLoad - Attempt to eliminate a load, first by eliminating it
1589/// locally, and then attempting non-local elimination if that fails.
1590bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1591  if (L->isVolatile())
1592    return false;
1593
1594  // ... to a pointer that has been loaded from before...
1595  MemDepResult Dep = MD->getDependency(L);
1596
1597  // If the value isn't available, don't do anything!
1598  if (Dep.isClobber()) {
1599    // FIXME: We should handle memset/memcpy/memmove as dependent instructions
1600    // to forward the value if available.
1601    //if (isa<MemIntrinsic>(Dep.getInst()))
1602    //errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *Dep.getInst()<<"\n\n";
1603
1604    // Check to see if we have something like this:
1605    //   store i32 123, i32* %P
1606    //   %A = bitcast i32* %P to i8*
1607    //   %B = gep i8* %A, i32 1
1608    //   %C = load i8* %B
1609    //
1610    // We could do that by recognizing if the clobber instructions are obviously
1611    // a common base + constant offset, and if the previous store (or memset)
1612    // completely covers this load.  This sort of thing can happen in bitfield
1613    // access code.
1614    if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
1615      if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
1616        int Offset = AnalyzeLoadFromClobberingStore(L, DepSI, *TD);
1617        if (Offset != -1) {
1618          Value *AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
1619                                                 L->getType(), L, *TD);
1620          DEBUG(errs() << "GVN COERCED STORE BITS:\n" << *DepSI << '\n'
1621                       << *AvailVal << '\n' << *L << "\n\n\n");
1622
1623          // Replace the load!
1624          L->replaceAllUsesWith(AvailVal);
1625          if (isa<PointerType>(AvailVal->getType()))
1626            MD->invalidateCachedPointerInfo(AvailVal);
1627          toErase.push_back(L);
1628          NumGVNLoad++;
1629          return true;
1630        }
1631      }
1632
1633    DEBUG(
1634      // fast print dep, using operator<< on instruction would be too slow
1635      errs() << "GVN: load ";
1636      WriteAsOperand(errs(), L);
1637      Instruction *I = Dep.getInst();
1638      errs() << " is clobbered by " << *I << '\n';
1639    );
1640    return false;
1641  }
1642
1643  // If it is defined in another block, try harder.
1644  if (Dep.isNonLocal())
1645    return processNonLocalLoad(L, toErase);
1646
1647  Instruction *DepInst = Dep.getInst();
1648  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1649    Value *StoredVal = DepSI->getOperand(0);
1650
1651    // The store and load are to a must-aliased pointer, but they may not
1652    // actually have the same type.  See if we know how to reuse the stored
1653    // value (depending on its type).
1654    const TargetData *TD = 0;
1655    if (StoredVal->getType() != L->getType() &&
1656        (TD = getAnalysisIfAvailable<TargetData>())) {
1657      StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
1658                                                 L, *TD);
1659      if (StoredVal == 0)
1660        return false;
1661
1662      DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1663                   << '\n' << *L << "\n\n\n");
1664    }
1665
1666    // Remove it!
1667    L->replaceAllUsesWith(StoredVal);
1668    if (isa<PointerType>(StoredVal->getType()))
1669      MD->invalidateCachedPointerInfo(StoredVal);
1670    toErase.push_back(L);
1671    NumGVNLoad++;
1672    return true;
1673  }
1674
1675  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1676    Value *AvailableVal = DepLI;
1677
1678    // The loads are of a must-aliased pointer, but they may not actually have
1679    // the same type.  See if we know how to reuse the previously loaded value
1680    // (depending on its type).
1681    const TargetData *TD = 0;
1682    if (DepLI->getType() != L->getType() &&
1683        (TD = getAnalysisIfAvailable<TargetData>())) {
1684      AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
1685      if (AvailableVal == 0)
1686        return false;
1687
1688      DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1689                   << "\n" << *L << "\n\n\n");
1690    }
1691
1692    // Remove it!
1693    L->replaceAllUsesWith(AvailableVal);
1694    if (isa<PointerType>(DepLI->getType()))
1695      MD->invalidateCachedPointerInfo(DepLI);
1696    toErase.push_back(L);
1697    NumGVNLoad++;
1698    return true;
1699  }
1700
1701  // If this load really doesn't depend on anything, then we must be loading an
1702  // undef value.  This can happen when loading for a fresh allocation with no
1703  // intervening stores, for example.
1704  if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1705    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1706    toErase.push_back(L);
1707    NumGVNLoad++;
1708    return true;
1709  }
1710
1711  return false;
1712}
1713
1714Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1715  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1716  if (I == localAvail.end())
1717    return 0;
1718
1719  ValueNumberScope *Locals = I->second;
1720  while (Locals) {
1721    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1722    if (I != Locals->table.end())
1723      return I->second;
1724    Locals = Locals->parent;
1725  }
1726
1727  return 0;
1728}
1729
1730/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1731/// by inheritance from the dominator fails, see if we can perform phi
1732/// construction to eliminate the redundancy.
1733Value *GVN::AttemptRedundancyElimination(Instruction *orig, unsigned valno) {
1734  BasicBlock *BaseBlock = orig->getParent();
1735
1736  SmallPtrSet<BasicBlock*, 4> Visited;
1737  SmallVector<BasicBlock*, 8> Stack;
1738  Stack.push_back(BaseBlock);
1739
1740  DenseMap<BasicBlock*, Value*> Results;
1741
1742  // Walk backwards through our predecessors, looking for instances of the
1743  // value number we're looking for.  Instances are recorded in the Results
1744  // map, which is then used to perform phi construction.
1745  while (!Stack.empty()) {
1746    BasicBlock *Current = Stack.back();
1747    Stack.pop_back();
1748
1749    // If we've walked all the way to a proper dominator, then give up. Cases
1750    // where the instance is in the dominator will have been caught by the fast
1751    // path, and any cases that require phi construction further than this are
1752    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1753    // time improvement.
1754    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1755
1756    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1757                                                       localAvail.find(Current);
1758    if (LA == localAvail.end()) return 0;
1759    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1760
1761    if (V != LA->second->table.end()) {
1762      // Found an instance, record it.
1763      Results.insert(std::make_pair(Current, V->second));
1764      continue;
1765    }
1766
1767    // If we reach the beginning of the function, then give up.
1768    if (pred_begin(Current) == pred_end(Current))
1769      return 0;
1770
1771    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1772         PI != PE; ++PI)
1773      if (Visited.insert(*PI))
1774        Stack.push_back(*PI);
1775  }
1776
1777  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1778  if (Results.size() == 0)
1779    return 0;
1780  else
1781    return GetValueForBlock(BaseBlock, orig, Results, true);
1782}
1783
1784/// processInstruction - When calculating availability, handle an instruction
1785/// by inserting it into the appropriate sets
1786bool GVN::processInstruction(Instruction *I,
1787                             SmallVectorImpl<Instruction*> &toErase) {
1788  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1789    bool Changed = processLoad(LI, toErase);
1790
1791    if (!Changed) {
1792      unsigned Num = VN.lookup_or_add(LI);
1793      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1794    }
1795
1796    return Changed;
1797  }
1798
1799  uint32_t NextNum = VN.getNextUnusedValueNumber();
1800  unsigned Num = VN.lookup_or_add(I);
1801
1802  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1803    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1804
1805    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1806      return false;
1807
1808    Value *BranchCond = BI->getCondition();
1809    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1810
1811    BasicBlock *TrueSucc = BI->getSuccessor(0);
1812    BasicBlock *FalseSucc = BI->getSuccessor(1);
1813
1814    if (TrueSucc->getSinglePredecessor())
1815      localAvail[TrueSucc]->table[CondVN] =
1816        ConstantInt::getTrue(TrueSucc->getContext());
1817    if (FalseSucc->getSinglePredecessor())
1818      localAvail[FalseSucc]->table[CondVN] =
1819        ConstantInt::getFalse(TrueSucc->getContext());
1820
1821    return false;
1822
1823  // Allocations are always uniquely numbered, so we can save time and memory
1824  // by fast failing them.
1825  } else if (isa<AllocationInst>(I) || isMalloc(I) || isa<TerminatorInst>(I)) {
1826    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1827    return false;
1828  }
1829
1830  // Collapse PHI nodes
1831  if (PHINode* p = dyn_cast<PHINode>(I)) {
1832    Value *constVal = CollapsePhi(p);
1833
1834    if (constVal) {
1835      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1836           PI != PE; ++PI)
1837        PI->second.erase(p);
1838
1839      p->replaceAllUsesWith(constVal);
1840      if (isa<PointerType>(constVal->getType()))
1841        MD->invalidateCachedPointerInfo(constVal);
1842      VN.erase(p);
1843
1844      toErase.push_back(p);
1845    } else {
1846      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1847    }
1848
1849  // If the number we were assigned was a brand new VN, then we don't
1850  // need to do a lookup to see if the number already exists
1851  // somewhere in the domtree: it can't!
1852  } else if (Num == NextNum) {
1853    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1854
1855  // Perform fast-path value-number based elimination of values inherited from
1856  // dominators.
1857  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1858    // Remove it!
1859    VN.erase(I);
1860    I->replaceAllUsesWith(repl);
1861    if (isa<PointerType>(repl->getType()))
1862      MD->invalidateCachedPointerInfo(repl);
1863    toErase.push_back(I);
1864    return true;
1865
1866#if 0
1867  // Perform slow-pathvalue-number based elimination with phi construction.
1868  } else if (Value *repl = AttemptRedundancyElimination(I, Num)) {
1869    // Remove it!
1870    VN.erase(I);
1871    I->replaceAllUsesWith(repl);
1872    if (isa<PointerType>(repl->getType()))
1873      MD->invalidateCachedPointerInfo(repl);
1874    toErase.push_back(I);
1875    return true;
1876#endif
1877  } else {
1878    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1879  }
1880
1881  return false;
1882}
1883
1884/// runOnFunction - This is the main transformation entry point for a function.
1885bool GVN::runOnFunction(Function& F) {
1886  MD = &getAnalysis<MemoryDependenceAnalysis>();
1887  DT = &getAnalysis<DominatorTree>();
1888  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1889  VN.setMemDep(MD);
1890  VN.setDomTree(DT);
1891
1892  bool Changed = false;
1893  bool ShouldContinue = true;
1894
1895  // Merge unconditional branches, allowing PRE to catch more
1896  // optimization opportunities.
1897  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1898    BasicBlock *BB = FI;
1899    ++FI;
1900    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1901    if (removedBlock) NumGVNBlocks++;
1902
1903    Changed |= removedBlock;
1904  }
1905
1906  unsigned Iteration = 0;
1907
1908  while (ShouldContinue) {
1909    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1910    ShouldContinue = iterateOnFunction(F);
1911    Changed |= ShouldContinue;
1912    ++Iteration;
1913  }
1914
1915  if (EnablePRE) {
1916    bool PREChanged = true;
1917    while (PREChanged) {
1918      PREChanged = performPRE(F);
1919      Changed |= PREChanged;
1920    }
1921  }
1922  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1923  // computations into blocks where they become fully redundant.  Note that
1924  // we can't do this until PRE's critical edge splitting updates memdep.
1925  // Actually, when this happens, we should just fully integrate PRE into GVN.
1926
1927  cleanupGlobalSets();
1928
1929  return Changed;
1930}
1931
1932
1933bool GVN::processBlock(BasicBlock *BB) {
1934  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1935  // incrementing BI before processing an instruction).
1936  SmallVector<Instruction*, 8> toErase;
1937  bool ChangedFunction = false;
1938
1939  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1940       BI != BE;) {
1941    ChangedFunction |= processInstruction(BI, toErase);
1942    if (toErase.empty()) {
1943      ++BI;
1944      continue;
1945    }
1946
1947    // If we need some instructions deleted, do it now.
1948    NumGVNInstr += toErase.size();
1949
1950    // Avoid iterator invalidation.
1951    bool AtStart = BI == BB->begin();
1952    if (!AtStart)
1953      --BI;
1954
1955    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1956         E = toErase.end(); I != E; ++I) {
1957      DEBUG(errs() << "GVN removed: " << **I << '\n');
1958      MD->removeInstruction(*I);
1959      (*I)->eraseFromParent();
1960      DEBUG(verifyRemoved(*I));
1961    }
1962    toErase.clear();
1963
1964    if (AtStart)
1965      BI = BB->begin();
1966    else
1967      ++BI;
1968  }
1969
1970  return ChangedFunction;
1971}
1972
1973/// performPRE - Perform a purely local form of PRE that looks for diamond
1974/// control flow patterns and attempts to perform simple PRE at the join point.
1975bool GVN::performPRE(Function& F) {
1976  bool Changed = false;
1977  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1978  DenseMap<BasicBlock*, Value*> predMap;
1979  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1980       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1981    BasicBlock *CurrentBlock = *DI;
1982
1983    // Nothing to PRE in the entry block.
1984    if (CurrentBlock == &F.getEntryBlock()) continue;
1985
1986    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1987         BE = CurrentBlock->end(); BI != BE; ) {
1988      Instruction *CurInst = BI++;
1989
1990      if (isa<AllocationInst>(CurInst) || isMalloc(CurInst) ||
1991          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1992          (CurInst->getType() == Type::getVoidTy(F.getContext())) ||
1993          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1994          isa<DbgInfoIntrinsic>(CurInst))
1995        continue;
1996
1997      uint32_t ValNo = VN.lookup(CurInst);
1998
1999      // Look for the predecessors for PRE opportunities.  We're
2000      // only trying to solve the basic diamond case, where
2001      // a value is computed in the successor and one predecessor,
2002      // but not the other.  We also explicitly disallow cases
2003      // where the successor is its own predecessor, because they're
2004      // more complicated to get right.
2005      unsigned NumWith = 0;
2006      unsigned NumWithout = 0;
2007      BasicBlock *PREPred = 0;
2008      predMap.clear();
2009
2010      for (pred_iterator PI = pred_begin(CurrentBlock),
2011           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
2012        // We're not interested in PRE where the block is its
2013        // own predecessor, on in blocks with predecessors
2014        // that are not reachable.
2015        if (*PI == CurrentBlock) {
2016          NumWithout = 2;
2017          break;
2018        } else if (!localAvail.count(*PI))  {
2019          NumWithout = 2;
2020          break;
2021        }
2022
2023        DenseMap<uint32_t, Value*>::iterator predV =
2024                                            localAvail[*PI]->table.find(ValNo);
2025        if (predV == localAvail[*PI]->table.end()) {
2026          PREPred = *PI;
2027          NumWithout++;
2028        } else if (predV->second == CurInst) {
2029          NumWithout = 2;
2030        } else {
2031          predMap[*PI] = predV->second;
2032          NumWith++;
2033        }
2034      }
2035
2036      // Don't do PRE when it might increase code size, i.e. when
2037      // we would need to insert instructions in more than one pred.
2038      if (NumWithout != 1 || NumWith == 0)
2039        continue;
2040
2041      // We can't do PRE safely on a critical edge, so instead we schedule
2042      // the edge to be split and perform the PRE the next time we iterate
2043      // on the function.
2044      unsigned SuccNum = 0;
2045      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
2046           i != e; ++i)
2047        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
2048          SuccNum = i;
2049          break;
2050        }
2051
2052      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2053        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2054        continue;
2055      }
2056
2057      // Instantiate the expression the in predecessor that lacked it.
2058      // Because we are going top-down through the block, all value numbers
2059      // will be available in the predecessor by the time we need them.  Any
2060      // that weren't original present will have been instantiated earlier
2061      // in this loop.
2062      Instruction *PREInstr = CurInst->clone(CurInst->getContext());
2063      bool success = true;
2064      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
2065        Value *Op = PREInstr->getOperand(i);
2066        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2067          continue;
2068
2069        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
2070          PREInstr->setOperand(i, V);
2071        } else {
2072          success = false;
2073          break;
2074        }
2075      }
2076
2077      // Fail out if we encounter an operand that is not available in
2078      // the PRE predecessor.  This is typically because of loads which
2079      // are not value numbered precisely.
2080      if (!success) {
2081        delete PREInstr;
2082        DEBUG(verifyRemoved(PREInstr));
2083        continue;
2084      }
2085
2086      PREInstr->insertBefore(PREPred->getTerminator());
2087      PREInstr->setName(CurInst->getName() + ".pre");
2088      predMap[PREPred] = PREInstr;
2089      VN.add(PREInstr, ValNo);
2090      NumGVNPRE++;
2091
2092      // Update the availability map to include the new instruction.
2093      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
2094
2095      // Create a PHI to make the value available in this block.
2096      PHINode* Phi = PHINode::Create(CurInst->getType(),
2097                                     CurInst->getName() + ".pre-phi",
2098                                     CurrentBlock->begin());
2099      for (pred_iterator PI = pred_begin(CurrentBlock),
2100           PE = pred_end(CurrentBlock); PI != PE; ++PI)
2101        Phi->addIncoming(predMap[*PI], *PI);
2102
2103      VN.add(Phi, ValNo);
2104      localAvail[CurrentBlock]->table[ValNo] = Phi;
2105
2106      CurInst->replaceAllUsesWith(Phi);
2107      if (isa<PointerType>(Phi->getType()))
2108        MD->invalidateCachedPointerInfo(Phi);
2109      VN.erase(CurInst);
2110
2111      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
2112      MD->removeInstruction(CurInst);
2113      CurInst->eraseFromParent();
2114      DEBUG(verifyRemoved(CurInst));
2115      Changed = true;
2116    }
2117  }
2118
2119  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
2120       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
2121    SplitCriticalEdge(I->first, I->second, this);
2122
2123  return Changed || toSplit.size();
2124}
2125
2126/// iterateOnFunction - Executes one iteration of GVN
2127bool GVN::iterateOnFunction(Function &F) {
2128  cleanupGlobalSets();
2129
2130  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2131       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
2132    if (DI->getIDom())
2133      localAvail[DI->getBlock()] =
2134                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
2135    else
2136      localAvail[DI->getBlock()] = new ValueNumberScope(0);
2137  }
2138
2139  // Top-down walk of the dominator tree
2140  bool Changed = false;
2141#if 0
2142  // Needed for value numbering with phi construction to work.
2143  ReversePostOrderTraversal<Function*> RPOT(&F);
2144  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
2145       RE = RPOT.end(); RI != RE; ++RI)
2146    Changed |= processBlock(*RI);
2147#else
2148  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
2149       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
2150    Changed |= processBlock(DI->getBlock());
2151#endif
2152
2153  return Changed;
2154}
2155
2156void GVN::cleanupGlobalSets() {
2157  VN.clear();
2158  phiMap.clear();
2159
2160  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2161       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
2162    delete I->second;
2163  localAvail.clear();
2164}
2165
2166/// verifyRemoved - Verify that the specified instruction does not occur in our
2167/// internal data structures.
2168void GVN::verifyRemoved(const Instruction *Inst) const {
2169  VN.verifyRemoved(Inst);
2170
2171  // Walk through the PHI map to make sure the instruction isn't hiding in there
2172  // somewhere.
2173  for (PhiMapType::iterator
2174         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
2175    assert(I->first != Inst && "Inst is still a key in PHI map!");
2176
2177    for (SmallPtrSet<Instruction*, 4>::iterator
2178           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
2179      assert(*II != Inst && "Inst is still a value in PHI map!");
2180    }
2181  }
2182
2183  // Walk through the value number scope to make sure the instruction isn't
2184  // ferreted away in it.
2185  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
2186         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
2187    const ValueNumberScope *VNS = I->second;
2188
2189    while (VNS) {
2190      for (DenseMap<uint32_t, Value*>::iterator
2191             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
2192        assert(II->second != Inst && "Inst still in value numbering scope!");
2193      }
2194
2195      VNS = VNS->parent;
2196    }
2197  }
2198}
2199