GVN.cpp revision b2412a8bec5a6e9827dabe916df811c07753d174
1//===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global value numbering to eliminate fully redundant
11// instructions.  It also performs simple dead load elimination.
12//
13// Note that this pass does the value numbering itself; it does not use the
14// ValueNumbering analysis passes.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "gvn"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/BasicBlock.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Value.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/PostOrderIterator.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/MallocHelper.h"
36#include "llvm/Analysis/MemoryDependenceAnalysis.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include <cstdio>
46using namespace llvm;
47
48STATISTIC(NumGVNInstr,  "Number of instructions deleted");
49STATISTIC(NumGVNLoad,   "Number of loads deleted");
50STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
51STATISTIC(NumGVNBlocks, "Number of blocks merged");
52STATISTIC(NumPRELoad,   "Number of loads PRE'd");
53
54static cl::opt<bool> EnablePRE("enable-pre",
55                               cl::init(true), cl::Hidden);
56static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
57
58//===----------------------------------------------------------------------===//
59//                         ValueTable Class
60//===----------------------------------------------------------------------===//
61
62/// This class holds the mapping between values and value numbers.  It is used
63/// as an efficient mechanism to determine the expression-wise equivalence of
64/// two values.
65namespace {
66  struct Expression {
67    enum ExpressionOpcode { ADD, FADD, SUB, FSUB, MUL, FMUL,
68                            UDIV, SDIV, FDIV, UREM, SREM,
69                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
70                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
71                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
72                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
73                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
74                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
75                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
76                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
77                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, CONSTANT,
78                            EMPTY, TOMBSTONE };
79
80    ExpressionOpcode opcode;
81    const Type* type;
82    uint32_t firstVN;
83    uint32_t secondVN;
84    uint32_t thirdVN;
85    SmallVector<uint32_t, 4> varargs;
86    Value *function;
87
88    Expression() { }
89    Expression(ExpressionOpcode o) : opcode(o) { }
90
91    bool operator==(const Expression &other) const {
92      if (opcode != other.opcode)
93        return false;
94      else if (opcode == EMPTY || opcode == TOMBSTONE)
95        return true;
96      else if (type != other.type)
97        return false;
98      else if (function != other.function)
99        return false;
100      else if (firstVN != other.firstVN)
101        return false;
102      else if (secondVN != other.secondVN)
103        return false;
104      else if (thirdVN != other.thirdVN)
105        return false;
106      else {
107        if (varargs.size() != other.varargs.size())
108          return false;
109
110        for (size_t i = 0; i < varargs.size(); ++i)
111          if (varargs[i] != other.varargs[i])
112            return false;
113
114        return true;
115      }
116    }
117
118    bool operator!=(const Expression &other) const {
119      return !(*this == other);
120    }
121  };
122
123  class ValueTable {
124    private:
125      DenseMap<Value*, uint32_t> valueNumbering;
126      DenseMap<Expression, uint32_t> expressionNumbering;
127      AliasAnalysis* AA;
128      MemoryDependenceAnalysis* MD;
129      DominatorTree* DT;
130
131      uint32_t nextValueNumber;
132
133      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
134      Expression::ExpressionOpcode getOpcode(CmpInst* C);
135      Expression::ExpressionOpcode getOpcode(CastInst* C);
136      Expression create_expression(BinaryOperator* BO);
137      Expression create_expression(CmpInst* C);
138      Expression create_expression(ShuffleVectorInst* V);
139      Expression create_expression(ExtractElementInst* C);
140      Expression create_expression(InsertElementInst* V);
141      Expression create_expression(SelectInst* V);
142      Expression create_expression(CastInst* C);
143      Expression create_expression(GetElementPtrInst* G);
144      Expression create_expression(CallInst* C);
145      Expression create_expression(Constant* C);
146    public:
147      ValueTable() : nextValueNumber(1) { }
148      uint32_t lookup_or_add(Value *V);
149      uint32_t lookup(Value *V) const;
150      void add(Value *V, uint32_t num);
151      void clear();
152      void erase(Value *v);
153      unsigned size();
154      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
155      AliasAnalysis *getAliasAnalysis() const { return AA; }
156      void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
157      void setDomTree(DominatorTree* D) { DT = D; }
158      uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
159      void verifyRemoved(const Value *) const;
160  };
161}
162
163namespace llvm {
164template <> struct DenseMapInfo<Expression> {
165  static inline Expression getEmptyKey() {
166    return Expression(Expression::EMPTY);
167  }
168
169  static inline Expression getTombstoneKey() {
170    return Expression(Expression::TOMBSTONE);
171  }
172
173  static unsigned getHashValue(const Expression e) {
174    unsigned hash = e.opcode;
175
176    hash = e.firstVN + hash * 37;
177    hash = e.secondVN + hash * 37;
178    hash = e.thirdVN + hash * 37;
179
180    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
181            (unsigned)((uintptr_t)e.type >> 9)) +
182           hash * 37;
183
184    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
185         E = e.varargs.end(); I != E; ++I)
186      hash = *I + hash * 37;
187
188    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
189            (unsigned)((uintptr_t)e.function >> 9)) +
190           hash * 37;
191
192    return hash;
193  }
194  static bool isEqual(const Expression &LHS, const Expression &RHS) {
195    return LHS == RHS;
196  }
197  static bool isPod() { return true; }
198};
199}
200
201//===----------------------------------------------------------------------===//
202//                     ValueTable Internal Functions
203//===----------------------------------------------------------------------===//
204Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
205  switch(BO->getOpcode()) {
206  default: // THIS SHOULD NEVER HAPPEN
207    llvm_unreachable("Binary operator with unknown opcode?");
208  case Instruction::Add:  return Expression::ADD;
209  case Instruction::FAdd: return Expression::FADD;
210  case Instruction::Sub:  return Expression::SUB;
211  case Instruction::FSub: return Expression::FSUB;
212  case Instruction::Mul:  return Expression::MUL;
213  case Instruction::FMul: return Expression::FMUL;
214  case Instruction::UDiv: return Expression::UDIV;
215  case Instruction::SDiv: return Expression::SDIV;
216  case Instruction::FDiv: return Expression::FDIV;
217  case Instruction::URem: return Expression::UREM;
218  case Instruction::SRem: return Expression::SREM;
219  case Instruction::FRem: return Expression::FREM;
220  case Instruction::Shl:  return Expression::SHL;
221  case Instruction::LShr: return Expression::LSHR;
222  case Instruction::AShr: return Expression::ASHR;
223  case Instruction::And:  return Expression::AND;
224  case Instruction::Or:   return Expression::OR;
225  case Instruction::Xor:  return Expression::XOR;
226  }
227}
228
229Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
230  if (isa<ICmpInst>(C)) {
231    switch (C->getPredicate()) {
232    default:  // THIS SHOULD NEVER HAPPEN
233      llvm_unreachable("Comparison with unknown predicate?");
234    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
235    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
236    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
237    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
238    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
239    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
240    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
241    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
242    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
243    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
244    }
245  } else {
246    switch (C->getPredicate()) {
247    default: // THIS SHOULD NEVER HAPPEN
248      llvm_unreachable("Comparison with unknown predicate?");
249    case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
250    case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
251    case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
252    case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
253    case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
254    case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
255    case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
256    case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
257    case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
258    case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
259    case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
260    case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
261    case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
262    case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
263    }
264  }
265}
266
267Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
268  switch(C->getOpcode()) {
269  default: // THIS SHOULD NEVER HAPPEN
270    llvm_unreachable("Cast operator with unknown opcode?");
271  case Instruction::Trunc:    return Expression::TRUNC;
272  case Instruction::ZExt:     return Expression::ZEXT;
273  case Instruction::SExt:     return Expression::SEXT;
274  case Instruction::FPToUI:   return Expression::FPTOUI;
275  case Instruction::FPToSI:   return Expression::FPTOSI;
276  case Instruction::UIToFP:   return Expression::UITOFP;
277  case Instruction::SIToFP:   return Expression::SITOFP;
278  case Instruction::FPTrunc:  return Expression::FPTRUNC;
279  case Instruction::FPExt:    return Expression::FPEXT;
280  case Instruction::PtrToInt: return Expression::PTRTOINT;
281  case Instruction::IntToPtr: return Expression::INTTOPTR;
282  case Instruction::BitCast:  return Expression::BITCAST;
283  }
284}
285
286Expression ValueTable::create_expression(CallInst* C) {
287  Expression e;
288
289  e.type = C->getType();
290  e.firstVN = 0;
291  e.secondVN = 0;
292  e.thirdVN = 0;
293  e.function = C->getCalledFunction();
294  e.opcode = Expression::CALL;
295
296  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
297       I != E; ++I)
298    e.varargs.push_back(lookup_or_add(*I));
299
300  return e;
301}
302
303Expression ValueTable::create_expression(BinaryOperator* BO) {
304  Expression e;
305
306  e.firstVN = lookup_or_add(BO->getOperand(0));
307  e.secondVN = lookup_or_add(BO->getOperand(1));
308  e.thirdVN = 0;
309  e.function = 0;
310  e.type = BO->getType();
311  e.opcode = getOpcode(BO);
312
313  return e;
314}
315
316Expression ValueTable::create_expression(CmpInst* C) {
317  Expression e;
318
319  e.firstVN = lookup_or_add(C->getOperand(0));
320  e.secondVN = lookup_or_add(C->getOperand(1));
321  e.thirdVN = 0;
322  e.function = 0;
323  e.type = C->getType();
324  e.opcode = getOpcode(C);
325
326  return e;
327}
328
329Expression ValueTable::create_expression(CastInst* C) {
330  Expression e;
331
332  e.firstVN = lookup_or_add(C->getOperand(0));
333  e.secondVN = 0;
334  e.thirdVN = 0;
335  e.function = 0;
336  e.type = C->getType();
337  e.opcode = getOpcode(C);
338
339  return e;
340}
341
342Expression ValueTable::create_expression(ShuffleVectorInst* S) {
343  Expression e;
344
345  e.firstVN = lookup_or_add(S->getOperand(0));
346  e.secondVN = lookup_or_add(S->getOperand(1));
347  e.thirdVN = lookup_or_add(S->getOperand(2));
348  e.function = 0;
349  e.type = S->getType();
350  e.opcode = Expression::SHUFFLE;
351
352  return e;
353}
354
355Expression ValueTable::create_expression(ExtractElementInst* E) {
356  Expression e;
357
358  e.firstVN = lookup_or_add(E->getOperand(0));
359  e.secondVN = lookup_or_add(E->getOperand(1));
360  e.thirdVN = 0;
361  e.function = 0;
362  e.type = E->getType();
363  e.opcode = Expression::EXTRACT;
364
365  return e;
366}
367
368Expression ValueTable::create_expression(InsertElementInst* I) {
369  Expression e;
370
371  e.firstVN = lookup_or_add(I->getOperand(0));
372  e.secondVN = lookup_or_add(I->getOperand(1));
373  e.thirdVN = lookup_or_add(I->getOperand(2));
374  e.function = 0;
375  e.type = I->getType();
376  e.opcode = Expression::INSERT;
377
378  return e;
379}
380
381Expression ValueTable::create_expression(SelectInst* I) {
382  Expression e;
383
384  e.firstVN = lookup_or_add(I->getCondition());
385  e.secondVN = lookup_or_add(I->getTrueValue());
386  e.thirdVN = lookup_or_add(I->getFalseValue());
387  e.function = 0;
388  e.type = I->getType();
389  e.opcode = Expression::SELECT;
390
391  return e;
392}
393
394Expression ValueTable::create_expression(GetElementPtrInst* G) {
395  Expression e;
396
397  e.firstVN = lookup_or_add(G->getPointerOperand());
398  e.secondVN = 0;
399  e.thirdVN = 0;
400  e.function = 0;
401  e.type = G->getType();
402  e.opcode = Expression::GEP;
403
404  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
405       I != E; ++I)
406    e.varargs.push_back(lookup_or_add(*I));
407
408  return e;
409}
410
411//===----------------------------------------------------------------------===//
412//                     ValueTable External Functions
413//===----------------------------------------------------------------------===//
414
415/// add - Insert a value into the table with a specified value number.
416void ValueTable::add(Value *V, uint32_t num) {
417  valueNumbering.insert(std::make_pair(V, num));
418}
419
420/// lookup_or_add - Returns the value number for the specified value, assigning
421/// it a new number if it did not have one before.
422uint32_t ValueTable::lookup_or_add(Value *V) {
423  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
424  if (VI != valueNumbering.end())
425    return VI->second;
426
427  if (CallInst* C = dyn_cast<CallInst>(V)) {
428    if (AA->doesNotAccessMemory(C)) {
429      Expression e = create_expression(C);
430
431      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
432      if (EI != expressionNumbering.end()) {
433        valueNumbering.insert(std::make_pair(V, EI->second));
434        return EI->second;
435      } else {
436        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
437        valueNumbering.insert(std::make_pair(V, nextValueNumber));
438
439        return nextValueNumber++;
440      }
441    } else if (AA->onlyReadsMemory(C)) {
442      Expression e = create_expression(C);
443
444      if (expressionNumbering.find(e) == expressionNumbering.end()) {
445        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
446        valueNumbering.insert(std::make_pair(V, nextValueNumber));
447        return nextValueNumber++;
448      }
449
450      MemDepResult local_dep = MD->getDependency(C);
451
452      if (!local_dep.isDef() && !local_dep.isNonLocal()) {
453        valueNumbering.insert(std::make_pair(V, nextValueNumber));
454        return nextValueNumber++;
455      }
456
457      if (local_dep.isDef()) {
458        CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
459
460        if (local_cdep->getNumOperands() != C->getNumOperands()) {
461          valueNumbering.insert(std::make_pair(V, nextValueNumber));
462          return nextValueNumber++;
463        }
464
465        for (unsigned i = 1; i < C->getNumOperands(); ++i) {
466          uint32_t c_vn = lookup_or_add(C->getOperand(i));
467          uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
468          if (c_vn != cd_vn) {
469            valueNumbering.insert(std::make_pair(V, nextValueNumber));
470            return nextValueNumber++;
471          }
472        }
473
474        uint32_t v = lookup_or_add(local_cdep);
475        valueNumbering.insert(std::make_pair(V, v));
476        return v;
477      }
478
479      // Non-local case.
480      const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
481        MD->getNonLocalCallDependency(CallSite(C));
482      // FIXME: call/call dependencies for readonly calls should return def, not
483      // clobber!  Move the checking logic to MemDep!
484      CallInst* cdep = 0;
485
486      // Check to see if we have a single dominating call instruction that is
487      // identical to C.
488      for (unsigned i = 0, e = deps.size(); i != e; ++i) {
489        const MemoryDependenceAnalysis::NonLocalDepEntry *I = &deps[i];
490        // Ignore non-local dependencies.
491        if (I->second.isNonLocal())
492          continue;
493
494        // We don't handle non-depedencies.  If we already have a call, reject
495        // instruction dependencies.
496        if (I->second.isClobber() || cdep != 0) {
497          cdep = 0;
498          break;
499        }
500
501        CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->second.getInst());
502        // FIXME: All duplicated with non-local case.
503        if (NonLocalDepCall && DT->properlyDominates(I->first, C->getParent())){
504          cdep = NonLocalDepCall;
505          continue;
506        }
507
508        cdep = 0;
509        break;
510      }
511
512      if (!cdep) {
513        valueNumbering.insert(std::make_pair(V, nextValueNumber));
514        return nextValueNumber++;
515      }
516
517      if (cdep->getNumOperands() != C->getNumOperands()) {
518        valueNumbering.insert(std::make_pair(V, nextValueNumber));
519        return nextValueNumber++;
520      }
521      for (unsigned i = 1; i < C->getNumOperands(); ++i) {
522        uint32_t c_vn = lookup_or_add(C->getOperand(i));
523        uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
524        if (c_vn != cd_vn) {
525          valueNumbering.insert(std::make_pair(V, nextValueNumber));
526          return nextValueNumber++;
527        }
528      }
529
530      uint32_t v = lookup_or_add(cdep);
531      valueNumbering.insert(std::make_pair(V, v));
532      return v;
533
534    } else {
535      valueNumbering.insert(std::make_pair(V, nextValueNumber));
536      return nextValueNumber++;
537    }
538  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
539    Expression e = create_expression(BO);
540
541    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
542    if (EI != expressionNumbering.end()) {
543      valueNumbering.insert(std::make_pair(V, EI->second));
544      return EI->second;
545    } else {
546      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
547      valueNumbering.insert(std::make_pair(V, nextValueNumber));
548
549      return nextValueNumber++;
550    }
551  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
552    Expression e = create_expression(C);
553
554    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
555    if (EI != expressionNumbering.end()) {
556      valueNumbering.insert(std::make_pair(V, EI->second));
557      return EI->second;
558    } else {
559      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
560      valueNumbering.insert(std::make_pair(V, nextValueNumber));
561
562      return nextValueNumber++;
563    }
564  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
565    Expression e = create_expression(U);
566
567    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
568    if (EI != expressionNumbering.end()) {
569      valueNumbering.insert(std::make_pair(V, EI->second));
570      return EI->second;
571    } else {
572      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
573      valueNumbering.insert(std::make_pair(V, nextValueNumber));
574
575      return nextValueNumber++;
576    }
577  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
578    Expression e = create_expression(U);
579
580    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
581    if (EI != expressionNumbering.end()) {
582      valueNumbering.insert(std::make_pair(V, EI->second));
583      return EI->second;
584    } else {
585      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
586      valueNumbering.insert(std::make_pair(V, nextValueNumber));
587
588      return nextValueNumber++;
589    }
590  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
591    Expression e = create_expression(U);
592
593    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
594    if (EI != expressionNumbering.end()) {
595      valueNumbering.insert(std::make_pair(V, EI->second));
596      return EI->second;
597    } else {
598      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
599      valueNumbering.insert(std::make_pair(V, nextValueNumber));
600
601      return nextValueNumber++;
602    }
603  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
604    Expression e = create_expression(U);
605
606    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
607    if (EI != expressionNumbering.end()) {
608      valueNumbering.insert(std::make_pair(V, EI->second));
609      return EI->second;
610    } else {
611      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
612      valueNumbering.insert(std::make_pair(V, nextValueNumber));
613
614      return nextValueNumber++;
615    }
616  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
617    Expression e = create_expression(U);
618
619    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
620    if (EI != expressionNumbering.end()) {
621      valueNumbering.insert(std::make_pair(V, EI->second));
622      return EI->second;
623    } else {
624      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
625      valueNumbering.insert(std::make_pair(V, nextValueNumber));
626
627      return nextValueNumber++;
628    }
629  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
630    Expression e = create_expression(U);
631
632    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
633    if (EI != expressionNumbering.end()) {
634      valueNumbering.insert(std::make_pair(V, EI->second));
635      return EI->second;
636    } else {
637      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
638      valueNumbering.insert(std::make_pair(V, nextValueNumber));
639
640      return nextValueNumber++;
641    }
642  } else {
643    valueNumbering.insert(std::make_pair(V, nextValueNumber));
644    return nextValueNumber++;
645  }
646}
647
648/// lookup - Returns the value number of the specified value. Fails if
649/// the value has not yet been numbered.
650uint32_t ValueTable::lookup(Value *V) const {
651  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
652  assert(VI != valueNumbering.end() && "Value not numbered?");
653  return VI->second;
654}
655
656/// clear - Remove all entries from the ValueTable
657void ValueTable::clear() {
658  valueNumbering.clear();
659  expressionNumbering.clear();
660  nextValueNumber = 1;
661}
662
663/// erase - Remove a value from the value numbering
664void ValueTable::erase(Value *V) {
665  valueNumbering.erase(V);
666}
667
668/// verifyRemoved - Verify that the value is removed from all internal data
669/// structures.
670void ValueTable::verifyRemoved(const Value *V) const {
671  for (DenseMap<Value*, uint32_t>::iterator
672         I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
673    assert(I->first != V && "Inst still occurs in value numbering map!");
674  }
675}
676
677//===----------------------------------------------------------------------===//
678//                                GVN Pass
679//===----------------------------------------------------------------------===//
680
681namespace {
682  struct ValueNumberScope {
683    ValueNumberScope* parent;
684    DenseMap<uint32_t, Value*> table;
685
686    ValueNumberScope(ValueNumberScope* p) : parent(p) { }
687  };
688}
689
690namespace {
691
692  class GVN : public FunctionPass {
693    bool runOnFunction(Function &F);
694  public:
695    static char ID; // Pass identification, replacement for typeid
696    GVN() : FunctionPass(&ID) { }
697
698  private:
699    MemoryDependenceAnalysis *MD;
700    DominatorTree *DT;
701
702    ValueTable VN;
703    DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
704
705    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
706    PhiMapType phiMap;
707
708
709    // This transformation requires dominator postdominator info
710    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
711      AU.addRequired<DominatorTree>();
712      AU.addRequired<MemoryDependenceAnalysis>();
713      AU.addRequired<AliasAnalysis>();
714
715      AU.addPreserved<DominatorTree>();
716      AU.addPreserved<AliasAnalysis>();
717    }
718
719    // Helper fuctions
720    // FIXME: eliminate or document these better
721    bool processLoad(LoadInst* L,
722                     SmallVectorImpl<Instruction*> &toErase);
723    bool processInstruction(Instruction *I,
724                            SmallVectorImpl<Instruction*> &toErase);
725    bool processNonLocalLoad(LoadInst* L,
726                             SmallVectorImpl<Instruction*> &toErase);
727    bool processBlock(BasicBlock *BB);
728    Value *GetValueForBlock(BasicBlock *BB, Instruction *orig,
729                            DenseMap<BasicBlock*, Value*> &Phis,
730                            bool top_level = false);
731    void dump(DenseMap<uint32_t, Value*>& d);
732    bool iterateOnFunction(Function &F);
733    Value *CollapsePhi(PHINode* p);
734    bool performPRE(Function& F);
735    Value *lookupNumber(BasicBlock *BB, uint32_t num);
736    Value *AttemptRedundancyElimination(Instruction *orig, unsigned valno);
737    void cleanupGlobalSets();
738    void verifyRemoved(const Instruction *I) const;
739  };
740
741  char GVN::ID = 0;
742}
743
744// createGVNPass - The public interface to this file...
745FunctionPass *llvm::createGVNPass() { return new GVN(); }
746
747static RegisterPass<GVN> X("gvn",
748                           "Global Value Numbering");
749
750void GVN::dump(DenseMap<uint32_t, Value*>& d) {
751  printf("{\n");
752  for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
753       E = d.end(); I != E; ++I) {
754      printf("%d\n", I->first);
755      I->second->dump();
756  }
757  printf("}\n");
758}
759
760static bool isSafeReplacement(PHINode* p, Instruction *inst) {
761  if (!isa<PHINode>(inst))
762    return true;
763
764  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
765       UI != E; ++UI)
766    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
767      if (use_phi->getParent() == inst->getParent())
768        return false;
769
770  return true;
771}
772
773Value *GVN::CollapsePhi(PHINode *PN) {
774  Value *ConstVal = PN->hasConstantValue(DT);
775  if (!ConstVal) return 0;
776
777  Instruction *Inst = dyn_cast<Instruction>(ConstVal);
778  if (!Inst)
779    return ConstVal;
780
781  if (DT->dominates(Inst, PN))
782    if (isSafeReplacement(PN, Inst))
783      return Inst;
784  return 0;
785}
786
787/// GetValueForBlock - Get the value to use within the specified basic block.
788/// available values are in Phis.
789Value *GVN::GetValueForBlock(BasicBlock *BB, Instruction *Orig,
790                             DenseMap<BasicBlock*, Value*> &Phis,
791                             bool TopLevel) {
792
793  // If we have already computed this value, return the previously computed val.
794  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
795  if (V != Phis.end() && !TopLevel) return V->second;
796
797  // If the block is unreachable, just return undef, since this path
798  // can't actually occur at runtime.
799  if (!DT->isReachableFromEntry(BB))
800    return Phis[BB] = UndefValue::get(Orig->getType());
801
802  if (BasicBlock *Pred = BB->getSinglePredecessor()) {
803    Value *ret = GetValueForBlock(Pred, Orig, Phis);
804    Phis[BB] = ret;
805    return ret;
806  }
807
808  // Get the number of predecessors of this block so we can reserve space later.
809  // If there is already a PHI in it, use the #preds from it, otherwise count.
810  // Getting it from the PHI is constant time.
811  unsigned NumPreds;
812  if (PHINode *ExistingPN = dyn_cast<PHINode>(BB->begin()))
813    NumPreds = ExistingPN->getNumIncomingValues();
814  else
815    NumPreds = std::distance(pred_begin(BB), pred_end(BB));
816
817  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
818  // now, then get values to fill in the incoming values for the PHI.
819  PHINode *PN = PHINode::Create(Orig->getType(), Orig->getName()+".rle",
820                                BB->begin());
821  PN->reserveOperandSpace(NumPreds);
822
823  Phis.insert(std::make_pair(BB, PN));
824
825  // Fill in the incoming values for the block.
826  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
827    Value *val = GetValueForBlock(*PI, Orig, Phis);
828    PN->addIncoming(val, *PI);
829  }
830
831  VN.getAliasAnalysis()->copyValue(Orig, PN);
832
833  // Attempt to collapse PHI nodes that are trivially redundant
834  Value *v = CollapsePhi(PN);
835  if (!v) {
836    // Cache our phi construction results
837    if (LoadInst* L = dyn_cast<LoadInst>(Orig))
838      phiMap[L->getPointerOperand()].insert(PN);
839    else
840      phiMap[Orig].insert(PN);
841
842    return PN;
843  }
844
845  PN->replaceAllUsesWith(v);
846  if (isa<PointerType>(v->getType()))
847    MD->invalidateCachedPointerInfo(v);
848
849  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
850       E = Phis.end(); I != E; ++I)
851    if (I->second == PN)
852      I->second = v;
853
854  DEBUG(errs() << "GVN removed: " << *PN << '\n');
855  MD->removeInstruction(PN);
856  PN->eraseFromParent();
857  DEBUG(verifyRemoved(PN));
858
859  Phis[BB] = v;
860  return v;
861}
862
863/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
864/// we're analyzing is fully available in the specified block.  As we go, keep
865/// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
866/// map is actually a tri-state map with the following values:
867///   0) we know the block *is not* fully available.
868///   1) we know the block *is* fully available.
869///   2) we do not know whether the block is fully available or not, but we are
870///      currently speculating that it will be.
871///   3) we are speculating for this block and have used that to speculate for
872///      other blocks.
873static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
874                            DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
875  // Optimistically assume that the block is fully available and check to see
876  // if we already know about this block in one lookup.
877  std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
878    FullyAvailableBlocks.insert(std::make_pair(BB, 2));
879
880  // If the entry already existed for this block, return the precomputed value.
881  if (!IV.second) {
882    // If this is a speculative "available" value, mark it as being used for
883    // speculation of other blocks.
884    if (IV.first->second == 2)
885      IV.first->second = 3;
886    return IV.first->second != 0;
887  }
888
889  // Otherwise, see if it is fully available in all predecessors.
890  pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
891
892  // If this block has no predecessors, it isn't live-in here.
893  if (PI == PE)
894    goto SpeculationFailure;
895
896  for (; PI != PE; ++PI)
897    // If the value isn't fully available in one of our predecessors, then it
898    // isn't fully available in this block either.  Undo our previous
899    // optimistic assumption and bail out.
900    if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
901      goto SpeculationFailure;
902
903  return true;
904
905// SpeculationFailure - If we get here, we found out that this is not, after
906// all, a fully-available block.  We have a problem if we speculated on this and
907// used the speculation to mark other blocks as available.
908SpeculationFailure:
909  char &BBVal = FullyAvailableBlocks[BB];
910
911  // If we didn't speculate on this, just return with it set to false.
912  if (BBVal == 2) {
913    BBVal = 0;
914    return false;
915  }
916
917  // If we did speculate on this value, we could have blocks set to 1 that are
918  // incorrect.  Walk the (transitive) successors of this block and mark them as
919  // 0 if set to one.
920  SmallVector<BasicBlock*, 32> BBWorklist;
921  BBWorklist.push_back(BB);
922
923  while (!BBWorklist.empty()) {
924    BasicBlock *Entry = BBWorklist.pop_back_val();
925    // Note that this sets blocks to 0 (unavailable) if they happen to not
926    // already be in FullyAvailableBlocks.  This is safe.
927    char &EntryVal = FullyAvailableBlocks[Entry];
928    if (EntryVal == 0) continue;  // Already unavailable.
929
930    // Mark as unavailable.
931    EntryVal = 0;
932
933    for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
934      BBWorklist.push_back(*I);
935  }
936
937  return false;
938}
939
940
941/// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
942/// then a load from a must-aliased pointer of a different type, try to coerce
943/// the stored value.  LoadedTy is the type of the load we want to replace and
944/// InsertPt is the place to insert new instructions.
945///
946/// If we can't do it, return null.
947static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
948                                             const Type *LoadedTy,
949                                             Instruction *InsertPt,
950                                             const TargetData &TD) {
951  const Type *StoredValTy = StoredVal->getType();
952
953  uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
954  uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
955
956  // If the store and reload are the same size, we can always reuse it.
957  if (StoreSize == LoadSize) {
958    if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
959      // Pointer to Pointer -> use bitcast.
960      return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
961    }
962
963    // Convert source pointers to integers, which can be bitcast.
964    if (isa<PointerType>(StoredValTy)) {
965      StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
966      StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
967    }
968
969    const Type *TypeToCastTo = LoadedTy;
970    if (isa<PointerType>(TypeToCastTo))
971      TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
972
973    if (StoredValTy != TypeToCastTo)
974      StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
975
976    // Cast to pointer if the load needs a pointer type.
977    if (isa<PointerType>(LoadedTy))
978      StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
979
980    return StoredVal;
981  }
982
983  // If the loaded value is smaller than the available value, then we can
984  // extract out a piece from it.  If the available value is too small, then we
985  // can't do anything.
986  if (StoreSize < LoadSize)
987    return 0;
988
989  // Convert source pointers to integers, which can be manipulated.
990  if (isa<PointerType>(StoredValTy)) {
991    StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
992    StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
993  }
994
995  // Convert vectors and fp to integer, which can be manipulated.
996  if (!isa<IntegerType>(StoredValTy)) {
997    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
998    StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
999  }
1000
1001  // If this is a big-endian system, we need to shift the value down to the low
1002  // bits so that a truncate will work.
1003  if (TD.isBigEndian()) {
1004    Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
1005    StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
1006  }
1007
1008  // Truncate the integer to the right size now.
1009  const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
1010  StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
1011
1012  if (LoadedTy == NewIntTy)
1013    return StoredVal;
1014
1015  // If the result is a pointer, inttoptr.
1016  if (isa<PointerType>(LoadedTy))
1017    return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
1018
1019  // Otherwise, bitcast.
1020  return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
1021}
1022
1023static void
1024GetAvailableBlockValues(DenseMap<BasicBlock*, Value*> &BlockReplValues,
1025                        SmallVector<std::pair<BasicBlock*,
1026                                    Value*>, 16> &ValuesPerBlock,
1027                        const Type *LoadTy,
1028                        const TargetData *TD) {
1029
1030  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
1031    BasicBlock *BB = ValuesPerBlock[i].first;
1032    Value *AvailableVal = ValuesPerBlock[i].second;
1033
1034    Value *&BlockEntry = BlockReplValues[BB];
1035    if (BlockEntry) continue;
1036
1037    if (AvailableVal->getType() != LoadTy) {
1038      assert(TD && "Need target data to handle type mismatch case");
1039      AvailableVal = CoerceAvailableValueToLoadType(AvailableVal, LoadTy,
1040                                                    BB->getTerminator(), *TD);
1041      DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\n"
1042                   << *ValuesPerBlock[i].second << '\n'
1043                   << *AvailableVal << '\n' << "\n\n\n");
1044    }
1045    BlockEntry = AvailableVal;
1046  }
1047}
1048
1049/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
1050/// non-local by performing PHI construction.
1051bool GVN::processNonLocalLoad(LoadInst *LI,
1052                              SmallVectorImpl<Instruction*> &toErase) {
1053  // Find the non-local dependencies of the load.
1054  SmallVector<MemoryDependenceAnalysis::NonLocalDepEntry, 64> Deps;
1055  MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
1056                                   Deps);
1057  //DEBUG(errs() << "INVESTIGATING NONLOCAL LOAD: "
1058  //             << Deps.size() << *LI << '\n');
1059
1060  // If we had to process more than one hundred blocks to find the
1061  // dependencies, this load isn't worth worrying about.  Optimizing
1062  // it will be too expensive.
1063  if (Deps.size() > 100)
1064    return false;
1065
1066  // If we had a phi translation failure, we'll have a single entry which is a
1067  // clobber in the current block.  Reject this early.
1068  if (Deps.size() == 1 && Deps[0].second.isClobber()) {
1069    DEBUG(
1070      errs() << "GVN: non-local load ";
1071      WriteAsOperand(errs(), LI);
1072      errs() << " is clobbered by " << *Deps[0].second.getInst() << '\n';
1073    );
1074    return false;
1075  }
1076
1077  // Filter out useless results (non-locals, etc).  Keep track of the blocks
1078  // where we have a value available in repl, also keep track of whether we see
1079  // dependencies that produce an unknown value for the load (such as a call
1080  // that could potentially clobber the load).
1081  SmallVector<std::pair<BasicBlock*, Value*>, 16> ValuesPerBlock;
1082  SmallVector<BasicBlock*, 16> UnavailableBlocks;
1083
1084  const TargetData *TD = 0;
1085
1086  for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
1087    BasicBlock *DepBB = Deps[i].first;
1088    MemDepResult DepInfo = Deps[i].second;
1089
1090    if (DepInfo.isClobber()) {
1091      UnavailableBlocks.push_back(DepBB);
1092      continue;
1093    }
1094
1095    Instruction *DepInst = DepInfo.getInst();
1096
1097    // Loading the allocation -> undef.
1098    if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1099      ValuesPerBlock.push_back(std::make_pair(DepBB,
1100                               UndefValue::get(LI->getType())));
1101      continue;
1102    }
1103
1104    if (StoreInst* S = dyn_cast<StoreInst>(DepInst)) {
1105      // Reject loads and stores that are to the same address but are of
1106      // different types if we have to.
1107      if (S->getOperand(0)->getType() != LI->getType()) {
1108        if (TD == 0)
1109          TD = getAnalysisIfAvailable<TargetData>();
1110
1111        // If the stored value is larger or equal to the loaded value, we can
1112        // reuse it.
1113        if (TD == 0 ||
1114            TD->getTypeSizeInBits(S->getOperand(0)->getType()) <
1115              TD->getTypeSizeInBits(LI->getType())) {
1116          UnavailableBlocks.push_back(DepBB);
1117          continue;
1118        }
1119      }
1120
1121      ValuesPerBlock.push_back(std::make_pair(DepBB, S->getOperand(0)));
1122
1123    } else if (LoadInst* LD = dyn_cast<LoadInst>(DepInst)) {
1124      // If the types mismatch and we can't handle it, reject reuse of the load.
1125      if (LD->getType() != LI->getType()) {
1126        if (TD == 0)
1127          TD = getAnalysisIfAvailable<TargetData>();
1128
1129        // If the stored value is larger or equal to the loaded value, we can
1130        // reuse it.
1131        if (TD == 0 ||
1132            TD->getTypeSizeInBits(LD->getType()) <
1133               TD->getTypeSizeInBits(LI->getType())) {
1134          UnavailableBlocks.push_back(DepBB);
1135          continue;
1136        }
1137      }
1138      ValuesPerBlock.push_back(std::make_pair(DepBB, LD));
1139    } else {
1140      // FIXME: Handle memset/memcpy.
1141      UnavailableBlocks.push_back(DepBB);
1142      continue;
1143    }
1144  }
1145
1146  // If we have no predecessors that produce a known value for this load, exit
1147  // early.
1148  if (ValuesPerBlock.empty()) return false;
1149
1150  // If all of the instructions we depend on produce a known value for this
1151  // load, then it is fully redundant and we can use PHI insertion to compute
1152  // its value.  Insert PHIs and remove the fully redundant value now.
1153  if (UnavailableBlocks.empty()) {
1154    // Use cached PHI construction information from previous runs
1155    SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1156    // FIXME: What does phiMap do? Are we positive it isn't getting invalidated?
1157    for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1158         I != E; ++I) {
1159      if ((*I)->getParent() == LI->getParent()) {
1160        DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD #1: " << *LI << '\n');
1161        LI->replaceAllUsesWith(*I);
1162        if (isa<PointerType>((*I)->getType()))
1163          MD->invalidateCachedPointerInfo(*I);
1164        toErase.push_back(LI);
1165        NumGVNLoad++;
1166        return true;
1167      }
1168
1169      ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1170    }
1171
1172    DEBUG(errs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
1173
1174    // Convert the block information to a map, and insert coersions as needed.
1175    DenseMap<BasicBlock*, Value*> BlockReplValues;
1176    GetAvailableBlockValues(BlockReplValues, ValuesPerBlock, LI->getType(), TD);
1177
1178    // Perform PHI construction.
1179    Value *V = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1180    LI->replaceAllUsesWith(V);
1181
1182    if (isa<PHINode>(V))
1183      V->takeName(LI);
1184    if (isa<PointerType>(V->getType()))
1185      MD->invalidateCachedPointerInfo(V);
1186    toErase.push_back(LI);
1187    NumGVNLoad++;
1188    return true;
1189  }
1190
1191  if (!EnablePRE || !EnableLoadPRE)
1192    return false;
1193
1194  // Okay, we have *some* definitions of the value.  This means that the value
1195  // is available in some of our (transitive) predecessors.  Lets think about
1196  // doing PRE of this load.  This will involve inserting a new load into the
1197  // predecessor when it's not available.  We could do this in general, but
1198  // prefer to not increase code size.  As such, we only do this when we know
1199  // that we only have to insert *one* load (which means we're basically moving
1200  // the load, not inserting a new one).
1201
1202  SmallPtrSet<BasicBlock *, 4> Blockers;
1203  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1204    Blockers.insert(UnavailableBlocks[i]);
1205
1206  // Lets find first basic block with more than one predecessor.  Walk backwards
1207  // through predecessors if needed.
1208  BasicBlock *LoadBB = LI->getParent();
1209  BasicBlock *TmpBB = LoadBB;
1210
1211  bool isSinglePred = false;
1212  bool allSingleSucc = true;
1213  while (TmpBB->getSinglePredecessor()) {
1214    isSinglePred = true;
1215    TmpBB = TmpBB->getSinglePredecessor();
1216    if (!TmpBB) // If haven't found any, bail now.
1217      return false;
1218    if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1219      return false;
1220    if (Blockers.count(TmpBB))
1221      return false;
1222    if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1223      allSingleSucc = false;
1224  }
1225
1226  assert(TmpBB);
1227  LoadBB = TmpBB;
1228
1229  // If we have a repl set with LI itself in it, this means we have a loop where
1230  // at least one of the values is LI.  Since this means that we won't be able
1231  // to eliminate LI even if we insert uses in the other predecessors, we will
1232  // end up increasing code size.  Reject this by scanning for LI.
1233  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1234    if (ValuesPerBlock[i].second == LI)
1235      return false;
1236
1237  if (isSinglePred) {
1238    bool isHot = false;
1239    for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1240      if (Instruction *I = dyn_cast<Instruction>(ValuesPerBlock[i].second))
1241        // "Hot" Instruction is in some loop (because it dominates its dep.
1242        // instruction).
1243        if (DT->dominates(LI, I)) {
1244          isHot = true;
1245          break;
1246        }
1247
1248    // We are interested only in "hot" instructions. We don't want to do any
1249    // mis-optimizations here.
1250    if (!isHot)
1251      return false;
1252  }
1253
1254  // Okay, we have some hope :).  Check to see if the loaded value is fully
1255  // available in all but one predecessor.
1256  // FIXME: If we could restructure the CFG, we could make a common pred with
1257  // all the preds that don't have an available LI and insert a new load into
1258  // that one block.
1259  BasicBlock *UnavailablePred = 0;
1260
1261  DenseMap<BasicBlock*, char> FullyAvailableBlocks;
1262  for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
1263    FullyAvailableBlocks[ValuesPerBlock[i].first] = true;
1264  for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
1265    FullyAvailableBlocks[UnavailableBlocks[i]] = false;
1266
1267  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
1268       PI != E; ++PI) {
1269    if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
1270      continue;
1271
1272    // If this load is not available in multiple predecessors, reject it.
1273    if (UnavailablePred && UnavailablePred != *PI)
1274      return false;
1275    UnavailablePred = *PI;
1276  }
1277
1278  assert(UnavailablePred != 0 &&
1279         "Fully available value should be eliminated above!");
1280
1281  // If the loaded pointer is PHI node defined in this block, do PHI translation
1282  // to get its value in the predecessor.
1283  Value *LoadPtr = LI->getOperand(0)->DoPHITranslation(LoadBB, UnavailablePred);
1284
1285  // Make sure the value is live in the predecessor.  If it was defined by a
1286  // non-PHI instruction in this block, we don't know how to recompute it above.
1287  if (Instruction *LPInst = dyn_cast<Instruction>(LoadPtr))
1288    if (!DT->dominates(LPInst->getParent(), UnavailablePred)) {
1289      DEBUG(errs() << "COULDN'T PRE LOAD BECAUSE PTR IS UNAVAILABLE IN PRED: "
1290                   << *LPInst << '\n' << *LI << "\n");
1291      return false;
1292    }
1293
1294  // We don't currently handle critical edges :(
1295  if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
1296    DEBUG(errs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
1297                 << UnavailablePred->getName() << "': " << *LI << '\n');
1298    return false;
1299  }
1300
1301  // Make sure it is valid to move this load here.  We have to watch out for:
1302  //  @1 = getelementptr (i8* p, ...
1303  //  test p and branch if == 0
1304  //  load @1
1305  // It is valid to have the getelementptr before the test, even if p can be 0,
1306  // as getelementptr only does address arithmetic.
1307  // If we are not pushing the value through any multiple-successor blocks
1308  // we do not have this case.  Otherwise, check that the load is safe to
1309  // put anywhere; this can be improved, but should be conservatively safe.
1310  if (!allSingleSucc &&
1311      !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator()))
1312    return false;
1313
1314  // Okay, we can eliminate this load by inserting a reload in the predecessor
1315  // and using PHI construction to get the value in the other predecessors, do
1316  // it.
1317  DEBUG(errs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
1318
1319  Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
1320                                LI->getAlignment(),
1321                                UnavailablePred->getTerminator());
1322
1323  SmallPtrSet<Instruction*, 4> &p = phiMap[LI->getPointerOperand()];
1324  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
1325       I != E; ++I)
1326    ValuesPerBlock.push_back(std::make_pair((*I)->getParent(), *I));
1327
1328  DenseMap<BasicBlock*, Value*> BlockReplValues;
1329  GetAvailableBlockValues(BlockReplValues, ValuesPerBlock, LI->getType(), TD);
1330  BlockReplValues[UnavailablePred] = NewLoad;
1331
1332  // Perform PHI construction.
1333  Value *V = GetValueForBlock(LI->getParent(), LI, BlockReplValues, true);
1334  LI->replaceAllUsesWith(V);
1335  if (isa<PHINode>(V))
1336    V->takeName(LI);
1337  if (isa<PointerType>(V->getType()))
1338    MD->invalidateCachedPointerInfo(V);
1339  toErase.push_back(LI);
1340  NumPRELoad++;
1341  return true;
1342}
1343
1344/// processLoad - Attempt to eliminate a load, first by eliminating it
1345/// locally, and then attempting non-local elimination if that fails.
1346bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
1347  if (L->isVolatile())
1348    return false;
1349
1350  // ... to a pointer that has been loaded from before...
1351  MemDepResult Dep = MD->getDependency(L);
1352
1353  // If the value isn't available, don't do anything!
1354  if (Dep.isClobber()) {
1355    // FIXME: In the future, we should handle things like:
1356    //   store i32 123, i32* %P
1357    //   %A = bitcast i32* %P to i8*
1358    //   %B = gep i8* %A, i32 1
1359    //   %C = load i8* %B
1360    //
1361    // We could do that by recognizing if the clobber instructions are obviously
1362    // a common base + constant offset, and if the previous store (or memset)
1363    // completely covers this load.  This sort of thing can happen in bitfield
1364    // access code.
1365    DEBUG(
1366      // fast print dep, using operator<< on instruction would be too slow
1367      errs() << "GVN: load ";
1368      WriteAsOperand(errs(), L);
1369      Instruction *I = Dep.getInst();
1370      errs() << " is clobbered by " << *I << '\n';
1371    );
1372    return false;
1373  }
1374
1375  // If it is defined in another block, try harder.
1376  if (Dep.isNonLocal())
1377    return processNonLocalLoad(L, toErase);
1378
1379  Instruction *DepInst = Dep.getInst();
1380  if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1381    Value *StoredVal = DepSI->getOperand(0);
1382
1383    // The store and load are to a must-aliased pointer, but they may not
1384    // actually have the same type.  See if we know how to reuse the stored
1385    // value (depending on its type).
1386    const TargetData *TD = 0;
1387    if (StoredVal->getType() != L->getType() &&
1388        (TD = getAnalysisIfAvailable<TargetData>())) {
1389      StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(), L, *TD);
1390      if (StoredVal == 0)
1391        return false;
1392
1393      DEBUG(errs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
1394                   << '\n' << *L << "\n\n\n");
1395    }
1396
1397    // Remove it!
1398    L->replaceAllUsesWith(StoredVal);
1399    if (isa<PointerType>(StoredVal->getType()))
1400      MD->invalidateCachedPointerInfo(StoredVal);
1401    toErase.push_back(L);
1402    NumGVNLoad++;
1403    return true;
1404  }
1405
1406  if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
1407    Value *AvailableVal = DepLI;
1408
1409    // The loads are of a must-aliased pointer, but they may not actually have
1410    // the same type.  See if we know how to reuse the previously loaded value
1411    // (depending on its type).
1412    const TargetData *TD = 0;
1413    if (DepLI->getType() != L->getType() &&
1414        (TD = getAnalysisIfAvailable<TargetData>())) {
1415      AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L, *TD);
1416      if (AvailableVal == 0)
1417        return false;
1418
1419      DEBUG(errs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
1420                   << "\n" << *L << "\n\n\n");
1421    }
1422
1423    // Remove it!
1424    L->replaceAllUsesWith(AvailableVal);
1425    if (isa<PointerType>(DepLI->getType()))
1426      MD->invalidateCachedPointerInfo(DepLI);
1427    toErase.push_back(L);
1428    NumGVNLoad++;
1429    return true;
1430  }
1431
1432  // FIXME: We should handle memset/memcpy/memmove as dependent instructions to
1433  // forward the value if available.
1434  //if (isa<MemIntrinsic>(DepInst))
1435  //  errs() << "LOAD DEPENDS ON MEM: " << *L << "\n" << *DepInst << "\n\n";
1436
1437
1438  // If this load really doesn't depend on anything, then we must be loading an
1439  // undef value.  This can happen when loading for a fresh allocation with no
1440  // intervening stores, for example.
1441  if (isa<AllocationInst>(DepInst) || isMalloc(DepInst)) {
1442    L->replaceAllUsesWith(UndefValue::get(L->getType()));
1443    toErase.push_back(L);
1444    NumGVNLoad++;
1445    return true;
1446  }
1447
1448  return false;
1449}
1450
1451Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
1452  DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
1453  if (I == localAvail.end())
1454    return 0;
1455
1456  ValueNumberScope *Locals = I->second;
1457  while (Locals) {
1458    DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
1459    if (I != Locals->table.end())
1460      return I->second;
1461    Locals = Locals->parent;
1462  }
1463
1464  return 0;
1465}
1466
1467/// AttemptRedundancyElimination - If the "fast path" of redundancy elimination
1468/// by inheritance from the dominator fails, see if we can perform phi
1469/// construction to eliminate the redundancy.
1470Value *GVN::AttemptRedundancyElimination(Instruction *orig, unsigned valno) {
1471  BasicBlock *BaseBlock = orig->getParent();
1472
1473  SmallPtrSet<BasicBlock*, 4> Visited;
1474  SmallVector<BasicBlock*, 8> Stack;
1475  Stack.push_back(BaseBlock);
1476
1477  DenseMap<BasicBlock*, Value*> Results;
1478
1479  // Walk backwards through our predecessors, looking for instances of the
1480  // value number we're looking for.  Instances are recorded in the Results
1481  // map, which is then used to perform phi construction.
1482  while (!Stack.empty()) {
1483    BasicBlock *Current = Stack.back();
1484    Stack.pop_back();
1485
1486    // If we've walked all the way to a proper dominator, then give up. Cases
1487    // where the instance is in the dominator will have been caught by the fast
1488    // path, and any cases that require phi construction further than this are
1489    // probably not worth it anyways.  Note that this is a SIGNIFICANT compile
1490    // time improvement.
1491    if (DT->properlyDominates(Current, orig->getParent())) return 0;
1492
1493    DenseMap<BasicBlock*, ValueNumberScope*>::iterator LA =
1494                                                       localAvail.find(Current);
1495    if (LA == localAvail.end()) return 0;
1496    DenseMap<uint32_t, Value*>::iterator V = LA->second->table.find(valno);
1497
1498    if (V != LA->second->table.end()) {
1499      // Found an instance, record it.
1500      Results.insert(std::make_pair(Current, V->second));
1501      continue;
1502    }
1503
1504    // If we reach the beginning of the function, then give up.
1505    if (pred_begin(Current) == pred_end(Current))
1506      return 0;
1507
1508    for (pred_iterator PI = pred_begin(Current), PE = pred_end(Current);
1509         PI != PE; ++PI)
1510      if (Visited.insert(*PI))
1511        Stack.push_back(*PI);
1512  }
1513
1514  // If we didn't find instances, give up.  Otherwise, perform phi construction.
1515  if (Results.size() == 0)
1516    return 0;
1517  else
1518    return GetValueForBlock(BaseBlock, orig, Results, true);
1519}
1520
1521/// processInstruction - When calculating availability, handle an instruction
1522/// by inserting it into the appropriate sets
1523bool GVN::processInstruction(Instruction *I,
1524                             SmallVectorImpl<Instruction*> &toErase) {
1525  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1526    bool Changed = processLoad(LI, toErase);
1527
1528    if (!Changed) {
1529      unsigned Num = VN.lookup_or_add(LI);
1530      localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
1531    }
1532
1533    return Changed;
1534  }
1535
1536  uint32_t NextNum = VN.getNextUnusedValueNumber();
1537  unsigned Num = VN.lookup_or_add(I);
1538
1539  if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1540    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1541
1542    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1543      return false;
1544
1545    Value *BranchCond = BI->getCondition();
1546    uint32_t CondVN = VN.lookup_or_add(BranchCond);
1547
1548    BasicBlock *TrueSucc = BI->getSuccessor(0);
1549    BasicBlock *FalseSucc = BI->getSuccessor(1);
1550
1551    if (TrueSucc->getSinglePredecessor())
1552      localAvail[TrueSucc]->table[CondVN] =
1553        ConstantInt::getTrue(TrueSucc->getContext());
1554    if (FalseSucc->getSinglePredecessor())
1555      localAvail[FalseSucc]->table[CondVN] =
1556        ConstantInt::getFalse(TrueSucc->getContext());
1557
1558    return false;
1559
1560  // Allocations are always uniquely numbered, so we can save time and memory
1561  // by fast failing them.
1562  } else if (isa<AllocationInst>(I) || isMalloc(I) || isa<TerminatorInst>(I)) {
1563    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1564    return false;
1565  }
1566
1567  // Collapse PHI nodes
1568  if (PHINode* p = dyn_cast<PHINode>(I)) {
1569    Value *constVal = CollapsePhi(p);
1570
1571    if (constVal) {
1572      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
1573           PI != PE; ++PI)
1574        PI->second.erase(p);
1575
1576      p->replaceAllUsesWith(constVal);
1577      if (isa<PointerType>(constVal->getType()))
1578        MD->invalidateCachedPointerInfo(constVal);
1579      VN.erase(p);
1580
1581      toErase.push_back(p);
1582    } else {
1583      localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1584    }
1585
1586  // If the number we were assigned was a brand new VN, then we don't
1587  // need to do a lookup to see if the number already exists
1588  // somewhere in the domtree: it can't!
1589  } else if (Num == NextNum) {
1590    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1591
1592  // Perform fast-path value-number based elimination of values inherited from
1593  // dominators.
1594  } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
1595    // Remove it!
1596    VN.erase(I);
1597    I->replaceAllUsesWith(repl);
1598    if (isa<PointerType>(repl->getType()))
1599      MD->invalidateCachedPointerInfo(repl);
1600    toErase.push_back(I);
1601    return true;
1602
1603#if 0
1604  // Perform slow-pathvalue-number based elimination with phi construction.
1605  } else if (Value *repl = AttemptRedundancyElimination(I, Num)) {
1606    // Remove it!
1607    VN.erase(I);
1608    I->replaceAllUsesWith(repl);
1609    if (isa<PointerType>(repl->getType()))
1610      MD->invalidateCachedPointerInfo(repl);
1611    toErase.push_back(I);
1612    return true;
1613#endif
1614  } else {
1615    localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
1616  }
1617
1618  return false;
1619}
1620
1621/// runOnFunction - This is the main transformation entry point for a function.
1622bool GVN::runOnFunction(Function& F) {
1623  MD = &getAnalysis<MemoryDependenceAnalysis>();
1624  DT = &getAnalysis<DominatorTree>();
1625  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
1626  VN.setMemDep(MD);
1627  VN.setDomTree(DT);
1628
1629  bool Changed = false;
1630  bool ShouldContinue = true;
1631
1632  // Merge unconditional branches, allowing PRE to catch more
1633  // optimization opportunities.
1634  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
1635    BasicBlock *BB = FI;
1636    ++FI;
1637    bool removedBlock = MergeBlockIntoPredecessor(BB, this);
1638    if (removedBlock) NumGVNBlocks++;
1639
1640    Changed |= removedBlock;
1641  }
1642
1643  unsigned Iteration = 0;
1644
1645  while (ShouldContinue) {
1646    DEBUG(errs() << "GVN iteration: " << Iteration << "\n");
1647    ShouldContinue = iterateOnFunction(F);
1648    Changed |= ShouldContinue;
1649    ++Iteration;
1650  }
1651
1652  if (EnablePRE) {
1653    bool PREChanged = true;
1654    while (PREChanged) {
1655      PREChanged = performPRE(F);
1656      Changed |= PREChanged;
1657    }
1658  }
1659  // FIXME: Should perform GVN again after PRE does something.  PRE can move
1660  // computations into blocks where they become fully redundant.  Note that
1661  // we can't do this until PRE's critical edge splitting updates memdep.
1662  // Actually, when this happens, we should just fully integrate PRE into GVN.
1663
1664  cleanupGlobalSets();
1665
1666  return Changed;
1667}
1668
1669
1670bool GVN::processBlock(BasicBlock *BB) {
1671  // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
1672  // incrementing BI before processing an instruction).
1673  SmallVector<Instruction*, 8> toErase;
1674  bool ChangedFunction = false;
1675
1676  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
1677       BI != BE;) {
1678    ChangedFunction |= processInstruction(BI, toErase);
1679    if (toErase.empty()) {
1680      ++BI;
1681      continue;
1682    }
1683
1684    // If we need some instructions deleted, do it now.
1685    NumGVNInstr += toErase.size();
1686
1687    // Avoid iterator invalidation.
1688    bool AtStart = BI == BB->begin();
1689    if (!AtStart)
1690      --BI;
1691
1692    for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
1693         E = toErase.end(); I != E; ++I) {
1694      DEBUG(errs() << "GVN removed: " << **I << '\n');
1695      MD->removeInstruction(*I);
1696      (*I)->eraseFromParent();
1697      DEBUG(verifyRemoved(*I));
1698    }
1699    toErase.clear();
1700
1701    if (AtStart)
1702      BI = BB->begin();
1703    else
1704      ++BI;
1705  }
1706
1707  return ChangedFunction;
1708}
1709
1710/// performPRE - Perform a purely local form of PRE that looks for diamond
1711/// control flow patterns and attempts to perform simple PRE at the join point.
1712bool GVN::performPRE(Function& F) {
1713  bool Changed = false;
1714  SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
1715  DenseMap<BasicBlock*, Value*> predMap;
1716  for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
1717       DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
1718    BasicBlock *CurrentBlock = *DI;
1719
1720    // Nothing to PRE in the entry block.
1721    if (CurrentBlock == &F.getEntryBlock()) continue;
1722
1723    for (BasicBlock::iterator BI = CurrentBlock->begin(),
1724         BE = CurrentBlock->end(); BI != BE; ) {
1725      Instruction *CurInst = BI++;
1726
1727      if (isa<AllocationInst>(CurInst) || isMalloc(CurInst) ||
1728          isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
1729          (CurInst->getType() == Type::getVoidTy(F.getContext())) ||
1730          CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
1731          isa<DbgInfoIntrinsic>(CurInst))
1732        continue;
1733
1734      uint32_t ValNo = VN.lookup(CurInst);
1735
1736      // Look for the predecessors for PRE opportunities.  We're
1737      // only trying to solve the basic diamond case, where
1738      // a value is computed in the successor and one predecessor,
1739      // but not the other.  We also explicitly disallow cases
1740      // where the successor is its own predecessor, because they're
1741      // more complicated to get right.
1742      unsigned NumWith = 0;
1743      unsigned NumWithout = 0;
1744      BasicBlock *PREPred = 0;
1745      predMap.clear();
1746
1747      for (pred_iterator PI = pred_begin(CurrentBlock),
1748           PE = pred_end(CurrentBlock); PI != PE; ++PI) {
1749        // We're not interested in PRE where the block is its
1750        // own predecessor, on in blocks with predecessors
1751        // that are not reachable.
1752        if (*PI == CurrentBlock) {
1753          NumWithout = 2;
1754          break;
1755        } else if (!localAvail.count(*PI))  {
1756          NumWithout = 2;
1757          break;
1758        }
1759
1760        DenseMap<uint32_t, Value*>::iterator predV =
1761                                            localAvail[*PI]->table.find(ValNo);
1762        if (predV == localAvail[*PI]->table.end()) {
1763          PREPred = *PI;
1764          NumWithout++;
1765        } else if (predV->second == CurInst) {
1766          NumWithout = 2;
1767        } else {
1768          predMap[*PI] = predV->second;
1769          NumWith++;
1770        }
1771      }
1772
1773      // Don't do PRE when it might increase code size, i.e. when
1774      // we would need to insert instructions in more than one pred.
1775      if (NumWithout != 1 || NumWith == 0)
1776        continue;
1777
1778      // We can't do PRE safely on a critical edge, so instead we schedule
1779      // the edge to be split and perform the PRE the next time we iterate
1780      // on the function.
1781      unsigned SuccNum = 0;
1782      for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
1783           i != e; ++i)
1784        if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
1785          SuccNum = i;
1786          break;
1787        }
1788
1789      if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
1790        toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
1791        continue;
1792      }
1793
1794      // Instantiate the expression the in predecessor that lacked it.
1795      // Because we are going top-down through the block, all value numbers
1796      // will be available in the predecessor by the time we need them.  Any
1797      // that weren't original present will have been instantiated earlier
1798      // in this loop.
1799      Instruction *PREInstr = CurInst->clone(CurInst->getContext());
1800      bool success = true;
1801      for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
1802        Value *Op = PREInstr->getOperand(i);
1803        if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
1804          continue;
1805
1806        if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
1807          PREInstr->setOperand(i, V);
1808        } else {
1809          success = false;
1810          break;
1811        }
1812      }
1813
1814      // Fail out if we encounter an operand that is not available in
1815      // the PRE predecessor.  This is typically because of loads which
1816      // are not value numbered precisely.
1817      if (!success) {
1818        delete PREInstr;
1819        DEBUG(verifyRemoved(PREInstr));
1820        continue;
1821      }
1822
1823      PREInstr->insertBefore(PREPred->getTerminator());
1824      PREInstr->setName(CurInst->getName() + ".pre");
1825      predMap[PREPred] = PREInstr;
1826      VN.add(PREInstr, ValNo);
1827      NumGVNPRE++;
1828
1829      // Update the availability map to include the new instruction.
1830      localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
1831
1832      // Create a PHI to make the value available in this block.
1833      PHINode* Phi = PHINode::Create(CurInst->getType(),
1834                                     CurInst->getName() + ".pre-phi",
1835                                     CurrentBlock->begin());
1836      for (pred_iterator PI = pred_begin(CurrentBlock),
1837           PE = pred_end(CurrentBlock); PI != PE; ++PI)
1838        Phi->addIncoming(predMap[*PI], *PI);
1839
1840      VN.add(Phi, ValNo);
1841      localAvail[CurrentBlock]->table[ValNo] = Phi;
1842
1843      CurInst->replaceAllUsesWith(Phi);
1844      if (isa<PointerType>(Phi->getType()))
1845        MD->invalidateCachedPointerInfo(Phi);
1846      VN.erase(CurInst);
1847
1848      DEBUG(errs() << "GVN PRE removed: " << *CurInst << '\n');
1849      MD->removeInstruction(CurInst);
1850      CurInst->eraseFromParent();
1851      DEBUG(verifyRemoved(CurInst));
1852      Changed = true;
1853    }
1854  }
1855
1856  for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
1857       I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
1858    SplitCriticalEdge(I->first, I->second, this);
1859
1860  return Changed || toSplit.size();
1861}
1862
1863/// iterateOnFunction - Executes one iteration of GVN
1864bool GVN::iterateOnFunction(Function &F) {
1865  cleanupGlobalSets();
1866
1867  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1868       DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
1869    if (DI->getIDom())
1870      localAvail[DI->getBlock()] =
1871                   new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
1872    else
1873      localAvail[DI->getBlock()] = new ValueNumberScope(0);
1874  }
1875
1876  // Top-down walk of the dominator tree
1877  bool Changed = false;
1878#if 0
1879  // Needed for value numbering with phi construction to work.
1880  ReversePostOrderTraversal<Function*> RPOT(&F);
1881  for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
1882       RE = RPOT.end(); RI != RE; ++RI)
1883    Changed |= processBlock(*RI);
1884#else
1885  for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
1886       DE = df_end(DT->getRootNode()); DI != DE; ++DI)
1887    Changed |= processBlock(DI->getBlock());
1888#endif
1889
1890  return Changed;
1891}
1892
1893void GVN::cleanupGlobalSets() {
1894  VN.clear();
1895  phiMap.clear();
1896
1897  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1898       I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
1899    delete I->second;
1900  localAvail.clear();
1901}
1902
1903/// verifyRemoved - Verify that the specified instruction does not occur in our
1904/// internal data structures.
1905void GVN::verifyRemoved(const Instruction *Inst) const {
1906  VN.verifyRemoved(Inst);
1907
1908  // Walk through the PHI map to make sure the instruction isn't hiding in there
1909  // somewhere.
1910  for (PhiMapType::iterator
1911         I = phiMap.begin(), E = phiMap.end(); I != E; ++I) {
1912    assert(I->first != Inst && "Inst is still a key in PHI map!");
1913
1914    for (SmallPtrSet<Instruction*, 4>::iterator
1915           II = I->second.begin(), IE = I->second.end(); II != IE; ++II) {
1916      assert(*II != Inst && "Inst is still a value in PHI map!");
1917    }
1918  }
1919
1920  // Walk through the value number scope to make sure the instruction isn't
1921  // ferreted away in it.
1922  for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
1923         I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
1924    const ValueNumberScope *VNS = I->second;
1925
1926    while (VNS) {
1927      for (DenseMap<uint32_t, Value*>::iterator
1928             II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
1929        assert(II->second != Inst && "Inst still in value numbering scope!");
1930      }
1931
1932      VNS = VNS->parent;
1933    }
1934  }
1935}
1936