LoopUnroll.cpp revision 1009c3299be8c147ecd3fbd2d75ba1bafb2c84b1
1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities. It does not define any
11// actual pass or policy, but provides a single function to perform loop
12// unrolling.
13//
14// The process of unrolling can produce extraneous basic blocks linked with
15// unconditional branches.  This will be corrected in the future.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "loop-unroll"
20#include "llvm/Transforms/Utils/UnrollLoop.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LoopPass.h"
25#include "llvm/Analysis/ScalarEvolution.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/Transforms/Utils/Cloning.h"
30#include "llvm/Transforms/Utils/Local.h"
31using namespace llvm;
32
33// TODO: Should these be here or in LoopUnroll?
34STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
35STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
36
37/// RemapInstruction - Convert the instruction operands from referencing the
38/// current values into those specified by VMap.
39static inline void RemapInstruction(Instruction *I,
40                                    ValueToValueMapTy &VMap) {
41  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
42    Value *Op = I->getOperand(op);
43    ValueToValueMapTy::iterator It = VMap.find(Op);
44    if (It != VMap.end())
45      I->setOperand(op, It->second);
46  }
47
48  if (PHINode *PN = dyn_cast<PHINode>(I)) {
49    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
50      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
51      if (It != VMap.end())
52        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
53    }
54  }
55}
56
57/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
58/// only has one predecessor, and that predecessor only has one successor.
59/// The LoopInfo Analysis that is passed will be kept consistent.
60/// Returns the new combined block.
61static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
62                                            LPPassManager *LPM) {
63  // Merge basic blocks into their predecessor if there is only one distinct
64  // pred, and if there is only one distinct successor of the predecessor, and
65  // if there are no PHI nodes.
66  BasicBlock *OnlyPred = BB->getSinglePredecessor();
67  if (!OnlyPred) return 0;
68
69  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
70    return 0;
71
72  DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
73
74  // Resolve any PHI nodes at the start of the block.  They are all
75  // guaranteed to have exactly one entry if they exist, unless there are
76  // multiple duplicate (but guaranteed to be equal) entries for the
77  // incoming edges.  This occurs when there are multiple edges from
78  // OnlyPred to OnlySucc.
79  FoldSingleEntryPHINodes(BB);
80
81  // Delete the unconditional branch from the predecessor...
82  OnlyPred->getInstList().pop_back();
83
84  // Make all PHI nodes that referred to BB now refer to Pred as their
85  // source...
86  BB->replaceAllUsesWith(OnlyPred);
87
88  // Move all definitions in the successor to the predecessor...
89  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
90
91  std::string OldName = BB->getName();
92
93  // Erase basic block from the function...
94
95  // ScalarEvolution holds references to loop exit blocks.
96  if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
97    if (Loop *L = LI->getLoopFor(BB))
98      SE->forgetLoop(L);
99  }
100  LI->removeBlock(BB);
101  BB->eraseFromParent();
102
103  // Inherit predecessor's name if it exists...
104  if (!OldName.empty() && !OnlyPred->hasName())
105    OnlyPred->setName(OldName);
106
107  return OnlyPred;
108}
109
110/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
111/// if unrolling was successful, or false if the loop was unmodified. Unrolling
112/// can only fail when the loop's latch block is not terminated by a conditional
113/// branch instruction. However, if the trip count (and multiple) are not known,
114/// loop unrolling will mostly produce more code that is no faster.
115///
116/// TripCount is generally defined as the number of times the loop header
117/// executes. UnrollLoop relaxes the definition to permit early exits: here
118/// TripCount is the iteration on which control exits LatchBlock if no early
119/// exits were taken. Note that UnrollLoop assumes that the loop counter test
120/// terminates LatchBlock in order to remove unnecesssary instances of the
121/// test. In other words, control may exit the loop prior to TripCount
122/// iterations via an early branch, but control may not exit the loop from the
123/// LatchBlock's terminator prior to TripCount iterations.
124///
125/// Similarly, TripMultiple divides the number of times that the LatchBlock may
126/// execute without exiting the loop.
127///
128/// The LoopInfo Analysis that is passed will be kept consistent.
129///
130/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
131/// removed from the LoopPassManager as well. LPM can also be NULL.
132bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
133                      unsigned TripMultiple, LoopInfo *LI, LPPassManager *LPM) {
134  BasicBlock *Preheader = L->getLoopPreheader();
135  if (!Preheader) {
136    DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
137    return false;
138  }
139
140  BasicBlock *LatchBlock = L->getLoopLatch();
141  if (!LatchBlock) {
142    DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
143    return false;
144  }
145
146  BasicBlock *Header = L->getHeader();
147  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
148
149  if (!BI || BI->isUnconditional()) {
150    // The loop-rotate pass can be helpful to avoid this in many cases.
151    DEBUG(dbgs() <<
152             "  Can't unroll; loop not terminated by a conditional branch.\n");
153    return false;
154  }
155
156  if (Header->hasAddressTaken()) {
157    // The loop-rotate pass can be helpful to avoid this in many cases.
158    DEBUG(dbgs() <<
159          "  Won't unroll loop: address of header block is taken.\n");
160    return false;
161  }
162
163  // Notify ScalarEvolution that the loop will be substantially changed,
164  // if not outright eliminated.
165  if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>())
166    SE->forgetLoop(L);
167
168  if (TripCount != 0)
169    DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
170  if (TripMultiple != 1)
171    DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
172
173  // Effectively "DCE" unrolled iterations that are beyond the tripcount
174  // and will never be executed.
175  if (TripCount != 0 && Count > TripCount)
176    Count = TripCount;
177
178  assert(Count > 0);
179  assert(TripMultiple > 0);
180  assert(TripCount == 0 || TripCount % TripMultiple == 0);
181
182  // Are we eliminating the loop control altogether?
183  bool CompletelyUnroll = Count == TripCount;
184
185  // If we know the trip count, we know the multiple...
186  unsigned BreakoutTrip = 0;
187  if (TripCount != 0) {
188    BreakoutTrip = TripCount % Count;
189    TripMultiple = 0;
190  } else {
191    // Figure out what multiple to use.
192    BreakoutTrip = TripMultiple =
193      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
194  }
195
196  if (CompletelyUnroll) {
197    DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
198          << " with trip count " << TripCount << "!\n");
199  } else {
200    DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
201          << " by " << Count);
202    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
203      DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
204    } else if (TripMultiple != 1) {
205      DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
206    }
207    DEBUG(dbgs() << "!\n");
208  }
209
210  std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
211
212  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
213  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
214
215  // For the first iteration of the loop, we should use the precloned values for
216  // PHI nodes.  Insert associations now.
217  ValueToValueMapTy LastValueMap;
218  std::vector<PHINode*> OrigPHINode;
219  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
220    PHINode *PN = cast<PHINode>(I);
221    OrigPHINode.push_back(PN);
222    if (Instruction *I =
223                dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
224      if (L->contains(I))
225        LastValueMap[I] = I;
226  }
227
228  std::vector<BasicBlock*> Headers;
229  std::vector<BasicBlock*> Latches;
230  Headers.push_back(Header);
231  Latches.push_back(LatchBlock);
232
233  for (unsigned It = 1; It != Count; ++It) {
234    std::vector<BasicBlock*> NewBlocks;
235
236    for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
237         E = LoopBlocks.end(); BB != E; ++BB) {
238      ValueToValueMapTy VMap;
239      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
240      Header->getParent()->getBasicBlockList().push_back(New);
241
242      // Loop over all of the PHI nodes in the block, changing them to use the
243      // incoming values from the previous block.
244      if (*BB == Header)
245        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
246          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
247          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
248          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
249            if (It > 1 && L->contains(InValI))
250              InVal = LastValueMap[InValI];
251          VMap[OrigPHINode[i]] = InVal;
252          New->getInstList().erase(NewPHI);
253        }
254
255      // Update our running map of newest clones
256      LastValueMap[*BB] = New;
257      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
258           VI != VE; ++VI)
259        LastValueMap[VI->first] = VI->second;
260
261      L->addBasicBlockToLoop(New, LI->getBase());
262
263      // Add phi entries for newly created values to all exit blocks except
264      // the successor of the latch block.  The successor of the exit block will
265      // be updated specially after unrolling all the way.
266      if (*BB != LatchBlock)
267        for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); SI != SE;
268             ++SI)
269          if (!L->contains(*SI))
270            for (BasicBlock::iterator BBI = (*SI)->begin();
271                 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
272              Value *Incoming = phi->getIncomingValueForBlock(*BB);
273              phi->addIncoming(Incoming, New);
274            }
275
276      // Keep track of new headers and latches as we create them, so that
277      // we can insert the proper branches later.
278      if (*BB == Header)
279        Headers.push_back(New);
280      if (*BB == LatchBlock) {
281        Latches.push_back(New);
282
283        // Also, clear out the new latch's back edge so that it doesn't look
284        // like a new loop, so that it's amenable to being merged with adjacent
285        // blocks later on.
286        TerminatorInst *Term = New->getTerminator();
287        assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
288        assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
289        Term->setSuccessor(!ContinueOnTrue, NULL);
290      }
291
292      NewBlocks.push_back(New);
293    }
294
295    // Remap all instructions in the most recent iteration
296    for (unsigned i = 0; i < NewBlocks.size(); ++i)
297      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
298           E = NewBlocks[i]->end(); I != E; ++I)
299        ::RemapInstruction(I, LastValueMap);
300  }
301
302  // The latch block exits the loop.  If there are any PHI nodes in the
303  // successor blocks, update them to use the appropriate values computed as the
304  // last iteration of the loop.
305  if (Count != 1) {
306    BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
307    for (succ_iterator SI = succ_begin(LatchBlock), SE = succ_end(LatchBlock);
308         SI != SE; ++SI) {
309      for (BasicBlock::iterator BBI = (*SI)->begin();
310           PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
311        Value *InVal = PN->removeIncomingValue(LatchBlock, false);
312        // If this value was defined in the loop, take the value defined by the
313        // last iteration of the loop.
314        if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
315          if (L->contains(InValI))
316            InVal = LastValueMap[InVal];
317        }
318        PN->addIncoming(InVal, LastIterationBB);
319      }
320    }
321  }
322
323  // Now, if we're doing complete unrolling, loop over the PHI nodes in the
324  // original block, setting them to their incoming values.
325  if (CompletelyUnroll) {
326    BasicBlock *Preheader = L->getLoopPreheader();
327    for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
328      PHINode *PN = OrigPHINode[i];
329      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
330      Header->getInstList().erase(PN);
331    }
332  }
333
334  // Now that all the basic blocks for the unrolled iterations are in place,
335  // set up the branches to connect them.
336  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
337    // The original branch was replicated in each unrolled iteration.
338    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
339
340    // The branch destination.
341    unsigned j = (i + 1) % e;
342    BasicBlock *Dest = Headers[j];
343    bool NeedConditional = true;
344
345    // For a complete unroll, make the last iteration end with a branch
346    // to the exit block.
347    if (CompletelyUnroll && j == 0) {
348      Dest = LoopExit;
349      NeedConditional = false;
350    }
351
352    // If we know the trip count or a multiple of it, we can safely use an
353    // unconditional branch for some iterations.
354    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
355      NeedConditional = false;
356    }
357
358    if (NeedConditional) {
359      // Update the conditional branch's successor for the following
360      // iteration.
361      Term->setSuccessor(!ContinueOnTrue, Dest);
362    } else {
363      // Replace the conditional branch with an unconditional one.
364      BranchInst::Create(Dest, Term);
365      Term->eraseFromParent();
366    }
367  }
368
369  // Merge adjacent basic blocks, if possible.
370  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
371    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
372    if (Term->isUnconditional()) {
373      BasicBlock *Dest = Term->getSuccessor(0);
374      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
375        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
376    }
377  }
378
379  // At this point, the code is well formed.  We now do a quick sweep over the
380  // inserted code, doing constant propagation and dead code elimination as we
381  // go.
382  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
383  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
384       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
385    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
386      Instruction *Inst = I++;
387
388      if (isInstructionTriviallyDead(Inst))
389        (*BB)->getInstList().erase(Inst);
390      else if (Value *V = SimplifyInstruction(Inst))
391        if (LI->replacementPreservesLCSSAForm(Inst, V)) {
392          Inst->replaceAllUsesWith(V);
393          (*BB)->getInstList().erase(Inst);
394        }
395    }
396
397  NumCompletelyUnrolled += CompletelyUnroll;
398  ++NumUnrolled;
399  // Remove the loop from the LoopPassManager if it's completely removed.
400  if (CompletelyUnroll && LPM != NULL)
401    LPM->deleteLoopFromQueue(L);
402
403  return true;
404}
405