LoopUnroll.cpp revision 2045ce154a69b8f251d3a5259324528f0def337b
1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities. It does not define any
11// actual pass or policy, but provides a single function to perform loop
12// unrolling.
13//
14// The process of unrolling can produce extraneous basic blocks linked with
15// unconditional branches.  This will be corrected in the future.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "loop-unroll"
20#include "llvm/Transforms/Utils/UnrollLoop.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LoopPass.h"
25#include "llvm/Analysis/ScalarEvolution.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/Transforms/Utils/Cloning.h"
30#include "llvm/Transforms/Utils/Local.h"
31using namespace llvm;
32
33// TODO: Should these be here or in LoopUnroll?
34STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
35STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
36
37/// RemapInstruction - Convert the instruction operands from referencing the
38/// current values into those specified by VMap.
39static inline void RemapInstruction(Instruction *I,
40                                    ValueToValueMapTy &VMap) {
41  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
42    Value *Op = I->getOperand(op);
43    ValueToValueMapTy::iterator It = VMap.find(Op);
44    if (It != VMap.end())
45      I->setOperand(op, It->second);
46  }
47
48  if (PHINode *PN = dyn_cast<PHINode>(I)) {
49    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
50      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
51      if (It != VMap.end())
52        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
53    }
54  }
55}
56
57/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
58/// only has one predecessor, and that predecessor only has one successor.
59/// The LoopInfo Analysis that is passed will be kept consistent.
60/// Returns the new combined block.
61static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
62  // Merge basic blocks into their predecessor if there is only one distinct
63  // pred, and if there is only one distinct successor of the predecessor, and
64  // if there are no PHI nodes.
65  BasicBlock *OnlyPred = BB->getSinglePredecessor();
66  if (!OnlyPred) return 0;
67
68  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
69    return 0;
70
71  DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
72
73  // Resolve any PHI nodes at the start of the block.  They are all
74  // guaranteed to have exactly one entry if they exist, unless there are
75  // multiple duplicate (but guaranteed to be equal) entries for the
76  // incoming edges.  This occurs when there are multiple edges from
77  // OnlyPred to OnlySucc.
78  FoldSingleEntryPHINodes(BB);
79
80  // Delete the unconditional branch from the predecessor...
81  OnlyPred->getInstList().pop_back();
82
83  // Make all PHI nodes that referred to BB now refer to Pred as their
84  // source...
85  BB->replaceAllUsesWith(OnlyPred);
86
87  // Move all definitions in the successor to the predecessor...
88  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
89
90  std::string OldName = BB->getName();
91
92  // Erase basic block from the function...
93  LI->removeBlock(BB);
94  BB->eraseFromParent();
95
96  // Inherit predecessor's name if it exists...
97  if (!OldName.empty() && !OnlyPred->hasName())
98    OnlyPred->setName(OldName);
99
100  return OnlyPred;
101}
102
103/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
104/// if unrolling was successful, or false if the loop was unmodified. Unrolling
105/// can only fail when the loop's latch block is not terminated by a conditional
106/// branch instruction. However, if the trip count (and multiple) are not known,
107/// loop unrolling will mostly produce more code that is no faster.
108///
109/// The LoopInfo Analysis that is passed will be kept consistent.
110///
111/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
112/// removed from the LoopPassManager as well. LPM can also be NULL.
113bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
114                      unsigned TripMultiple, LoopInfo *LI, LPPassManager *LPM) {
115  BasicBlock *Preheader = L->getLoopPreheader();
116  if (!Preheader) {
117    DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
118    return false;
119  }
120
121  BasicBlock *LatchBlock = L->getLoopLatch();
122  if (!LatchBlock) {
123    DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
124    return false;
125  }
126
127  BasicBlock *Header = L->getHeader();
128  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
129
130  if (!BI || BI->isUnconditional()) {
131    // The loop-rotate pass can be helpful to avoid this in many cases.
132    DEBUG(dbgs() <<
133             "  Can't unroll; loop not terminated by a conditional branch.\n");
134    return false;
135  }
136
137  if (Header->hasAddressTaken()) {
138    // The loop-rotate pass can be helpful to avoid this in many cases.
139    DEBUG(dbgs() <<
140          "  Won't unroll loop: address of header block is taken.\n");
141    return false;
142  }
143
144  // Notify ScalarEvolution that the loop will be substantially changed,
145  // if not outright eliminated.
146  if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>())
147    SE->forgetLoop(L);
148
149  if (TripCount != 0)
150    DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
151  if (TripMultiple != 1)
152    DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
153
154  // Effectively "DCE" unrolled iterations that are beyond the tripcount
155  // and will never be executed.
156  if (TripCount != 0 && Count > TripCount)
157    Count = TripCount;
158
159  assert(Count > 0);
160  assert(TripMultiple > 0);
161  assert(TripCount == 0 || TripCount % TripMultiple == 0);
162
163  // Are we eliminating the loop control altogether?
164  bool CompletelyUnroll = Count == TripCount;
165
166  // If we know the trip count, we know the multiple...
167  unsigned BreakoutTrip = 0;
168  if (TripCount != 0) {
169    BreakoutTrip = TripCount % Count;
170    TripMultiple = 0;
171  } else {
172    // Figure out what multiple to use.
173    BreakoutTrip = TripMultiple =
174      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
175  }
176
177  if (CompletelyUnroll) {
178    DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
179          << " with trip count " << TripCount << "!\n");
180  } else {
181    DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
182          << " by " << Count);
183    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
184      DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
185    } else if (TripMultiple != 1) {
186      DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
187    }
188    DEBUG(dbgs() << "!\n");
189  }
190
191  std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
192
193  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
194  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
195
196  // For the first iteration of the loop, we should use the precloned values for
197  // PHI nodes.  Insert associations now.
198  ValueToValueMapTy LastValueMap;
199  std::vector<PHINode*> OrigPHINode;
200  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
201    PHINode *PN = cast<PHINode>(I);
202    OrigPHINode.push_back(PN);
203    if (Instruction *I =
204                dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
205      if (L->contains(I))
206        LastValueMap[I] = I;
207  }
208
209  std::vector<BasicBlock*> Headers;
210  std::vector<BasicBlock*> Latches;
211  Headers.push_back(Header);
212  Latches.push_back(LatchBlock);
213
214  for (unsigned It = 1; It != Count; ++It) {
215    std::vector<BasicBlock*> NewBlocks;
216
217    for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
218         E = LoopBlocks.end(); BB != E; ++BB) {
219      ValueToValueMapTy VMap;
220      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
221      Header->getParent()->getBasicBlockList().push_back(New);
222
223      // Loop over all of the PHI nodes in the block, changing them to use the
224      // incoming values from the previous block.
225      if (*BB == Header)
226        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
227          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
228          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
229          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
230            if (It > 1 && L->contains(InValI))
231              InVal = LastValueMap[InValI];
232          VMap[OrigPHINode[i]] = InVal;
233          New->getInstList().erase(NewPHI);
234        }
235
236      // Update our running map of newest clones
237      LastValueMap[*BB] = New;
238      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
239           VI != VE; ++VI)
240        LastValueMap[VI->first] = VI->second;
241
242      L->addBasicBlockToLoop(New, LI->getBase());
243
244      // Add phi entries for newly created values to all exit blocks except
245      // the successor of the latch block.  The successor of the exit block will
246      // be updated specially after unrolling all the way.
247      if (*BB != LatchBlock)
248        for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); SI != SE;
249             ++SI)
250          if (!L->contains(*SI))
251            for (BasicBlock::iterator BBI = (*SI)->begin();
252                 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
253              Value *Incoming = phi->getIncomingValueForBlock(*BB);
254              phi->addIncoming(Incoming, New);
255            }
256
257      // Keep track of new headers and latches as we create them, so that
258      // we can insert the proper branches later.
259      if (*BB == Header)
260        Headers.push_back(New);
261      if (*BB == LatchBlock) {
262        Latches.push_back(New);
263
264        // Also, clear out the new latch's back edge so that it doesn't look
265        // like a new loop, so that it's amenable to being merged with adjacent
266        // blocks later on.
267        TerminatorInst *Term = New->getTerminator();
268        assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
269        assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
270        Term->setSuccessor(!ContinueOnTrue, NULL);
271      }
272
273      NewBlocks.push_back(New);
274    }
275
276    // Remap all instructions in the most recent iteration
277    for (unsigned i = 0; i < NewBlocks.size(); ++i)
278      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
279           E = NewBlocks[i]->end(); I != E; ++I)
280        ::RemapInstruction(I, LastValueMap);
281  }
282
283  // The latch block exits the loop.  If there are any PHI nodes in the
284  // successor blocks, update them to use the appropriate values computed as the
285  // last iteration of the loop.
286  if (Count != 1) {
287    BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
288    for (succ_iterator SI = succ_begin(LatchBlock), SE = succ_end(LatchBlock);
289         SI != SE; ++SI) {
290      for (BasicBlock::iterator BBI = (*SI)->begin();
291           PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
292        Value *InVal = PN->removeIncomingValue(LatchBlock, false);
293        // If this value was defined in the loop, take the value defined by the
294        // last iteration of the loop.
295        if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
296          if (L->contains(InValI))
297            InVal = LastValueMap[InVal];
298        }
299        PN->addIncoming(InVal, LastIterationBB);
300      }
301    }
302  }
303
304  // Now, if we're doing complete unrolling, loop over the PHI nodes in the
305  // original block, setting them to their incoming values.
306  if (CompletelyUnroll) {
307    BasicBlock *Preheader = L->getLoopPreheader();
308    for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
309      PHINode *PN = OrigPHINode[i];
310      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
311      Header->getInstList().erase(PN);
312    }
313  }
314
315  // Now that all the basic blocks for the unrolled iterations are in place,
316  // set up the branches to connect them.
317  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
318    // The original branch was replicated in each unrolled iteration.
319    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
320
321    // The branch destination.
322    unsigned j = (i + 1) % e;
323    BasicBlock *Dest = Headers[j];
324    bool NeedConditional = true;
325
326    // For a complete unroll, make the last iteration end with a branch
327    // to the exit block.
328    if (CompletelyUnroll && j == 0) {
329      Dest = LoopExit;
330      NeedConditional = false;
331    }
332
333    // If we know the trip count or a multiple of it, we can safely use an
334    // unconditional branch for some iterations.
335    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
336      NeedConditional = false;
337    }
338
339    if (NeedConditional) {
340      // Update the conditional branch's successor for the following
341      // iteration.
342      Term->setSuccessor(!ContinueOnTrue, Dest);
343    } else {
344      // Replace the conditional branch with an unconditional one.
345      BranchInst::Create(Dest, Term);
346      Term->eraseFromParent();
347    }
348  }
349
350  // Merge adjacent basic blocks, if possible.
351  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
352    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
353    if (Term->isUnconditional()) {
354      BasicBlock *Dest = Term->getSuccessor(0);
355      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI))
356        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
357    }
358  }
359
360  // At this point, the code is well formed.  We now do a quick sweep over the
361  // inserted code, doing constant propagation and dead code elimination as we
362  // go.
363  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
364  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
365       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
366    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
367      Instruction *Inst = I++;
368
369      if (isInstructionTriviallyDead(Inst))
370        (*BB)->getInstList().erase(Inst);
371      else if (Value *V = SimplifyInstruction(Inst))
372        if (LI->replacementPreservesLCSSAForm(Inst, V)) {
373          Inst->replaceAllUsesWith(V);
374          (*BB)->getInstList().erase(Inst);
375        }
376    }
377
378  NumCompletelyUnrolled += CompletelyUnroll;
379  ++NumUnrolled;
380  // Remove the loop from the LoopPassManager if it's completely removed.
381  if (CompletelyUnroll && LPM != NULL)
382    LPM->deleteLoopFromQueue(L);
383
384  return true;
385}
386