LoopUnroll.cpp revision 478849e98ca4661d77c1d6f3f96e8b28e1183fbd
1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities. It does not define any
11// actual pass or policy, but provides a single function to perform loop
12// unrolling.
13//
14// The process of unrolling can produce extraneous basic blocks linked with
15// unconditional branches.  This will be corrected in the future.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "loop-unroll"
20#include "llvm/Transforms/Utils/UnrollLoop.h"
21#include "llvm/BasicBlock.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LoopPass.h"
25#include "llvm/Analysis/ScalarEvolution.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/Transforms/Utils/Cloning.h"
30#include "llvm/Transforms/Utils/Local.h"
31using namespace llvm;
32
33// TODO: Should these be here or in LoopUnroll?
34STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
35STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
36
37/// RemapInstruction - Convert the instruction operands from referencing the
38/// current values into those specified by VMap.
39static inline void RemapInstruction(Instruction *I,
40                                    ValueToValueMapTy &VMap) {
41  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
42    Value *Op = I->getOperand(op);
43    ValueToValueMapTy::iterator It = VMap.find(Op);
44    if (It != VMap.end())
45      I->setOperand(op, It->second);
46  }
47
48  if (PHINode *PN = dyn_cast<PHINode>(I)) {
49    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
50      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
51      if (It != VMap.end())
52        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
53    }
54  }
55}
56
57/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
58/// only has one predecessor, and that predecessor only has one successor.
59/// The LoopInfo Analysis that is passed will be kept consistent.
60/// Returns the new combined block.
61static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
62  // Merge basic blocks into their predecessor if there is only one distinct
63  // pred, and if there is only one distinct successor of the predecessor, and
64  // if there are no PHI nodes.
65  BasicBlock *OnlyPred = BB->getSinglePredecessor();
66  if (!OnlyPred) return 0;
67
68  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
69    return 0;
70
71  DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
72
73  // Resolve any PHI nodes at the start of the block.  They are all
74  // guaranteed to have exactly one entry if they exist, unless there are
75  // multiple duplicate (but guaranteed to be equal) entries for the
76  // incoming edges.  This occurs when there are multiple edges from
77  // OnlyPred to OnlySucc.
78  FoldSingleEntryPHINodes(BB);
79
80  // Delete the unconditional branch from the predecessor...
81  OnlyPred->getInstList().pop_back();
82
83  // Make all PHI nodes that referred to BB now refer to Pred as their
84  // source...
85  BB->replaceAllUsesWith(OnlyPred);
86
87  // Move all definitions in the successor to the predecessor...
88  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
89
90  std::string OldName = BB->getName();
91
92  // Erase basic block from the function...
93  LI->removeBlock(BB);
94  BB->eraseFromParent();
95
96  // Inherit predecessor's name if it exists...
97  if (!OldName.empty() && !OnlyPred->hasName())
98    OnlyPred->setName(OldName);
99
100  return OnlyPred;
101}
102
103/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
104/// if unrolling was successful, or false if the loop was unmodified. Unrolling
105/// can only fail when the loop's latch block is not terminated by a conditional
106/// branch instruction. However, if the trip count (and multiple) are not known,
107/// loop unrolling will mostly produce more code that is no faster.
108///
109/// TripCount is generally defined as the number of times the loop header
110/// executes. UnrollLoop relaxes the definition to permit early exits: here
111/// TripCount is the iteration on which control exits LatchBlock if no early
112/// exits were taken. Note that UnrollLoop assumes that the loop counter test
113/// terminates LatchBlock in order to remove unnecesssary instances of the
114/// test. In other words, control may exit the loop prior to TripCount
115/// iterations via an early branch, but control may not exit the loop from the
116/// LatchBlock's terminator prior to TripCount iterations.
117///
118/// Similarly, TripMultiple divides the number of times that the LatchBlock may
119/// execute without exiting the loop.
120///
121/// The LoopInfo Analysis that is passed will be kept consistent.
122///
123/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
124/// removed from the LoopPassManager as well. LPM can also be NULL.
125bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
126                      unsigned TripMultiple, LoopInfo *LI, LPPassManager *LPM) {
127  BasicBlock *Preheader = L->getLoopPreheader();
128  if (!Preheader) {
129    DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
130    return false;
131  }
132
133  BasicBlock *LatchBlock = L->getLoopLatch();
134  if (!LatchBlock) {
135    DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
136    return false;
137  }
138
139  BasicBlock *Header = L->getHeader();
140  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
141
142  if (!BI || BI->isUnconditional()) {
143    // The loop-rotate pass can be helpful to avoid this in many cases.
144    DEBUG(dbgs() <<
145             "  Can't unroll; loop not terminated by a conditional branch.\n");
146    return false;
147  }
148
149  if (Header->hasAddressTaken()) {
150    // The loop-rotate pass can be helpful to avoid this in many cases.
151    DEBUG(dbgs() <<
152          "  Won't unroll loop: address of header block is taken.\n");
153    return false;
154  }
155
156  // Notify ScalarEvolution that the loop will be substantially changed,
157  // if not outright eliminated.
158  if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>())
159    SE->forgetLoop(L);
160
161  if (TripCount != 0)
162    DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
163  if (TripMultiple != 1)
164    DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
165
166  // Effectively "DCE" unrolled iterations that are beyond the tripcount
167  // and will never be executed.
168  if (TripCount != 0 && Count > TripCount)
169    Count = TripCount;
170
171  assert(Count > 0);
172  assert(TripMultiple > 0);
173  assert(TripCount == 0 || TripCount % TripMultiple == 0);
174
175  // Are we eliminating the loop control altogether?
176  bool CompletelyUnroll = Count == TripCount;
177
178  // If we know the trip count, we know the multiple...
179  unsigned BreakoutTrip = 0;
180  if (TripCount != 0) {
181    BreakoutTrip = TripCount % Count;
182    TripMultiple = 0;
183  } else {
184    // Figure out what multiple to use.
185    BreakoutTrip = TripMultiple =
186      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
187  }
188
189  if (CompletelyUnroll) {
190    DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
191          << " with trip count " << TripCount << "!\n");
192  } else {
193    DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
194          << " by " << Count);
195    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
196      DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
197    } else if (TripMultiple != 1) {
198      DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
199    }
200    DEBUG(dbgs() << "!\n");
201  }
202
203  std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
204
205  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
206  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
207
208  // For the first iteration of the loop, we should use the precloned values for
209  // PHI nodes.  Insert associations now.
210  ValueToValueMapTy LastValueMap;
211  std::vector<PHINode*> OrigPHINode;
212  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
213    PHINode *PN = cast<PHINode>(I);
214    OrigPHINode.push_back(PN);
215    if (Instruction *I =
216                dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
217      if (L->contains(I))
218        LastValueMap[I] = I;
219  }
220
221  std::vector<BasicBlock*> Headers;
222  std::vector<BasicBlock*> Latches;
223  Headers.push_back(Header);
224  Latches.push_back(LatchBlock);
225
226  for (unsigned It = 1; It != Count; ++It) {
227    std::vector<BasicBlock*> NewBlocks;
228
229    for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
230         E = LoopBlocks.end(); BB != E; ++BB) {
231      ValueToValueMapTy VMap;
232      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
233      Header->getParent()->getBasicBlockList().push_back(New);
234
235      // Loop over all of the PHI nodes in the block, changing them to use the
236      // incoming values from the previous block.
237      if (*BB == Header)
238        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
239          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
240          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
241          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
242            if (It > 1 && L->contains(InValI))
243              InVal = LastValueMap[InValI];
244          VMap[OrigPHINode[i]] = InVal;
245          New->getInstList().erase(NewPHI);
246        }
247
248      // Update our running map of newest clones
249      LastValueMap[*BB] = New;
250      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
251           VI != VE; ++VI)
252        LastValueMap[VI->first] = VI->second;
253
254      L->addBasicBlockToLoop(New, LI->getBase());
255
256      // Add phi entries for newly created values to all exit blocks except
257      // the successor of the latch block.  The successor of the exit block will
258      // be updated specially after unrolling all the way.
259      if (*BB != LatchBlock)
260        for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); SI != SE;
261             ++SI)
262          if (!L->contains(*SI))
263            for (BasicBlock::iterator BBI = (*SI)->begin();
264                 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
265              Value *Incoming = phi->getIncomingValueForBlock(*BB);
266              phi->addIncoming(Incoming, New);
267            }
268
269      // Keep track of new headers and latches as we create them, so that
270      // we can insert the proper branches later.
271      if (*BB == Header)
272        Headers.push_back(New);
273      if (*BB == LatchBlock) {
274        Latches.push_back(New);
275
276        // Also, clear out the new latch's back edge so that it doesn't look
277        // like a new loop, so that it's amenable to being merged with adjacent
278        // blocks later on.
279        TerminatorInst *Term = New->getTerminator();
280        assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
281        assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
282        Term->setSuccessor(!ContinueOnTrue, NULL);
283      }
284
285      NewBlocks.push_back(New);
286    }
287
288    // Remap all instructions in the most recent iteration
289    for (unsigned i = 0; i < NewBlocks.size(); ++i)
290      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
291           E = NewBlocks[i]->end(); I != E; ++I)
292        ::RemapInstruction(I, LastValueMap);
293  }
294
295  // The latch block exits the loop.  If there are any PHI nodes in the
296  // successor blocks, update them to use the appropriate values computed as the
297  // last iteration of the loop.
298  if (Count != 1) {
299    BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
300    for (succ_iterator SI = succ_begin(LatchBlock), SE = succ_end(LatchBlock);
301         SI != SE; ++SI) {
302      for (BasicBlock::iterator BBI = (*SI)->begin();
303           PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
304        Value *InVal = PN->removeIncomingValue(LatchBlock, false);
305        // If this value was defined in the loop, take the value defined by the
306        // last iteration of the loop.
307        if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
308          if (L->contains(InValI))
309            InVal = LastValueMap[InVal];
310        }
311        PN->addIncoming(InVal, LastIterationBB);
312      }
313    }
314  }
315
316  // Now, if we're doing complete unrolling, loop over the PHI nodes in the
317  // original block, setting them to their incoming values.
318  if (CompletelyUnroll) {
319    BasicBlock *Preheader = L->getLoopPreheader();
320    for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
321      PHINode *PN = OrigPHINode[i];
322      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
323      Header->getInstList().erase(PN);
324    }
325  }
326
327  // Now that all the basic blocks for the unrolled iterations are in place,
328  // set up the branches to connect them.
329  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
330    // The original branch was replicated in each unrolled iteration.
331    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
332
333    // The branch destination.
334    unsigned j = (i + 1) % e;
335    BasicBlock *Dest = Headers[j];
336    bool NeedConditional = true;
337
338    // For a complete unroll, make the last iteration end with a branch
339    // to the exit block.
340    if (CompletelyUnroll && j == 0) {
341      Dest = LoopExit;
342      NeedConditional = false;
343    }
344
345    // If we know the trip count or a multiple of it, we can safely use an
346    // unconditional branch for some iterations.
347    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
348      NeedConditional = false;
349    }
350
351    if (NeedConditional) {
352      // Update the conditional branch's successor for the following
353      // iteration.
354      Term->setSuccessor(!ContinueOnTrue, Dest);
355    } else {
356      // Replace the conditional branch with an unconditional one.
357      BranchInst::Create(Dest, Term);
358      Term->eraseFromParent();
359    }
360  }
361
362  // Merge adjacent basic blocks, if possible.
363  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
364    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
365    if (Term->isUnconditional()) {
366      BasicBlock *Dest = Term->getSuccessor(0);
367      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI))
368        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
369    }
370  }
371
372  // At this point, the code is well formed.  We now do a quick sweep over the
373  // inserted code, doing constant propagation and dead code elimination as we
374  // go.
375  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
376  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
377       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
378    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
379      Instruction *Inst = I++;
380
381      if (isInstructionTriviallyDead(Inst))
382        (*BB)->getInstList().erase(Inst);
383      else if (Value *V = SimplifyInstruction(Inst))
384        if (LI->replacementPreservesLCSSAForm(Inst, V)) {
385          Inst->replaceAllUsesWith(V);
386          (*BB)->getInstList().erase(Inst);
387        }
388    }
389
390  NumCompletelyUnrolled += CompletelyUnroll;
391  ++NumUnrolled;
392  // Remove the loop from the LoopPassManager if it's completely removed.
393  if (CompletelyUnroll && LPM != NULL)
394    LPM->deleteLoopFromQueue(L);
395
396  return true;
397}
398