LoopUnroll.cpp revision f230d8ad15f7ad5cdc5f3950b9d4f0c773d0bac0
1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities. It does not define any
11// actual pass or policy, but provides a single function to perform loop
12// unrolling.
13//
14// It works best when loops have been canonicalized by the -indvars pass,
15// allowing it to determine the trip counts of loops easily.
16//
17// The process of unrolling can produce extraneous basic blocks linked with
18// unconditional branches.  This will be corrected in the future.
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "loop-unroll"
22#include "llvm/Transforms/Utils/UnrollLoop.h"
23#include "llvm/BasicBlock.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/LoopPass.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30#include "llvm/Transforms/Utils/Cloning.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include <cstdio>
33
34using namespace llvm;
35
36// TODO: Should these be here or in LoopUnroll?
37STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
38STATISTIC(NumUnrolled,    "Number of loops unrolled (completely or otherwise)");
39
40/// RemapInstruction - Convert the instruction operands from referencing the
41/// current values into those specified by ValueMap.
42static inline void RemapInstruction(Instruction *I,
43                                    DenseMap<const Value *, Value*> &ValueMap) {
44  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
45    Value *Op = I->getOperand(op);
46    DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
47    if (It != ValueMap.end())
48      I->setOperand(op, It->second);
49  }
50}
51
52/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
53/// if unrolling was succesful, or false if the loop was unmodified. Unrolling
54/// can only fail when the loop's latch block is not terminated by a conditional
55/// branch instruction. However, if the trip count (and multiple) are not known,
56/// loop unrolling will mostly produce more code that is no faster.
57///
58/// The LoopInfo Analysis that is passed will be kept consistent.
59///
60/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
61/// removed from the LoopPassManager as well. LPM can also be NULL.
62bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) {
63  assert(L->isLCSSAForm());
64
65  BasicBlock *Header = L->getHeader();
66  BasicBlock *LatchBlock = L->getLoopLatch();
67  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
68
69  if (!BI || BI->isUnconditional()) {
70    // The loop-rotate pass can be helpful to avoid this in many cases.
71    DEBUG(errs() <<
72             "  Can't unroll; loop not terminated by a conditional branch.\n");
73    return false;
74  }
75
76  // Find trip count
77  unsigned TripCount = L->getSmallConstantTripCount();
78  // Find trip multiple if count is not available
79  unsigned TripMultiple = 1;
80  if (TripCount == 0)
81    TripMultiple = L->getSmallConstantTripMultiple();
82
83  if (TripCount != 0)
84    DEBUG(errs() << "  Trip Count = " << TripCount << "\n");
85  if (TripMultiple != 1)
86    DEBUG(errs() << "  Trip Multiple = " << TripMultiple << "\n");
87
88  // Effectively "DCE" unrolled iterations that are beyond the tripcount
89  // and will never be executed.
90  if (TripCount != 0 && Count > TripCount)
91    Count = TripCount;
92
93  assert(Count > 0);
94  assert(TripMultiple > 0);
95  assert(TripCount == 0 || TripCount % TripMultiple == 0);
96
97  // Are we eliminating the loop control altogether?
98  bool CompletelyUnroll = Count == TripCount;
99
100  // If we know the trip count, we know the multiple...
101  unsigned BreakoutTrip = 0;
102  if (TripCount != 0) {
103    BreakoutTrip = TripCount % Count;
104    TripMultiple = 0;
105  } else {
106    // Figure out what multiple to use.
107    BreakoutTrip = TripMultiple =
108      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
109  }
110
111  if (CompletelyUnroll) {
112    DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName()
113          << " with trip count " << TripCount << "!\n");
114  } else {
115    DEBUG(errs() << "UNROLLING loop %" << Header->getName()
116          << " by " << Count);
117    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
118      DEBUG(errs() << " with a breakout at trip " << BreakoutTrip);
119    } else if (TripMultiple != 1) {
120      DEBUG(errs() << " with " << TripMultiple << " trips per branch");
121    }
122    DEBUG(errs() << "!\n");
123  }
124
125  std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
126
127  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
128  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
129
130  // For the first iteration of the loop, we should use the precloned values for
131  // PHI nodes.  Insert associations now.
132  typedef DenseMap<const Value*, Value*> ValueMapTy;
133  ValueMapTy LastValueMap;
134  std::vector<PHINode*> OrigPHINode;
135  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
136    PHINode *PN = cast<PHINode>(I);
137    OrigPHINode.push_back(PN);
138    if (Instruction *I =
139                dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
140      if (L->contains(I->getParent()))
141        LastValueMap[I] = I;
142  }
143
144  std::vector<BasicBlock*> Headers;
145  std::vector<BasicBlock*> Latches;
146  Headers.push_back(Header);
147  Latches.push_back(LatchBlock);
148
149  for (unsigned It = 1; It != Count; ++It) {
150    char SuffixBuffer[100];
151    sprintf(SuffixBuffer, ".%d", It);
152
153    std::vector<BasicBlock*> NewBlocks;
154
155    for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
156         E = LoopBlocks.end(); BB != E; ++BB) {
157      ValueMapTy ValueMap;
158      BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
159      Header->getParent()->getBasicBlockList().push_back(New);
160
161      // Loop over all of the PHI nodes in the block, changing them to use the
162      // incoming values from the previous block.
163      if (*BB == Header)
164        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
165          PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
166          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
167          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
168            if (It > 1 && L->contains(InValI->getParent()))
169              InVal = LastValueMap[InValI];
170          ValueMap[OrigPHINode[i]] = InVal;
171          New->getInstList().erase(NewPHI);
172        }
173
174      // Update our running map of newest clones
175      LastValueMap[*BB] = New;
176      for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
177           VI != VE; ++VI)
178        LastValueMap[VI->first] = VI->second;
179
180      L->addBasicBlockToLoop(New, LI->getBase());
181
182      // Add phi entries for newly created values to all exit blocks except
183      // the successor of the latch block.  The successor of the exit block will
184      // be updated specially after unrolling all the way.
185      if (*BB != LatchBlock)
186        for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
187             UI != UE;) {
188          Instruction *UseInst = cast<Instruction>(*UI);
189          ++UI;
190          if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
191            PHINode *phi = cast<PHINode>(UseInst);
192            Value *Incoming = phi->getIncomingValueForBlock(*BB);
193            phi->addIncoming(Incoming, New);
194          }
195        }
196
197      // Keep track of new headers and latches as we create them, so that
198      // we can insert the proper branches later.
199      if (*BB == Header)
200        Headers.push_back(New);
201      if (*BB == LatchBlock) {
202        Latches.push_back(New);
203
204        // Also, clear out the new latch's back edge so that it doesn't look
205        // like a new loop, so that it's amenable to being merged with adjacent
206        // blocks later on.
207        TerminatorInst *Term = New->getTerminator();
208        assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
209        assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
210        Term->setSuccessor(!ContinueOnTrue, NULL);
211      }
212
213      NewBlocks.push_back(New);
214    }
215
216    // Remap all instructions in the most recent iteration
217    for (unsigned i = 0; i < NewBlocks.size(); ++i)
218      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
219           E = NewBlocks[i]->end(); I != E; ++I)
220        RemapInstruction(I, LastValueMap);
221  }
222
223  // The latch block exits the loop.  If there are any PHI nodes in the
224  // successor blocks, update them to use the appropriate values computed as the
225  // last iteration of the loop.
226  if (Count != 1) {
227    SmallPtrSet<PHINode*, 8> Users;
228    for (Value::use_iterator UI = LatchBlock->use_begin(),
229         UE = LatchBlock->use_end(); UI != UE; ++UI)
230      if (PHINode *phi = dyn_cast<PHINode>(*UI))
231        Users.insert(phi);
232
233    BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
234    for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
235         SI != SE; ++SI) {
236      PHINode *PN = *SI;
237      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
238      // If this value was defined in the loop, take the value defined by the
239      // last iteration of the loop.
240      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
241        if (L->contains(InValI->getParent()))
242          InVal = LastValueMap[InVal];
243      }
244      PN->addIncoming(InVal, LastIterationBB);
245    }
246  }
247
248  // Now, if we're doing complete unrolling, loop over the PHI nodes in the
249  // original block, setting them to their incoming values.
250  if (CompletelyUnroll) {
251    BasicBlock *Preheader = L->getLoopPreheader();
252    for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
253      PHINode *PN = OrigPHINode[i];
254      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
255      Header->getInstList().erase(PN);
256    }
257  }
258
259  // Now that all the basic blocks for the unrolled iterations are in place,
260  // set up the branches to connect them.
261  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
262    // The original branch was replicated in each unrolled iteration.
263    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
264
265    // The branch destination.
266    unsigned j = (i + 1) % e;
267    BasicBlock *Dest = Headers[j];
268    bool NeedConditional = true;
269
270    // For a complete unroll, make the last iteration end with a branch
271    // to the exit block.
272    if (CompletelyUnroll && j == 0) {
273      Dest = LoopExit;
274      NeedConditional = false;
275    }
276
277    // If we know the trip count or a multiple of it, we can safely use an
278    // unconditional branch for some iterations.
279    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
280      NeedConditional = false;
281    }
282
283    if (NeedConditional) {
284      // Update the conditional branch's successor for the following
285      // iteration.
286      Term->setSuccessor(!ContinueOnTrue, Dest);
287    } else {
288      Term->setUnconditionalDest(Dest);
289      // Merge adjacent basic blocks, if possible.
290      if (BasicBlock *Fold = MergeBlockIntoPredecessor(Dest, LI)) {
291        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
292        std::replace(Headers.begin(), Headers.end(), Dest, Fold);
293      }
294    }
295  }
296
297  // At this point, the code is well formed.  We now do a quick sweep over the
298  // inserted code, doing constant propagation and dead code elimination as we
299  // go.
300  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
301  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
302       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
303    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
304      Instruction *Inst = I++;
305
306      if (isInstructionTriviallyDead(Inst))
307        (*BB)->getInstList().erase(Inst);
308      else if (Constant *C = ConstantFoldInstruction(Inst,
309                                                     Header->getContext())) {
310        Inst->replaceAllUsesWith(C);
311        (*BB)->getInstList().erase(Inst);
312      }
313    }
314
315  NumCompletelyUnrolled += CompletelyUnroll;
316  ++NumUnrolled;
317  // Remove the loop from the LoopPassManager if it's completely removed.
318  if (CompletelyUnroll && LPM != NULL)
319    LPM->deleteLoopFromQueue(L);
320
321  // If we didn't completely unroll the loop, it should still be in LCSSA form.
322  if (!CompletelyUnroll)
323    assert(L->isLCSSAForm());
324
325  return true;
326}
327