builtins-arm.cc revision 1e0659c275bb392c045087af4f6b0d7565cb3d77
1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "codegen-inl.h"
33#include "debug.h"
34#include "deoptimizer.h"
35#include "full-codegen.h"
36#include "runtime.h"
37
38namespace v8 {
39namespace internal {
40
41
42#define __ ACCESS_MASM(masm)
43
44
45void Builtins::Generate_Adaptor(MacroAssembler* masm,
46                                CFunctionId id,
47                                BuiltinExtraArguments extra_args) {
48  // ----------- S t a t e -------------
49  //  -- r0                 : number of arguments excluding receiver
50  //  -- r1                 : called function (only guaranteed when
51  //                          extra_args requires it)
52  //  -- cp                 : context
53  //  -- sp[0]              : last argument
54  //  -- ...
55  //  -- sp[4 * (argc - 1)] : first argument (argc == r0)
56  //  -- sp[4 * argc]       : receiver
57  // -----------------------------------
58
59  // Insert extra arguments.
60  int num_extra_args = 0;
61  if (extra_args == NEEDS_CALLED_FUNCTION) {
62    num_extra_args = 1;
63    __ push(r1);
64  } else {
65    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
66  }
67
68  // JumpToExternalReference expects r0 to contain the number of arguments
69  // including the receiver and the extra arguments.
70  __ add(r0, r0, Operand(num_extra_args + 1));
71  __ JumpToExternalReference(ExternalReference(id));
72}
73
74
75// Load the built-in Array function from the current context.
76static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
77  // Load the global context.
78
79  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
80  __ ldr(result,
81         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
82  // Load the Array function from the global context.
83  __ ldr(result,
84         MemOperand(result,
85                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
86}
87
88
89// This constant has the same value as JSArray::kPreallocatedArrayElements and
90// if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding
91// below should be reconsidered.
92static const int kLoopUnfoldLimit = 4;
93
94
95// Allocate an empty JSArray. The allocated array is put into the result
96// register. An elements backing store is allocated with size initial_capacity
97// and filled with the hole values.
98static void AllocateEmptyJSArray(MacroAssembler* masm,
99                                 Register array_function,
100                                 Register result,
101                                 Register scratch1,
102                                 Register scratch2,
103                                 Register scratch3,
104                                 int initial_capacity,
105                                 Label* gc_required) {
106  ASSERT(initial_capacity > 0);
107  // Load the initial map from the array function.
108  __ ldr(scratch1, FieldMemOperand(array_function,
109                                   JSFunction::kPrototypeOrInitialMapOffset));
110
111  // Allocate the JSArray object together with space for a fixed array with the
112  // requested elements.
113  int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity);
114  __ AllocateInNewSpace(size,
115                        result,
116                        scratch2,
117                        scratch3,
118                        gc_required,
119                        TAG_OBJECT);
120
121  // Allocated the JSArray. Now initialize the fields except for the elements
122  // array.
123  // result: JSObject
124  // scratch1: initial map
125  // scratch2: start of next object
126  __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
127  __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
128  __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
129  // Field JSArray::kElementsOffset is initialized later.
130  __ mov(scratch3,  Operand(0, RelocInfo::NONE));
131  __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
132
133  // Calculate the location of the elements array and set elements array member
134  // of the JSArray.
135  // result: JSObject
136  // scratch2: start of next object
137  __ add(scratch1, result, Operand(JSArray::kSize));
138  __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
139
140  // Clear the heap tag on the elements array.
141  ASSERT(kSmiTag == 0);
142  __ sub(scratch1, scratch1, Operand(kHeapObjectTag));
143
144  // Initialize the FixedArray and fill it with holes. FixedArray length is
145  // stored as a smi.
146  // result: JSObject
147  // scratch1: elements array (untagged)
148  // scratch2: start of next object
149  __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
150  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
151  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
152  __ mov(scratch3,  Operand(Smi::FromInt(initial_capacity)));
153  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
154  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
155
156  // Fill the FixedArray with the hole value.
157  ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
158  ASSERT(initial_capacity <= kLoopUnfoldLimit);
159  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
160  for (int i = 0; i < initial_capacity; i++) {
161    __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
162  }
163}
164
165// Allocate a JSArray with the number of elements stored in a register. The
166// register array_function holds the built-in Array function and the register
167// array_size holds the size of the array as a smi. The allocated array is put
168// into the result register and beginning and end of the FixedArray elements
169// storage is put into registers elements_array_storage and elements_array_end
170// (see  below for when that is not the case). If the parameter fill_with_holes
171// is true the allocated elements backing store is filled with the hole values
172// otherwise it is left uninitialized. When the backing store is filled the
173// register elements_array_storage is scratched.
174static void AllocateJSArray(MacroAssembler* masm,
175                            Register array_function,  // Array function.
176                            Register array_size,  // As a smi.
177                            Register result,
178                            Register elements_array_storage,
179                            Register elements_array_end,
180                            Register scratch1,
181                            Register scratch2,
182                            bool fill_with_hole,
183                            Label* gc_required) {
184  Label not_empty, allocated;
185
186  // Load the initial map from the array function.
187  __ ldr(elements_array_storage,
188         FieldMemOperand(array_function,
189                         JSFunction::kPrototypeOrInitialMapOffset));
190
191  // Check whether an empty sized array is requested.
192  __ tst(array_size, array_size);
193  __ b(ne, &not_empty);
194
195  // If an empty array is requested allocate a small elements array anyway. This
196  // keeps the code below free of special casing for the empty array.
197  int size = JSArray::kSize +
198             FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
199  __ AllocateInNewSpace(size,
200                        result,
201                        elements_array_end,
202                        scratch1,
203                        gc_required,
204                        TAG_OBJECT);
205  __ jmp(&allocated);
206
207  // Allocate the JSArray object together with space for a FixedArray with the
208  // requested number of elements.
209  __ bind(&not_empty);
210  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
211  __ mov(elements_array_end,
212         Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
213  __ add(elements_array_end,
214         elements_array_end,
215         Operand(array_size, ASR, kSmiTagSize));
216  __ AllocateInNewSpace(
217      elements_array_end,
218      result,
219      scratch1,
220      scratch2,
221      gc_required,
222      static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
223
224  // Allocated the JSArray. Now initialize the fields except for the elements
225  // array.
226  // result: JSObject
227  // elements_array_storage: initial map
228  // array_size: size of array (smi)
229  __ bind(&allocated);
230  __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
231  __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
232  __ str(elements_array_storage,
233         FieldMemOperand(result, JSArray::kPropertiesOffset));
234  // Field JSArray::kElementsOffset is initialized later.
235  __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
236
237  // Calculate the location of the elements array and set elements array member
238  // of the JSArray.
239  // result: JSObject
240  // array_size: size of array (smi)
241  __ add(elements_array_storage, result, Operand(JSArray::kSize));
242  __ str(elements_array_storage,
243         FieldMemOperand(result, JSArray::kElementsOffset));
244
245  // Clear the heap tag on the elements array.
246  ASSERT(kSmiTag == 0);
247  __ sub(elements_array_storage,
248         elements_array_storage,
249         Operand(kHeapObjectTag));
250  // Initialize the fixed array and fill it with holes. FixedArray length is
251  // stored as a smi.
252  // result: JSObject
253  // elements_array_storage: elements array (untagged)
254  // array_size: size of array (smi)
255  __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
256  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
257  __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
258  ASSERT(kSmiTag == 0);
259  __ tst(array_size, array_size);
260  // Length of the FixedArray is the number of pre-allocated elements if
261  // the actual JSArray has length 0 and the size of the JSArray for non-empty
262  // JSArrays. The length of a FixedArray is stored as a smi.
263  __ mov(array_size,
264         Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)),
265         LeaveCC,
266         eq);
267  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
268  __ str(array_size,
269         MemOperand(elements_array_storage, kPointerSize, PostIndex));
270
271  // Calculate elements array and elements array end.
272  // result: JSObject
273  // elements_array_storage: elements array element storage
274  // array_size: smi-tagged size of elements array
275  ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
276  __ add(elements_array_end,
277         elements_array_storage,
278         Operand(array_size, LSL, kPointerSizeLog2 - kSmiTagSize));
279
280  // Fill the allocated FixedArray with the hole value if requested.
281  // result: JSObject
282  // elements_array_storage: elements array element storage
283  // elements_array_end: start of next object
284  if (fill_with_hole) {
285    Label loop, entry;
286    __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
287    __ jmp(&entry);
288    __ bind(&loop);
289    __ str(scratch1,
290           MemOperand(elements_array_storage, kPointerSize, PostIndex));
291    __ bind(&entry);
292    __ cmp(elements_array_storage, elements_array_end);
293    __ b(lt, &loop);
294  }
295}
296
297// Create a new array for the built-in Array function. This function allocates
298// the JSArray object and the FixedArray elements array and initializes these.
299// If the Array cannot be constructed in native code the runtime is called. This
300// function assumes the following state:
301//   r0: argc
302//   r1: constructor (built-in Array function)
303//   lr: return address
304//   sp[0]: last argument
305// This function is used for both construct and normal calls of Array. The only
306// difference between handling a construct call and a normal call is that for a
307// construct call the constructor function in r1 needs to be preserved for
308// entering the generic code. In both cases argc in r0 needs to be preserved.
309// Both registers are preserved by this code so no need to differentiate between
310// construct call and normal call.
311static void ArrayNativeCode(MacroAssembler* masm,
312                            Label* call_generic_code) {
313  Label argc_one_or_more, argc_two_or_more;
314
315  // Check for array construction with zero arguments or one.
316  __ cmp(r0, Operand(0, RelocInfo::NONE));
317  __ b(ne, &argc_one_or_more);
318
319  // Handle construction of an empty array.
320  AllocateEmptyJSArray(masm,
321                       r1,
322                       r2,
323                       r3,
324                       r4,
325                       r5,
326                       JSArray::kPreallocatedArrayElements,
327                       call_generic_code);
328  __ IncrementCounter(&Counters::array_function_native, 1, r3, r4);
329  // Setup return value, remove receiver from stack and return.
330  __ mov(r0, r2);
331  __ add(sp, sp, Operand(kPointerSize));
332  __ Jump(lr);
333
334  // Check for one argument. Bail out if argument is not smi or if it is
335  // negative.
336  __ bind(&argc_one_or_more);
337  __ cmp(r0, Operand(1));
338  __ b(ne, &argc_two_or_more);
339  ASSERT(kSmiTag == 0);
340  __ ldr(r2, MemOperand(sp));  // Get the argument from the stack.
341  __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
342  __ b(ne, call_generic_code);
343
344  // Handle construction of an empty array of a certain size. Bail out if size
345  // is too large to actually allocate an elements array.
346  ASSERT(kSmiTag == 0);
347  __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
348  __ b(ge, call_generic_code);
349
350  // r0: argc
351  // r1: constructor
352  // r2: array_size (smi)
353  // sp[0]: argument
354  AllocateJSArray(masm,
355                  r1,
356                  r2,
357                  r3,
358                  r4,
359                  r5,
360                  r6,
361                  r7,
362                  true,
363                  call_generic_code);
364  __ IncrementCounter(&Counters::array_function_native, 1, r2, r4);
365  // Setup return value, remove receiver and argument from stack and return.
366  __ mov(r0, r3);
367  __ add(sp, sp, Operand(2 * kPointerSize));
368  __ Jump(lr);
369
370  // Handle construction of an array from a list of arguments.
371  __ bind(&argc_two_or_more);
372  __ mov(r2, Operand(r0, LSL, kSmiTagSize));  // Convet argc to a smi.
373
374  // r0: argc
375  // r1: constructor
376  // r2: array_size (smi)
377  // sp[0]: last argument
378  AllocateJSArray(masm,
379                  r1,
380                  r2,
381                  r3,
382                  r4,
383                  r5,
384                  r6,
385                  r7,
386                  false,
387                  call_generic_code);
388  __ IncrementCounter(&Counters::array_function_native, 1, r2, r6);
389
390  // Fill arguments as array elements. Copy from the top of the stack (last
391  // element) to the array backing store filling it backwards. Note:
392  // elements_array_end points after the backing store therefore PreIndex is
393  // used when filling the backing store.
394  // r0: argc
395  // r3: JSArray
396  // r4: elements_array storage start (untagged)
397  // r5: elements_array_end (untagged)
398  // sp[0]: last argument
399  Label loop, entry;
400  __ jmp(&entry);
401  __ bind(&loop);
402  __ ldr(r2, MemOperand(sp, kPointerSize, PostIndex));
403  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
404  __ bind(&entry);
405  __ cmp(r4, r5);
406  __ b(lt, &loop);
407
408  // Remove caller arguments and receiver from the stack, setup return value and
409  // return.
410  // r0: argc
411  // r3: JSArray
412  // sp[0]: receiver
413  __ add(sp, sp, Operand(kPointerSize));
414  __ mov(r0, r3);
415  __ Jump(lr);
416}
417
418
419void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
420  // ----------- S t a t e -------------
421  //  -- r0     : number of arguments
422  //  -- lr     : return address
423  //  -- sp[...]: constructor arguments
424  // -----------------------------------
425  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
426
427  // Get the Array function.
428  GenerateLoadArrayFunction(masm, r1);
429
430  if (FLAG_debug_code) {
431    // Initial map for the builtin Array function shoud be a map.
432    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
433    __ tst(r2, Operand(kSmiTagMask));
434    __ Assert(ne, "Unexpected initial map for Array function");
435    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
436    __ Assert(eq, "Unexpected initial map for Array function");
437  }
438
439  // Run the native code for the Array function called as a normal function.
440  ArrayNativeCode(masm, &generic_array_code);
441
442  // Jump to the generic array code if the specialized code cannot handle
443  // the construction.
444  __ bind(&generic_array_code);
445  Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
446  Handle<Code> array_code(code);
447  __ Jump(array_code, RelocInfo::CODE_TARGET);
448}
449
450
451void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
452  // ----------- S t a t e -------------
453  //  -- r0     : number of arguments
454  //  -- r1     : constructor function
455  //  -- lr     : return address
456  //  -- sp[...]: constructor arguments
457  // -----------------------------------
458  Label generic_constructor;
459
460  if (FLAG_debug_code) {
461    // The array construct code is only set for the builtin Array function which
462    // always have a map.
463    GenerateLoadArrayFunction(masm, r2);
464    __ cmp(r1, r2);
465    __ Assert(eq, "Unexpected Array function");
466    // Initial map for the builtin Array function should be a map.
467    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
468    __ tst(r2, Operand(kSmiTagMask));
469    __ Assert(ne, "Unexpected initial map for Array function");
470    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
471    __ Assert(eq, "Unexpected initial map for Array function");
472  }
473
474  // Run the native code for the Array function called as a constructor.
475  ArrayNativeCode(masm, &generic_constructor);
476
477  // Jump to the generic construct code in case the specialized code cannot
478  // handle the construction.
479  __ bind(&generic_constructor);
480  Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
481  Handle<Code> generic_construct_stub(code);
482  __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
483}
484
485
486void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
487  // ----------- S t a t e -------------
488  //  -- r0                     : number of arguments
489  //  -- r1                     : constructor function
490  //  -- lr                     : return address
491  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
492  //  -- sp[argc * 4]           : receiver
493  // -----------------------------------
494  __ IncrementCounter(&Counters::string_ctor_calls, 1, r2, r3);
495
496  Register function = r1;
497  if (FLAG_debug_code) {
498    __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, r2);
499    __ cmp(function, Operand(r2));
500    __ Assert(eq, "Unexpected String function");
501  }
502
503  // Load the first arguments in r0 and get rid of the rest.
504  Label no_arguments;
505  __ cmp(r0, Operand(0, RelocInfo::NONE));
506  __ b(eq, &no_arguments);
507  // First args = sp[(argc - 1) * 4].
508  __ sub(r0, r0, Operand(1));
509  __ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex));
510  // sp now point to args[0], drop args[0] + receiver.
511  __ Drop(2);
512
513  Register argument = r2;
514  Label not_cached, argument_is_string;
515  NumberToStringStub::GenerateLookupNumberStringCache(
516      masm,
517      r0,        // Input.
518      argument,  // Result.
519      r3,        // Scratch.
520      r4,        // Scratch.
521      r5,        // Scratch.
522      false,     // Is it a Smi?
523      &not_cached);
524  __ IncrementCounter(&Counters::string_ctor_cached_number, 1, r3, r4);
525  __ bind(&argument_is_string);
526
527  // ----------- S t a t e -------------
528  //  -- r2     : argument converted to string
529  //  -- r1     : constructor function
530  //  -- lr     : return address
531  // -----------------------------------
532
533  Label gc_required;
534  __ AllocateInNewSpace(JSValue::kSize,
535                        r0,  // Result.
536                        r3,  // Scratch.
537                        r4,  // Scratch.
538                        &gc_required,
539                        TAG_OBJECT);
540
541  // Initialising the String Object.
542  Register map = r3;
543  __ LoadGlobalFunctionInitialMap(function, map, r4);
544  if (FLAG_debug_code) {
545    __ ldrb(r4, FieldMemOperand(map, Map::kInstanceSizeOffset));
546    __ cmp(r4, Operand(JSValue::kSize >> kPointerSizeLog2));
547    __ Assert(eq, "Unexpected string wrapper instance size");
548    __ ldrb(r4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
549    __ cmp(r4, Operand(0, RelocInfo::NONE));
550    __ Assert(eq, "Unexpected unused properties of string wrapper");
551  }
552  __ str(map, FieldMemOperand(r0, HeapObject::kMapOffset));
553
554  __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
555  __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
556  __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
557
558  __ str(argument, FieldMemOperand(r0, JSValue::kValueOffset));
559
560  // Ensure the object is fully initialized.
561  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
562
563  __ Ret();
564
565  // The argument was not found in the number to string cache. Check
566  // if it's a string already before calling the conversion builtin.
567  Label convert_argument;
568  __ bind(&not_cached);
569  __ JumpIfSmi(r0, &convert_argument);
570
571  // Is it a String?
572  __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
573  __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset));
574  ASSERT(kNotStringTag != 0);
575  __ tst(r3, Operand(kIsNotStringMask));
576  __ b(ne, &convert_argument);
577  __ mov(argument, r0);
578  __ IncrementCounter(&Counters::string_ctor_conversions, 1, r3, r4);
579  __ b(&argument_is_string);
580
581  // Invoke the conversion builtin and put the result into r2.
582  __ bind(&convert_argument);
583  __ push(function);  // Preserve the function.
584  __ IncrementCounter(&Counters::string_ctor_conversions, 1, r3, r4);
585  __ EnterInternalFrame();
586  __ push(r0);
587  __ InvokeBuiltin(Builtins::TO_STRING, CALL_JS);
588  __ LeaveInternalFrame();
589  __ pop(function);
590  __ mov(argument, r0);
591  __ b(&argument_is_string);
592
593  // Load the empty string into r2, remove the receiver from the
594  // stack, and jump back to the case where the argument is a string.
595  __ bind(&no_arguments);
596  __ LoadRoot(argument, Heap::kEmptyStringRootIndex);
597  __ Drop(1);
598  __ b(&argument_is_string);
599
600  // At this point the argument is already a string. Call runtime to
601  // create a string wrapper.
602  __ bind(&gc_required);
603  __ IncrementCounter(&Counters::string_ctor_gc_required, 1, r3, r4);
604  __ EnterInternalFrame();
605  __ push(argument);
606  __ CallRuntime(Runtime::kNewStringWrapper, 1);
607  __ LeaveInternalFrame();
608  __ Ret();
609}
610
611
612void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
613  // ----------- S t a t e -------------
614  //  -- r0     : number of arguments
615  //  -- r1     : constructor function
616  //  -- lr     : return address
617  //  -- sp[...]: constructor arguments
618  // -----------------------------------
619
620  Label non_function_call;
621  // Check that the function is not a smi.
622  __ tst(r1, Operand(kSmiTagMask));
623  __ b(eq, &non_function_call);
624  // Check that the function is a JSFunction.
625  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
626  __ b(ne, &non_function_call);
627
628  // Jump to the function-specific construct stub.
629  __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
630  __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
631  __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
632
633  // r0: number of arguments
634  // r1: called object
635  __ bind(&non_function_call);
636  // Set expected number of arguments to zero (not changing r0).
637  __ mov(r2, Operand(0, RelocInfo::NONE));
638  __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
639  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
640          RelocInfo::CODE_TARGET);
641}
642
643
644static void Generate_JSConstructStubHelper(MacroAssembler* masm,
645                                           bool is_api_function,
646                                           bool count_constructions) {
647  // Should never count constructions for api objects.
648  ASSERT(!is_api_function || !count_constructions);
649
650  // Enter a construct frame.
651  __ EnterConstructFrame();
652
653  // Preserve the two incoming parameters on the stack.
654  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
655  __ push(r0);  // Smi-tagged arguments count.
656  __ push(r1);  // Constructor function.
657
658  // Try to allocate the object without transitioning into C code. If any of the
659  // preconditions is not met, the code bails out to the runtime call.
660  Label rt_call, allocated;
661  if (FLAG_inline_new) {
662    Label undo_allocation;
663#ifdef ENABLE_DEBUGGER_SUPPORT
664    ExternalReference debug_step_in_fp =
665        ExternalReference::debug_step_in_fp_address();
666    __ mov(r2, Operand(debug_step_in_fp));
667    __ ldr(r2, MemOperand(r2));
668    __ tst(r2, r2);
669    __ b(ne, &rt_call);
670#endif
671
672    // Load the initial map and verify that it is in fact a map.
673    // r1: constructor function
674    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
675    __ tst(r2, Operand(kSmiTagMask));
676    __ b(eq, &rt_call);
677    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
678    __ b(ne, &rt_call);
679
680    // Check that the constructor is not constructing a JSFunction (see comments
681    // in Runtime_NewObject in runtime.cc). In which case the initial map's
682    // instance type would be JS_FUNCTION_TYPE.
683    // r1: constructor function
684    // r2: initial map
685    __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
686    __ b(eq, &rt_call);
687
688    if (count_constructions) {
689      Label allocate;
690      // Decrease generous allocation count.
691      __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
692      MemOperand constructor_count =
693          FieldMemOperand(r3, SharedFunctionInfo::kConstructionCountOffset);
694      __ ldrb(r4, constructor_count);
695      __ sub(r4, r4, Operand(1), SetCC);
696      __ strb(r4, constructor_count);
697      __ b(ne, &allocate);
698
699      __ Push(r1, r2);
700
701      __ push(r1);  // constructor
702      // The call will replace the stub, so the countdown is only done once.
703      __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
704
705      __ pop(r2);
706      __ pop(r1);
707
708      __ bind(&allocate);
709    }
710
711    // Now allocate the JSObject on the heap.
712    // r1: constructor function
713    // r2: initial map
714    __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
715    __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS);
716
717    // Allocated the JSObject, now initialize the fields. Map is set to initial
718    // map and properties and elements are set to empty fixed array.
719    // r1: constructor function
720    // r2: initial map
721    // r3: object size
722    // r4: JSObject (not tagged)
723    __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
724    __ mov(r5, r4);
725    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
726    __ str(r2, MemOperand(r5, kPointerSize, PostIndex));
727    ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
728    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
729    ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
730    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
731
732    // Fill all the in-object properties with the appropriate filler.
733    // r1: constructor function
734    // r2: initial map
735    // r3: object size (in words)
736    // r4: JSObject (not tagged)
737    // r5: First in-object property of JSObject (not tagged)
738    __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
739    ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
740    { Label loop, entry;
741      if (count_constructions) {
742        // To allow for truncation.
743        __ LoadRoot(r7, Heap::kOnePointerFillerMapRootIndex);
744      } else {
745        __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
746      }
747      __ b(&entry);
748      __ bind(&loop);
749      __ str(r7, MemOperand(r5, kPointerSize, PostIndex));
750      __ bind(&entry);
751      __ cmp(r5, r6);
752      __ b(lt, &loop);
753    }
754
755    // Add the object tag to make the JSObject real, so that we can continue and
756    // jump into the continuation code at any time from now on. Any failures
757    // need to undo the allocation, so that the heap is in a consistent state
758    // and verifiable.
759    __ add(r4, r4, Operand(kHeapObjectTag));
760
761    // Check if a non-empty properties array is needed. Continue with allocated
762    // object if not fall through to runtime call if it is.
763    // r1: constructor function
764    // r4: JSObject
765    // r5: start of next object (not tagged)
766    __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
767    // The field instance sizes contains both pre-allocated property fields and
768    // in-object properties.
769    __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
770    __ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * 8, 8);
771    __ add(r3, r3, Operand(r6));
772    __ Ubfx(r6, r0, Map::kInObjectPropertiesByte * 8, 8);
773    __ sub(r3, r3, Operand(r6), SetCC);
774
775    // Done if no extra properties are to be allocated.
776    __ b(eq, &allocated);
777    __ Assert(pl, "Property allocation count failed.");
778
779    // Scale the number of elements by pointer size and add the header for
780    // FixedArrays to the start of the next object calculation from above.
781    // r1: constructor
782    // r3: number of elements in properties array
783    // r4: JSObject
784    // r5: start of next object
785    __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
786    __ AllocateInNewSpace(
787        r0,
788        r5,
789        r6,
790        r2,
791        &undo_allocation,
792        static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
793
794    // Initialize the FixedArray.
795    // r1: constructor
796    // r3: number of elements in properties array
797    // r4: JSObject
798    // r5: FixedArray (not tagged)
799    __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
800    __ mov(r2, r5);
801    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
802    __ str(r6, MemOperand(r2, kPointerSize, PostIndex));
803    ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
804    __ mov(r0, Operand(r3, LSL, kSmiTagSize));
805    __ str(r0, MemOperand(r2, kPointerSize, PostIndex));
806
807    // Initialize the fields to undefined.
808    // r1: constructor function
809    // r2: First element of FixedArray (not tagged)
810    // r3: number of elements in properties array
811    // r4: JSObject
812    // r5: FixedArray (not tagged)
813    __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
814    ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
815    { Label loop, entry;
816      if (count_constructions) {
817        __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
818      } else if (FLAG_debug_code) {
819        __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
820        __ cmp(r7, r8);
821        __ Assert(eq, "Undefined value not loaded.");
822      }
823      __ b(&entry);
824      __ bind(&loop);
825      __ str(r7, MemOperand(r2, kPointerSize, PostIndex));
826      __ bind(&entry);
827      __ cmp(r2, r6);
828      __ b(lt, &loop);
829    }
830
831    // Store the initialized FixedArray into the properties field of
832    // the JSObject
833    // r1: constructor function
834    // r4: JSObject
835    // r5: FixedArray (not tagged)
836    __ add(r5, r5, Operand(kHeapObjectTag));  // Add the heap tag.
837    __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));
838
839    // Continue with JSObject being successfully allocated
840    // r1: constructor function
841    // r4: JSObject
842    __ jmp(&allocated);
843
844    // Undo the setting of the new top so that the heap is verifiable. For
845    // example, the map's unused properties potentially do not match the
846    // allocated objects unused properties.
847    // r4: JSObject (previous new top)
848    __ bind(&undo_allocation);
849    __ UndoAllocationInNewSpace(r4, r5);
850  }
851
852  // Allocate the new receiver object using the runtime call.
853  // r1: constructor function
854  __ bind(&rt_call);
855  __ push(r1);  // argument for Runtime_NewObject
856  __ CallRuntime(Runtime::kNewObject, 1);
857  __ mov(r4, r0);
858
859  // Receiver for constructor call allocated.
860  // r4: JSObject
861  __ bind(&allocated);
862  __ push(r4);
863
864  // Push the function and the allocated receiver from the stack.
865  // sp[0]: receiver (newly allocated object)
866  // sp[1]: constructor function
867  // sp[2]: number of arguments (smi-tagged)
868  __ ldr(r1, MemOperand(sp, kPointerSize));
869  __ push(r1);  // Constructor function.
870  __ push(r4);  // Receiver.
871
872  // Reload the number of arguments from the stack.
873  // r1: constructor function
874  // sp[0]: receiver
875  // sp[1]: constructor function
876  // sp[2]: receiver
877  // sp[3]: constructor function
878  // sp[4]: number of arguments (smi-tagged)
879  __ ldr(r3, MemOperand(sp, 4 * kPointerSize));
880
881  // Setup pointer to last argument.
882  __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
883
884  // Setup number of arguments for function call below
885  __ mov(r0, Operand(r3, LSR, kSmiTagSize));
886
887  // Copy arguments and receiver to the expression stack.
888  // r0: number of arguments
889  // r2: address of last argument (caller sp)
890  // r1: constructor function
891  // r3: number of arguments (smi-tagged)
892  // sp[0]: receiver
893  // sp[1]: constructor function
894  // sp[2]: receiver
895  // sp[3]: constructor function
896  // sp[4]: number of arguments (smi-tagged)
897  Label loop, entry;
898  __ b(&entry);
899  __ bind(&loop);
900  __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
901  __ push(ip);
902  __ bind(&entry);
903  __ sub(r3, r3, Operand(2), SetCC);
904  __ b(ge, &loop);
905
906  // Call the function.
907  // r0: number of arguments
908  // r1: constructor function
909  if (is_api_function) {
910    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
911    Handle<Code> code = Handle<Code>(
912        Builtins::builtin(Builtins::HandleApiCallConstruct));
913    ParameterCount expected(0);
914    __ InvokeCode(code, expected, expected,
915                  RelocInfo::CODE_TARGET, CALL_FUNCTION);
916  } else {
917    ParameterCount actual(r0);
918    __ InvokeFunction(r1, actual, CALL_FUNCTION);
919  }
920
921  // Pop the function from the stack.
922  // sp[0]: constructor function
923  // sp[2]: receiver
924  // sp[3]: constructor function
925  // sp[4]: number of arguments (smi-tagged)
926  __ pop();
927
928  // Restore context from the frame.
929  // r0: result
930  // sp[0]: receiver
931  // sp[1]: constructor function
932  // sp[2]: number of arguments (smi-tagged)
933  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
934
935  // If the result is an object (in the ECMA sense), we should get rid
936  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
937  // on page 74.
938  Label use_receiver, exit;
939
940  // If the result is a smi, it is *not* an object in the ECMA sense.
941  // r0: result
942  // sp[0]: receiver (newly allocated object)
943  // sp[1]: constructor function
944  // sp[2]: number of arguments (smi-tagged)
945  __ tst(r0, Operand(kSmiTagMask));
946  __ b(eq, &use_receiver);
947
948  // If the type of the result (stored in its map) is less than
949  // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
950  __ CompareObjectType(r0, r3, r3, FIRST_JS_OBJECT_TYPE);
951  __ b(ge, &exit);
952
953  // Throw away the result of the constructor invocation and use the
954  // on-stack receiver as the result.
955  __ bind(&use_receiver);
956  __ ldr(r0, MemOperand(sp));
957
958  // Remove receiver from the stack, remove caller arguments, and
959  // return.
960  __ bind(&exit);
961  // r0: result
962  // sp[0]: receiver (newly allocated object)
963  // sp[1]: constructor function
964  // sp[2]: number of arguments (smi-tagged)
965  __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
966  __ LeaveConstructFrame();
967  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
968  __ add(sp, sp, Operand(kPointerSize));
969  __ IncrementCounter(&Counters::constructed_objects, 1, r1, r2);
970  __ Jump(lr);
971}
972
973
974void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
975  Generate_JSConstructStubHelper(masm, false, true);
976}
977
978
979void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
980  Generate_JSConstructStubHelper(masm, false, false);
981}
982
983
984void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
985  Generate_JSConstructStubHelper(masm, true, false);
986}
987
988
989static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
990                                             bool is_construct) {
991  // Called from Generate_JS_Entry
992  // r0: code entry
993  // r1: function
994  // r2: receiver
995  // r3: argc
996  // r4: argv
997  // r5-r7, cp may be clobbered
998
999  // Clear the context before we push it when entering the JS frame.
1000  __ mov(cp, Operand(0, RelocInfo::NONE));
1001
1002  // Enter an internal frame.
1003  __ EnterInternalFrame();
1004
1005  // Set up the context from the function argument.
1006  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1007
1008  // Set up the roots register.
1009  ExternalReference roots_address = ExternalReference::roots_address();
1010  __ mov(r10, Operand(roots_address));
1011
1012  // Push the function and the receiver onto the stack.
1013  __ push(r1);
1014  __ push(r2);
1015
1016  // Copy arguments to the stack in a loop.
1017  // r1: function
1018  // r3: argc
1019  // r4: argv, i.e. points to first arg
1020  Label loop, entry;
1021  __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
1022  // r2 points past last arg.
1023  __ b(&entry);
1024  __ bind(&loop);
1025  __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex));  // read next parameter
1026  __ ldr(r0, MemOperand(r0));  // dereference handle
1027  __ push(r0);  // push parameter
1028  __ bind(&entry);
1029  __ cmp(r4, r2);
1030  __ b(ne, &loop);
1031
1032  // Initialize all JavaScript callee-saved registers, since they will be seen
1033  // by the garbage collector as part of handlers.
1034  __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
1035  __ mov(r5, Operand(r4));
1036  __ mov(r6, Operand(r4));
1037  __ mov(r7, Operand(r4));
1038  if (kR9Available == 1) {
1039    __ mov(r9, Operand(r4));
1040  }
1041
1042  // Invoke the code and pass argc as r0.
1043  __ mov(r0, Operand(r3));
1044  if (is_construct) {
1045    __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
1046            RelocInfo::CODE_TARGET);
1047  } else {
1048    ParameterCount actual(r0);
1049    __ InvokeFunction(r1, actual, CALL_FUNCTION);
1050  }
1051
1052  // Exit the JS frame and remove the parameters (except function), and return.
1053  // Respect ABI stack constraint.
1054  __ LeaveInternalFrame();
1055  __ Jump(lr);
1056
1057  // r0: result
1058}
1059
1060
1061void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
1062  Generate_JSEntryTrampolineHelper(masm, false);
1063}
1064
1065
1066void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
1067  Generate_JSEntryTrampolineHelper(masm, true);
1068}
1069
1070
1071void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
1072  // Enter an internal frame.
1073  __ EnterInternalFrame();
1074
1075  // Preserve the function.
1076  __ push(r1);
1077
1078  // Push the function on the stack as the argument to the runtime function.
1079  __ push(r1);
1080  __ CallRuntime(Runtime::kLazyCompile, 1);
1081  // Calculate the entry point.
1082  __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
1083  // Restore saved function.
1084  __ pop(r1);
1085
1086  // Tear down temporary frame.
1087  __ LeaveInternalFrame();
1088
1089  // Do a tail-call of the compiled function.
1090  __ Jump(r2);
1091}
1092
1093
1094void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
1095  // Enter an internal frame.
1096  __ EnterInternalFrame();
1097
1098  // Preserve the function.
1099  __ push(r1);
1100
1101  // Push the function on the stack as the argument to the runtime function.
1102  __ push(r1);
1103  __ CallRuntime(Runtime::kLazyRecompile, 1);
1104  // Calculate the entry point.
1105  __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
1106  // Restore saved function.
1107  __ pop(r1);
1108
1109  // Tear down temporary frame.
1110  __ LeaveInternalFrame();
1111
1112  // Do a tail-call of the compiled function.
1113  __ Jump(r2);
1114}
1115
1116
1117static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
1118                                             Deoptimizer::BailoutType type) {
1119  __ EnterInternalFrame();
1120  // Pass the function and deoptimization type to the runtime system.
1121  __ mov(r0, Operand(Smi::FromInt(static_cast<int>(type))));
1122  __ push(r0);
1123  __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
1124  __ LeaveInternalFrame();
1125
1126  // Get the full codegen state from the stack and untag it -> r6.
1127  __ ldr(r6, MemOperand(sp, 0 * kPointerSize));
1128  __ SmiUntag(r6);
1129  // Switch on the state.
1130  Label with_tos_register, unknown_state;
1131  __ cmp(r6, Operand(FullCodeGenerator::NO_REGISTERS));
1132  __ b(ne, &with_tos_register);
1133  __ add(sp, sp, Operand(1 * kPointerSize));  // Remove state.
1134  __ Ret();
1135
1136  __ bind(&with_tos_register);
1137  __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
1138  __ cmp(r6, Operand(FullCodeGenerator::TOS_REG));
1139  __ b(ne, &unknown_state);
1140  __ add(sp, sp, Operand(2 * kPointerSize));  // Remove state.
1141  __ Ret();
1142
1143  __ bind(&unknown_state);
1144  __ stop("no cases left");
1145}
1146
1147
1148void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1149  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1150}
1151
1152
1153void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1154  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1155}
1156
1157
1158void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
1159  // For now, we are relying on the fact that Runtime::NotifyOSR
1160  // doesn't do any garbage collection which allows us to save/restore
1161  // the registers without worrying about which of them contain
1162  // pointers. This seems a bit fragile.
1163  __ stm(db_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
1164  __ EnterInternalFrame();
1165  __ CallRuntime(Runtime::kNotifyOSR, 0);
1166  __ LeaveInternalFrame();
1167  __ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
1168  __ Ret();
1169}
1170
1171
1172void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1173  // Probe the CPU to set the supported features, because this builtin
1174  // may be called before the initialization performs CPU setup.
1175  CpuFeatures::Probe(false);
1176
1177  // Lookup the function in the JavaScript frame and push it as an
1178  // argument to the on-stack replacement function.
1179  __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1180  __ EnterInternalFrame();
1181  __ push(r0);
1182  __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1183  __ LeaveInternalFrame();
1184
1185  // If the result was -1 it means that we couldn't optimize the
1186  // function. Just return and continue in the unoptimized version.
1187  Label skip;
1188  __ cmp(r0, Operand(Smi::FromInt(-1)));
1189  __ b(ne, &skip);
1190  __ Ret();
1191
1192  __ bind(&skip);
1193  // Untag the AST id and push it on the stack.
1194  __ SmiUntag(r0);
1195  __ push(r0);
1196
1197  // Generate the code for doing the frame-to-frame translation using
1198  // the deoptimizer infrastructure.
1199  Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
1200  generator.Generate();
1201}
1202
1203
1204void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1205  // 1. Make sure we have at least one argument.
1206  // r0: actual number of arguments
1207  { Label done;
1208    __ tst(r0, Operand(r0));
1209    __ b(ne, &done);
1210    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1211    __ push(r2);
1212    __ add(r0, r0, Operand(1));
1213    __ bind(&done);
1214  }
1215
1216  // 2. Get the function to call (passed as receiver) from the stack, check
1217  //    if it is a function.
1218  // r0: actual number of arguments
1219  Label non_function;
1220  __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1221  __ tst(r1, Operand(kSmiTagMask));
1222  __ b(eq, &non_function);
1223  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
1224  __ b(ne, &non_function);
1225
1226  // 3a. Patch the first argument if necessary when calling a function.
1227  // r0: actual number of arguments
1228  // r1: function
1229  Label shift_arguments;
1230  { Label convert_to_object, use_global_receiver, patch_receiver;
1231    // Change context eagerly in case we need the global receiver.
1232    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1233
1234    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1235    __ ldr(r2, MemOperand(r2, -kPointerSize));
1236    // r0: actual number of arguments
1237    // r1: function
1238    // r2: first argument
1239    __ tst(r2, Operand(kSmiTagMask));
1240    __ b(eq, &convert_to_object);
1241
1242    __ LoadRoot(r3, Heap::kNullValueRootIndex);
1243    __ cmp(r2, r3);
1244    __ b(eq, &use_global_receiver);
1245    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1246    __ cmp(r2, r3);
1247    __ b(eq, &use_global_receiver);
1248
1249    __ CompareObjectType(r2, r3, r3, FIRST_JS_OBJECT_TYPE);
1250    __ b(lt, &convert_to_object);
1251    __ cmp(r3, Operand(LAST_JS_OBJECT_TYPE));
1252    __ b(le, &shift_arguments);
1253
1254    __ bind(&convert_to_object);
1255    __ EnterInternalFrame();  // In order to preserve argument count.
1256    __ mov(r0, Operand(r0, LSL, kSmiTagSize));  // Smi-tagged.
1257    __ push(r0);
1258
1259    __ push(r2);
1260    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
1261    __ mov(r2, r0);
1262
1263    __ pop(r0);
1264    __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1265    __ LeaveInternalFrame();
1266    // Restore the function to r1.
1267    __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1268    __ jmp(&patch_receiver);
1269
1270    // Use the global receiver object from the called function as the
1271    // receiver.
1272    __ bind(&use_global_receiver);
1273    const int kGlobalIndex =
1274        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1275    __ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
1276    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
1277    __ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
1278    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
1279
1280    __ bind(&patch_receiver);
1281    __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
1282    __ str(r2, MemOperand(r3, -kPointerSize));
1283
1284    __ jmp(&shift_arguments);
1285  }
1286
1287  // 3b. Patch the first argument when calling a non-function.  The
1288  //     CALL_NON_FUNCTION builtin expects the non-function callee as
1289  //     receiver, so overwrite the first argument which will ultimately
1290  //     become the receiver.
1291  // r0: actual number of arguments
1292  // r1: function
1293  __ bind(&non_function);
1294  __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1295  __ str(r1, MemOperand(r2, -kPointerSize));
1296  // Clear r1 to indicate a non-function being called.
1297  __ mov(r1, Operand(0, RelocInfo::NONE));
1298
1299  // 4. Shift arguments and return address one slot down on the stack
1300  //    (overwriting the original receiver).  Adjust argument count to make
1301  //    the original first argument the new receiver.
1302  // r0: actual number of arguments
1303  // r1: function
1304  __ bind(&shift_arguments);
1305  { Label loop;
1306    // Calculate the copy start address (destination). Copy end address is sp.
1307    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1308
1309    __ bind(&loop);
1310    __ ldr(ip, MemOperand(r2, -kPointerSize));
1311    __ str(ip, MemOperand(r2));
1312    __ sub(r2, r2, Operand(kPointerSize));
1313    __ cmp(r2, sp);
1314    __ b(ne, &loop);
1315    // Adjust the actual number of arguments and remove the top element
1316    // (which is a copy of the last argument).
1317    __ sub(r0, r0, Operand(1));
1318    __ pop();
1319  }
1320
1321  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
1322  // r0: actual number of arguments
1323  // r1: function
1324  { Label function;
1325    __ tst(r1, r1);
1326    __ b(ne, &function);
1327    // Expected number of arguments is 0 for CALL_NON_FUNCTION.
1328    __ mov(r2, Operand(0, RelocInfo::NONE));
1329    __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
1330    __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1331                         RelocInfo::CODE_TARGET);
1332    __ bind(&function);
1333  }
1334
1335  // 5b. Get the code to call from the function and check that the number of
1336  //     expected arguments matches what we're providing.  If so, jump
1337  //     (tail-call) to the code in register edx without checking arguments.
1338  // r0: actual number of arguments
1339  // r1: function
1340  __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1341  __ ldr(r2,
1342         FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
1343  __ mov(r2, Operand(r2, ASR, kSmiTagSize));
1344  __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
1345  __ cmp(r2, r0);  // Check formal and actual parameter counts.
1346  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1347          RelocInfo::CODE_TARGET, ne);
1348
1349  ParameterCount expected(0);
1350  __ InvokeCode(r3, expected, expected, JUMP_FUNCTION);
1351}
1352
1353
1354void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1355  const int kIndexOffset    = -5 * kPointerSize;
1356  const int kLimitOffset    = -4 * kPointerSize;
1357  const int kArgsOffset     =  2 * kPointerSize;
1358  const int kRecvOffset     =  3 * kPointerSize;
1359  const int kFunctionOffset =  4 * kPointerSize;
1360
1361  __ EnterInternalFrame();
1362
1363  __ ldr(r0, MemOperand(fp, kFunctionOffset));  // get the function
1364  __ push(r0);
1365  __ ldr(r0, MemOperand(fp, kArgsOffset));  // get the args array
1366  __ push(r0);
1367  __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_JS);
1368
1369  // Check the stack for overflow. We are not trying need to catch
1370  // interruptions (e.g. debug break and preemption) here, so the "real stack
1371  // limit" is checked.
1372  Label okay;
1373  __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
1374  // Make r2 the space we have left. The stack might already be overflowed
1375  // here which will cause r2 to become negative.
1376  __ sub(r2, sp, r2);
1377  // Check if the arguments will overflow the stack.
1378  __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1379  __ b(gt, &okay);  // Signed comparison.
1380
1381  // Out of stack space.
1382  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1383  __ push(r1);
1384  __ push(r0);
1385  __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_JS);
1386  // End of stack check.
1387
1388  // Push current limit and index.
1389  __ bind(&okay);
1390  __ push(r0);  // limit
1391  __ mov(r1, Operand(0, RelocInfo::NONE));  // initial index
1392  __ push(r1);
1393
1394  // Change context eagerly to get the right global object if necessary.
1395  __ ldr(r0, MemOperand(fp, kFunctionOffset));
1396  __ ldr(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
1397
1398  // Compute the receiver.
1399  Label call_to_object, use_global_receiver, push_receiver;
1400  __ ldr(r0, MemOperand(fp, kRecvOffset));
1401  __ tst(r0, Operand(kSmiTagMask));
1402  __ b(eq, &call_to_object);
1403  __ LoadRoot(r1, Heap::kNullValueRootIndex);
1404  __ cmp(r0, r1);
1405  __ b(eq, &use_global_receiver);
1406  __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1407  __ cmp(r0, r1);
1408  __ b(eq, &use_global_receiver);
1409
1410  // Check if the receiver is already a JavaScript object.
1411  // r0: receiver
1412  __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
1413  __ b(lt, &call_to_object);
1414  __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
1415  __ b(le, &push_receiver);
1416
1417  // Convert the receiver to a regular object.
1418  // r0: receiver
1419  __ bind(&call_to_object);
1420  __ push(r0);
1421  __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
1422  __ b(&push_receiver);
1423
1424  // Use the current global receiver object as the receiver.
1425  __ bind(&use_global_receiver);
1426  const int kGlobalOffset =
1427      Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1428  __ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
1429  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
1430  __ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
1431  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
1432
1433  // Push the receiver.
1434  // r0: receiver
1435  __ bind(&push_receiver);
1436  __ push(r0);
1437
1438  // Copy all arguments from the array to the stack.
1439  Label entry, loop;
1440  __ ldr(r0, MemOperand(fp, kIndexOffset));
1441  __ b(&entry);
1442
1443  // Load the current argument from the arguments array and push it to the
1444  // stack.
1445  // r0: current argument index
1446  __ bind(&loop);
1447  __ ldr(r1, MemOperand(fp, kArgsOffset));
1448  __ push(r1);
1449  __ push(r0);
1450
1451  // Call the runtime to access the property in the arguments array.
1452  __ CallRuntime(Runtime::kGetProperty, 2);
1453  __ push(r0);
1454
1455  // Use inline caching to access the arguments.
1456  __ ldr(r0, MemOperand(fp, kIndexOffset));
1457  __ add(r0, r0, Operand(1 << kSmiTagSize));
1458  __ str(r0, MemOperand(fp, kIndexOffset));
1459
1460  // Test if the copy loop has finished copying all the elements from the
1461  // arguments object.
1462  __ bind(&entry);
1463  __ ldr(r1, MemOperand(fp, kLimitOffset));
1464  __ cmp(r0, r1);
1465  __ b(ne, &loop);
1466
1467  // Invoke the function.
1468  ParameterCount actual(r0);
1469  __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1470  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1471  __ InvokeFunction(r1, actual, CALL_FUNCTION);
1472
1473  // Tear down the internal frame and remove function, receiver and args.
1474  __ LeaveInternalFrame();
1475  __ add(sp, sp, Operand(3 * kPointerSize));
1476  __ Jump(lr);
1477}
1478
1479
1480static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1481  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
1482  __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1483  __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
1484  __ add(fp, sp, Operand(3 * kPointerSize));
1485}
1486
1487
1488static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1489  // ----------- S t a t e -------------
1490  //  -- r0 : result being passed through
1491  // -----------------------------------
1492  // Get the number of arguments passed (as a smi), tear down the frame and
1493  // then tear down the parameters.
1494  __ ldr(r1, MemOperand(fp, -3 * kPointerSize));
1495  __ mov(sp, fp);
1496  __ ldm(ia_w, sp, fp.bit() | lr.bit());
1497  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
1498  __ add(sp, sp, Operand(kPointerSize));  // adjust for receiver
1499}
1500
1501
1502void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1503  // ----------- S t a t e -------------
1504  //  -- r0 : actual number of arguments
1505  //  -- r1 : function (passed through to callee)
1506  //  -- r2 : expected number of arguments
1507  //  -- r3 : code entry to call
1508  // -----------------------------------
1509
1510  Label invoke, dont_adapt_arguments;
1511
1512  Label enough, too_few;
1513  __ cmp(r0, r2);
1514  __ b(lt, &too_few);
1515  __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1516  __ b(eq, &dont_adapt_arguments);
1517
1518  {  // Enough parameters: actual >= expected
1519    __ bind(&enough);
1520    EnterArgumentsAdaptorFrame(masm);
1521
1522    // Calculate copy start address into r0 and copy end address into r2.
1523    // r0: actual number of arguments as a smi
1524    // r1: function
1525    // r2: expected number of arguments
1526    // r3: code entry to call
1527    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1528    // adjust for return address and receiver
1529    __ add(r0, r0, Operand(2 * kPointerSize));
1530    __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
1531
1532    // Copy the arguments (including the receiver) to the new stack frame.
1533    // r0: copy start address
1534    // r1: function
1535    // r2: copy end address
1536    // r3: code entry to call
1537
1538    Label copy;
1539    __ bind(&copy);
1540    __ ldr(ip, MemOperand(r0, 0));
1541    __ push(ip);
1542    __ cmp(r0, r2);  // Compare before moving to next argument.
1543    __ sub(r0, r0, Operand(kPointerSize));
1544    __ b(ne, &copy);
1545
1546    __ b(&invoke);
1547  }
1548
1549  {  // Too few parameters: Actual < expected
1550    __ bind(&too_few);
1551    EnterArgumentsAdaptorFrame(masm);
1552
1553    // Calculate copy start address into r0 and copy end address is fp.
1554    // r0: actual number of arguments as a smi
1555    // r1: function
1556    // r2: expected number of arguments
1557    // r3: code entry to call
1558    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1559
1560    // Copy the arguments (including the receiver) to the new stack frame.
1561    // r0: copy start address
1562    // r1: function
1563    // r2: expected number of arguments
1564    // r3: code entry to call
1565    Label copy;
1566    __ bind(&copy);
1567    // Adjust load for return address and receiver.
1568    __ ldr(ip, MemOperand(r0, 2 * kPointerSize));
1569    __ push(ip);
1570    __ cmp(r0, fp);  // Compare before moving to next argument.
1571    __ sub(r0, r0, Operand(kPointerSize));
1572    __ b(ne, &copy);
1573
1574    // Fill the remaining expected arguments with undefined.
1575    // r1: function
1576    // r2: expected number of arguments
1577    // r3: code entry to call
1578    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1579    __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
1580    __ sub(r2, r2, Operand(4 * kPointerSize));  // Adjust for frame.
1581
1582    Label fill;
1583    __ bind(&fill);
1584    __ push(ip);
1585    __ cmp(sp, r2);
1586    __ b(ne, &fill);
1587  }
1588
1589  // Call the entry point.
1590  __ bind(&invoke);
1591  __ Call(r3);
1592
1593  // Exit frame and return.
1594  LeaveArgumentsAdaptorFrame(masm);
1595  __ Jump(lr);
1596
1597
1598  // -------------------------------------------
1599  // Dont adapt arguments.
1600  // -------------------------------------------
1601  __ bind(&dont_adapt_arguments);
1602  __ Jump(r3);
1603}
1604
1605
1606#undef __
1607
1608} }  // namespace v8::internal
1609
1610#endif  // V8_TARGET_ARCH_ARM
1611