builtins-arm.cc revision 756813857a4c2a4d8ad2e805969d5768d3cf43a0
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "codegen-inl.h"
33#include "debug.h"
34#include "runtime.h"
35
36namespace v8 {
37namespace internal {
38
39
40#define __ ACCESS_MASM(masm)
41
42
43void Builtins::Generate_Adaptor(MacroAssembler* masm,
44                                CFunctionId id,
45                                BuiltinExtraArguments extra_args) {
46  // ----------- S t a t e -------------
47  //  -- r0                 : number of arguments excluding receiver
48  //  -- r1                 : called function (only guaranteed when
49  //                          extra_args requires it)
50  //  -- cp                 : context
51  //  -- sp[0]              : last argument
52  //  -- ...
53  //  -- sp[4 * (argc - 1)] : first argument (argc == r0)
54  //  -- sp[4 * argc]       : receiver
55  // -----------------------------------
56
57  // Insert extra arguments.
58  int num_extra_args = 0;
59  if (extra_args == NEEDS_CALLED_FUNCTION) {
60    num_extra_args = 1;
61    __ push(r1);
62  } else {
63    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
64  }
65
66  // JumpToExternalReference expects r0 to contain the number of arguments
67  // including the receiver and the extra arguments.
68  __ add(r0, r0, Operand(num_extra_args + 1));
69  __ JumpToExternalReference(ExternalReference(id));
70}
71
72
73// Load the built-in Array function from the current context.
74static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
75  // Load the global context.
76
77  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
78  __ ldr(result,
79         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
80  // Load the Array function from the global context.
81  __ ldr(result,
82         MemOperand(result,
83                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
84}
85
86
87// This constant has the same value as JSArray::kPreallocatedArrayElements and
88// if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding
89// below should be reconsidered.
90static const int kLoopUnfoldLimit = 4;
91
92
93// Allocate an empty JSArray. The allocated array is put into the result
94// register. An elements backing store is allocated with size initial_capacity
95// and filled with the hole values.
96static void AllocateEmptyJSArray(MacroAssembler* masm,
97                                 Register array_function,
98                                 Register result,
99                                 Register scratch1,
100                                 Register scratch2,
101                                 Register scratch3,
102                                 int initial_capacity,
103                                 Label* gc_required) {
104  ASSERT(initial_capacity > 0);
105  // Load the initial map from the array function.
106  __ ldr(scratch1, FieldMemOperand(array_function,
107                                   JSFunction::kPrototypeOrInitialMapOffset));
108
109  // Allocate the JSArray object together with space for a fixed array with the
110  // requested elements.
111  int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity);
112  __ AllocateInNewSpace(size,
113                        result,
114                        scratch2,
115                        scratch3,
116                        gc_required,
117                        TAG_OBJECT);
118
119  // Allocated the JSArray. Now initialize the fields except for the elements
120  // array.
121  // result: JSObject
122  // scratch1: initial map
123  // scratch2: start of next object
124  __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
125  __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
126  __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
127  // Field JSArray::kElementsOffset is initialized later.
128  __ mov(scratch3,  Operand(0));
129  __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
130
131  // Calculate the location of the elements array and set elements array member
132  // of the JSArray.
133  // result: JSObject
134  // scratch2: start of next object
135  __ add(scratch1, result, Operand(JSArray::kSize));
136  __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
137
138  // Clear the heap tag on the elements array.
139  ASSERT(kSmiTag == 0);
140  __ sub(scratch1, scratch1, Operand(kHeapObjectTag));
141
142  // Initialize the FixedArray and fill it with holes. FixedArray length is
143  // stored as a smi.
144  // result: JSObject
145  // scratch1: elements array (untagged)
146  // scratch2: start of next object
147  __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
148  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
149  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
150  __ mov(scratch3,  Operand(Smi::FromInt(initial_capacity)));
151  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
152  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
153
154  // Fill the FixedArray with the hole value.
155  ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
156  ASSERT(initial_capacity <= kLoopUnfoldLimit);
157  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
158  for (int i = 0; i < initial_capacity; i++) {
159    __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
160  }
161}
162
163// Allocate a JSArray with the number of elements stored in a register. The
164// register array_function holds the built-in Array function and the register
165// array_size holds the size of the array as a smi. The allocated array is put
166// into the result register and beginning and end of the FixedArray elements
167// storage is put into registers elements_array_storage and elements_array_end
168// (see  below for when that is not the case). If the parameter fill_with_holes
169// is true the allocated elements backing store is filled with the hole values
170// otherwise it is left uninitialized. When the backing store is filled the
171// register elements_array_storage is scratched.
172static void AllocateJSArray(MacroAssembler* masm,
173                            Register array_function,  // Array function.
174                            Register array_size,  // As a smi.
175                            Register result,
176                            Register elements_array_storage,
177                            Register elements_array_end,
178                            Register scratch1,
179                            Register scratch2,
180                            bool fill_with_hole,
181                            Label* gc_required) {
182  Label not_empty, allocated;
183
184  // Load the initial map from the array function.
185  __ ldr(elements_array_storage,
186         FieldMemOperand(array_function,
187                         JSFunction::kPrototypeOrInitialMapOffset));
188
189  // Check whether an empty sized array is requested.
190  __ tst(array_size, array_size);
191  __ b(nz, &not_empty);
192
193  // If an empty array is requested allocate a small elements array anyway. This
194  // keeps the code below free of special casing for the empty array.
195  int size = JSArray::kSize +
196             FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
197  __ AllocateInNewSpace(size,
198                        result,
199                        elements_array_end,
200                        scratch1,
201                        gc_required,
202                        TAG_OBJECT);
203  __ jmp(&allocated);
204
205  // Allocate the JSArray object together with space for a FixedArray with the
206  // requested number of elements.
207  __ bind(&not_empty);
208  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
209  __ mov(elements_array_end,
210         Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
211  __ add(elements_array_end,
212         elements_array_end,
213         Operand(array_size, ASR, kSmiTagSize));
214  __ AllocateInNewSpace(
215      elements_array_end,
216      result,
217      scratch1,
218      scratch2,
219      gc_required,
220      static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
221
222  // Allocated the JSArray. Now initialize the fields except for the elements
223  // array.
224  // result: JSObject
225  // elements_array_storage: initial map
226  // array_size: size of array (smi)
227  __ bind(&allocated);
228  __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
229  __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
230  __ str(elements_array_storage,
231         FieldMemOperand(result, JSArray::kPropertiesOffset));
232  // Field JSArray::kElementsOffset is initialized later.
233  __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
234
235  // Calculate the location of the elements array and set elements array member
236  // of the JSArray.
237  // result: JSObject
238  // array_size: size of array (smi)
239  __ add(elements_array_storage, result, Operand(JSArray::kSize));
240  __ str(elements_array_storage,
241         FieldMemOperand(result, JSArray::kElementsOffset));
242
243  // Clear the heap tag on the elements array.
244  ASSERT(kSmiTag == 0);
245  __ sub(elements_array_storage,
246         elements_array_storage,
247         Operand(kHeapObjectTag));
248  // Initialize the fixed array and fill it with holes. FixedArray length is
249  // stored as a smi.
250  // result: JSObject
251  // elements_array_storage: elements array (untagged)
252  // array_size: size of array (smi)
253  __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
254  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
255  __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
256  ASSERT(kSmiTag == 0);
257  __ tst(array_size, array_size);
258  // Length of the FixedArray is the number of pre-allocated elements if
259  // the actual JSArray has length 0 and the size of the JSArray for non-empty
260  // JSArrays. The length of a FixedArray is stored as a smi.
261  __ mov(array_size,
262         Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)),
263         LeaveCC,
264         eq);
265  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
266  __ str(array_size,
267         MemOperand(elements_array_storage, kPointerSize, PostIndex));
268
269  // Calculate elements array and elements array end.
270  // result: JSObject
271  // elements_array_storage: elements array element storage
272  // array_size: smi-tagged size of elements array
273  ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
274  __ add(elements_array_end,
275         elements_array_storage,
276         Operand(array_size, LSL, kPointerSizeLog2 - kSmiTagSize));
277
278  // Fill the allocated FixedArray with the hole value if requested.
279  // result: JSObject
280  // elements_array_storage: elements array element storage
281  // elements_array_end: start of next object
282  if (fill_with_hole) {
283    Label loop, entry;
284    __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
285    __ jmp(&entry);
286    __ bind(&loop);
287    __ str(scratch1,
288           MemOperand(elements_array_storage, kPointerSize, PostIndex));
289    __ bind(&entry);
290    __ cmp(elements_array_storage, elements_array_end);
291    __ b(lt, &loop);
292  }
293}
294
295// Create a new array for the built-in Array function. This function allocates
296// the JSArray object and the FixedArray elements array and initializes these.
297// If the Array cannot be constructed in native code the runtime is called. This
298// function assumes the following state:
299//   r0: argc
300//   r1: constructor (built-in Array function)
301//   lr: return address
302//   sp[0]: last argument
303// This function is used for both construct and normal calls of Array. The only
304// difference between handling a construct call and a normal call is that for a
305// construct call the constructor function in r1 needs to be preserved for
306// entering the generic code. In both cases argc in r0 needs to be preserved.
307// Both registers are preserved by this code so no need to differentiate between
308// construct call and normal call.
309static void ArrayNativeCode(MacroAssembler* masm,
310                            Label* call_generic_code) {
311  Label argc_one_or_more, argc_two_or_more;
312
313  // Check for array construction with zero arguments or one.
314  __ cmp(r0, Operand(0));
315  __ b(ne, &argc_one_or_more);
316
317  // Handle construction of an empty array.
318  AllocateEmptyJSArray(masm,
319                       r1,
320                       r2,
321                       r3,
322                       r4,
323                       r5,
324                       JSArray::kPreallocatedArrayElements,
325                       call_generic_code);
326  __ IncrementCounter(&Counters::array_function_native, 1, r3, r4);
327  // Setup return value, remove receiver from stack and return.
328  __ mov(r0, r2);
329  __ add(sp, sp, Operand(kPointerSize));
330  __ Jump(lr);
331
332  // Check for one argument. Bail out if argument is not smi or if it is
333  // negative.
334  __ bind(&argc_one_or_more);
335  __ cmp(r0, Operand(1));
336  __ b(ne, &argc_two_or_more);
337  ASSERT(kSmiTag == 0);
338  __ ldr(r2, MemOperand(sp));  // Get the argument from the stack.
339  __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
340  __ b(ne, call_generic_code);
341
342  // Handle construction of an empty array of a certain size. Bail out if size
343  // is too large to actually allocate an elements array.
344  ASSERT(kSmiTag == 0);
345  __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
346  __ b(ge, call_generic_code);
347
348  // r0: argc
349  // r1: constructor
350  // r2: array_size (smi)
351  // sp[0]: argument
352  AllocateJSArray(masm,
353                  r1,
354                  r2,
355                  r3,
356                  r4,
357                  r5,
358                  r6,
359                  r7,
360                  true,
361                  call_generic_code);
362  __ IncrementCounter(&Counters::array_function_native, 1, r2, r4);
363  // Setup return value, remove receiver and argument from stack and return.
364  __ mov(r0, r3);
365  __ add(sp, sp, Operand(2 * kPointerSize));
366  __ Jump(lr);
367
368  // Handle construction of an array from a list of arguments.
369  __ bind(&argc_two_or_more);
370  __ mov(r2, Operand(r0, LSL, kSmiTagSize));  // Convet argc to a smi.
371
372  // r0: argc
373  // r1: constructor
374  // r2: array_size (smi)
375  // sp[0]: last argument
376  AllocateJSArray(masm,
377                  r1,
378                  r2,
379                  r3,
380                  r4,
381                  r5,
382                  r6,
383                  r7,
384                  false,
385                  call_generic_code);
386  __ IncrementCounter(&Counters::array_function_native, 1, r2, r6);
387
388  // Fill arguments as array elements. Copy from the top of the stack (last
389  // element) to the array backing store filling it backwards. Note:
390  // elements_array_end points after the backing store therefore PreIndex is
391  // used when filling the backing store.
392  // r0: argc
393  // r3: JSArray
394  // r4: elements_array storage start (untagged)
395  // r5: elements_array_end (untagged)
396  // sp[0]: last argument
397  Label loop, entry;
398  __ jmp(&entry);
399  __ bind(&loop);
400  __ ldr(r2, MemOperand(sp, kPointerSize, PostIndex));
401  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
402  __ bind(&entry);
403  __ cmp(r4, r5);
404  __ b(lt, &loop);
405
406  // Remove caller arguments and receiver from the stack, setup return value and
407  // return.
408  // r0: argc
409  // r3: JSArray
410  // sp[0]: receiver
411  __ add(sp, sp, Operand(kPointerSize));
412  __ mov(r0, r3);
413  __ Jump(lr);
414}
415
416
417void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
418  // ----------- S t a t e -------------
419  //  -- r0     : number of arguments
420  //  -- lr     : return address
421  //  -- sp[...]: constructor arguments
422  // -----------------------------------
423  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
424
425  // Get the Array function.
426  GenerateLoadArrayFunction(masm, r1);
427
428  if (FLAG_debug_code) {
429    // Initial map for the builtin Array function shoud be a map.
430    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
431    __ tst(r2, Operand(kSmiTagMask));
432    __ Assert(ne, "Unexpected initial map for Array function");
433    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
434    __ Assert(eq, "Unexpected initial map for Array function");
435  }
436
437  // Run the native code for the Array function called as a normal function.
438  ArrayNativeCode(masm, &generic_array_code);
439
440  // Jump to the generic array code if the specialized code cannot handle
441  // the construction.
442  __ bind(&generic_array_code);
443  Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
444  Handle<Code> array_code(code);
445  __ Jump(array_code, RelocInfo::CODE_TARGET);
446}
447
448
449void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
450  // ----------- S t a t e -------------
451  //  -- r0     : number of arguments
452  //  -- r1     : constructor function
453  //  -- lr     : return address
454  //  -- sp[...]: constructor arguments
455  // -----------------------------------
456  Label generic_constructor;
457
458  if (FLAG_debug_code) {
459    // The array construct code is only set for the builtin Array function which
460    // always have a map.
461    GenerateLoadArrayFunction(masm, r2);
462    __ cmp(r1, r2);
463    __ Assert(eq, "Unexpected Array function");
464    // Initial map for the builtin Array function should be a map.
465    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
466    __ tst(r2, Operand(kSmiTagMask));
467    __ Assert(ne, "Unexpected initial map for Array function");
468    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
469    __ Assert(eq, "Unexpected initial map for Array function");
470  }
471
472  // Run the native code for the Array function called as a constructor.
473  ArrayNativeCode(masm, &generic_constructor);
474
475  // Jump to the generic construct code in case the specialized code cannot
476  // handle the construction.
477  __ bind(&generic_constructor);
478  Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
479  Handle<Code> generic_construct_stub(code);
480  __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
481}
482
483
484void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
485  // ----------- S t a t e -------------
486  //  -- r0     : number of arguments
487  //  -- r1     : constructor function
488  //  -- lr     : return address
489  //  -- sp[...]: constructor arguments
490  // -----------------------------------
491
492  Label non_function_call;
493  // Check that the function is not a smi.
494  __ tst(r1, Operand(kSmiTagMask));
495  __ b(eq, &non_function_call);
496  // Check that the function is a JSFunction.
497  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
498  __ b(ne, &non_function_call);
499
500  // Jump to the function-specific construct stub.
501  __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
502  __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
503  __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
504
505  // r0: number of arguments
506  // r1: called object
507  __ bind(&non_function_call);
508  // CALL_NON_FUNCTION expects the non-function constructor as receiver
509  // (instead of the original receiver from the call site).  The receiver is
510  // stack element argc.
511  __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
512  // Set expected number of arguments to zero (not changing r0).
513  __ mov(r2, Operand(0));
514  __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
515  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
516          RelocInfo::CODE_TARGET);
517}
518
519
520static void Generate_JSConstructStubHelper(MacroAssembler* masm,
521                                           bool is_api_function) {
522  // Enter a construct frame.
523  __ EnterConstructFrame();
524
525  // Preserve the two incoming parameters on the stack.
526  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
527  __ push(r0);  // Smi-tagged arguments count.
528  __ push(r1);  // Constructor function.
529
530  // Use r7 for holding undefined which is used in several places below.
531  __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
532
533  // Try to allocate the object without transitioning into C code. If any of the
534  // preconditions is not met, the code bails out to the runtime call.
535  Label rt_call, allocated;
536  if (FLAG_inline_new) {
537    Label undo_allocation;
538#ifdef ENABLE_DEBUGGER_SUPPORT
539    ExternalReference debug_step_in_fp =
540        ExternalReference::debug_step_in_fp_address();
541    __ mov(r2, Operand(debug_step_in_fp));
542    __ ldr(r2, MemOperand(r2));
543    __ tst(r2, r2);
544    __ b(nz, &rt_call);
545#endif
546
547    // Load the initial map and verify that it is in fact a map.
548    // r1: constructor function
549    // r7: undefined value
550    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
551    __ tst(r2, Operand(kSmiTagMask));
552    __ b(eq, &rt_call);
553    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
554    __ b(ne, &rt_call);
555
556    // Check that the constructor is not constructing a JSFunction (see comments
557    // in Runtime_NewObject in runtime.cc). In which case the initial map's
558    // instance type would be JS_FUNCTION_TYPE.
559    // r1: constructor function
560    // r2: initial map
561    // r7: undefined value
562    __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
563    __ b(eq, &rt_call);
564
565    // Now allocate the JSObject on the heap.
566    // r1: constructor function
567    // r2: initial map
568    // r7: undefined value
569    __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
570    __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS);
571
572    // Allocated the JSObject, now initialize the fields. Map is set to initial
573    // map and properties and elements are set to empty fixed array.
574    // r1: constructor function
575    // r2: initial map
576    // r3: object size
577    // r4: JSObject (not tagged)
578    // r7: undefined value
579    __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
580    __ mov(r5, r4);
581    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
582    __ str(r2, MemOperand(r5, kPointerSize, PostIndex));
583    ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
584    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
585    ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
586    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
587
588    // Fill all the in-object properties with undefined.
589    // r1: constructor function
590    // r2: initial map
591    // r3: object size (in words)
592    // r4: JSObject (not tagged)
593    // r5: First in-object property of JSObject (not tagged)
594    // r7: undefined value
595    __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
596    ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
597    { Label loop, entry;
598      __ b(&entry);
599      __ bind(&loop);
600      __ str(r7, MemOperand(r5, kPointerSize, PostIndex));
601      __ bind(&entry);
602      __ cmp(r5, r6);
603      __ b(lt, &loop);
604    }
605
606    // Add the object tag to make the JSObject real, so that we can continue and
607    // jump into the continuation code at any time from now on. Any failures
608    // need to undo the allocation, so that the heap is in a consistent state
609    // and verifiable.
610    __ add(r4, r4, Operand(kHeapObjectTag));
611
612    // Check if a non-empty properties array is needed. Continue with allocated
613    // object if not fall through to runtime call if it is.
614    // r1: constructor function
615    // r4: JSObject
616    // r5: start of next object (not tagged)
617    // r7: undefined value
618    __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
619    // The field instance sizes contains both pre-allocated property fields and
620    // in-object properties.
621    __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
622    __ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * 8, 8);
623    __ add(r3, r3, Operand(r6));
624    __ Ubfx(r6, r0, Map::kInObjectPropertiesByte * 8, 8);
625    __ sub(r3, r3, Operand(r6), SetCC);
626
627    // Done if no extra properties are to be allocated.
628    __ b(eq, &allocated);
629    __ Assert(pl, "Property allocation count failed.");
630
631    // Scale the number of elements by pointer size and add the header for
632    // FixedArrays to the start of the next object calculation from above.
633    // r1: constructor
634    // r3: number of elements in properties array
635    // r4: JSObject
636    // r5: start of next object
637    // r7: undefined value
638    __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
639    __ AllocateInNewSpace(
640        r0,
641        r5,
642        r6,
643        r2,
644        &undo_allocation,
645        static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
646
647    // Initialize the FixedArray.
648    // r1: constructor
649    // r3: number of elements in properties array
650    // r4: JSObject
651    // r5: FixedArray (not tagged)
652    // r7: undefined value
653    __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
654    __ mov(r2, r5);
655    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
656    __ str(r6, MemOperand(r2, kPointerSize, PostIndex));
657    ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
658    __ mov(r0, Operand(r3, LSL, kSmiTagSize));
659    __ str(r0, MemOperand(r2, kPointerSize, PostIndex));
660
661    // Initialize the fields to undefined.
662    // r1: constructor function
663    // r2: First element of FixedArray (not tagged)
664    // r3: number of elements in properties array
665    // r4: JSObject
666    // r5: FixedArray (not tagged)
667    // r7: undefined
668    __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
669    ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
670    { Label loop, entry;
671      __ b(&entry);
672      __ bind(&loop);
673      __ str(r7, MemOperand(r2, kPointerSize, PostIndex));
674      __ bind(&entry);
675      __ cmp(r2, r6);
676      __ b(lt, &loop);
677    }
678
679    // Store the initialized FixedArray into the properties field of
680    // the JSObject
681    // r1: constructor function
682    // r4: JSObject
683    // r5: FixedArray (not tagged)
684    __ add(r5, r5, Operand(kHeapObjectTag));  // Add the heap tag.
685    __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));
686
687    // Continue with JSObject being successfully allocated
688    // r1: constructor function
689    // r4: JSObject
690    __ jmp(&allocated);
691
692    // Undo the setting of the new top so that the heap is verifiable. For
693    // example, the map's unused properties potentially do not match the
694    // allocated objects unused properties.
695    // r4: JSObject (previous new top)
696    __ bind(&undo_allocation);
697    __ UndoAllocationInNewSpace(r4, r5);
698  }
699
700  // Allocate the new receiver object using the runtime call.
701  // r1: constructor function
702  __ bind(&rt_call);
703  __ push(r1);  // argument for Runtime_NewObject
704  __ CallRuntime(Runtime::kNewObject, 1);
705  __ mov(r4, r0);
706
707  // Receiver for constructor call allocated.
708  // r4: JSObject
709  __ bind(&allocated);
710  __ push(r4);
711
712  // Push the function and the allocated receiver from the stack.
713  // sp[0]: receiver (newly allocated object)
714  // sp[1]: constructor function
715  // sp[2]: number of arguments (smi-tagged)
716  __ ldr(r1, MemOperand(sp, kPointerSize));
717  __ push(r1);  // Constructor function.
718  __ push(r4);  // Receiver.
719
720  // Reload the number of arguments from the stack.
721  // r1: constructor function
722  // sp[0]: receiver
723  // sp[1]: constructor function
724  // sp[2]: receiver
725  // sp[3]: constructor function
726  // sp[4]: number of arguments (smi-tagged)
727  __ ldr(r3, MemOperand(sp, 4 * kPointerSize));
728
729  // Setup pointer to last argument.
730  __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
731
732  // Setup number of arguments for function call below
733  __ mov(r0, Operand(r3, LSR, kSmiTagSize));
734
735  // Copy arguments and receiver to the expression stack.
736  // r0: number of arguments
737  // r2: address of last argument (caller sp)
738  // r1: constructor function
739  // r3: number of arguments (smi-tagged)
740  // sp[0]: receiver
741  // sp[1]: constructor function
742  // sp[2]: receiver
743  // sp[3]: constructor function
744  // sp[4]: number of arguments (smi-tagged)
745  Label loop, entry;
746  __ b(&entry);
747  __ bind(&loop);
748  __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
749  __ push(ip);
750  __ bind(&entry);
751  __ sub(r3, r3, Operand(2), SetCC);
752  __ b(ge, &loop);
753
754  // Call the function.
755  // r0: number of arguments
756  // r1: constructor function
757  if (is_api_function) {
758    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
759    Handle<Code> code = Handle<Code>(
760        Builtins::builtin(Builtins::HandleApiCallConstruct));
761    ParameterCount expected(0);
762    __ InvokeCode(code, expected, expected,
763                  RelocInfo::CODE_TARGET, CALL_FUNCTION);
764  } else {
765    ParameterCount actual(r0);
766    __ InvokeFunction(r1, actual, CALL_FUNCTION);
767  }
768
769  // Pop the function from the stack.
770  // sp[0]: constructor function
771  // sp[2]: receiver
772  // sp[3]: constructor function
773  // sp[4]: number of arguments (smi-tagged)
774  __ pop();
775
776  // Restore context from the frame.
777  // r0: result
778  // sp[0]: receiver
779  // sp[1]: constructor function
780  // sp[2]: number of arguments (smi-tagged)
781  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
782
783  // If the result is an object (in the ECMA sense), we should get rid
784  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
785  // on page 74.
786  Label use_receiver, exit;
787
788  // If the result is a smi, it is *not* an object in the ECMA sense.
789  // r0: result
790  // sp[0]: receiver (newly allocated object)
791  // sp[1]: constructor function
792  // sp[2]: number of arguments (smi-tagged)
793  __ tst(r0, Operand(kSmiTagMask));
794  __ b(eq, &use_receiver);
795
796  // If the type of the result (stored in its map) is less than
797  // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
798  __ CompareObjectType(r0, r3, r3, FIRST_JS_OBJECT_TYPE);
799  __ b(ge, &exit);
800
801  // Throw away the result of the constructor invocation and use the
802  // on-stack receiver as the result.
803  __ bind(&use_receiver);
804  __ ldr(r0, MemOperand(sp));
805
806  // Remove receiver from the stack, remove caller arguments, and
807  // return.
808  __ bind(&exit);
809  // r0: result
810  // sp[0]: receiver (newly allocated object)
811  // sp[1]: constructor function
812  // sp[2]: number of arguments (smi-tagged)
813  __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
814  __ LeaveConstructFrame();
815  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
816  __ add(sp, sp, Operand(kPointerSize));
817  __ IncrementCounter(&Counters::constructed_objects, 1, r1, r2);
818  __ Jump(lr);
819}
820
821
822void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
823  Generate_JSConstructStubHelper(masm, false);
824}
825
826
827void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
828  Generate_JSConstructStubHelper(masm, true);
829}
830
831
832static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
833                                             bool is_construct) {
834  // Called from Generate_JS_Entry
835  // r0: code entry
836  // r1: function
837  // r2: receiver
838  // r3: argc
839  // r4: argv
840  // r5-r7, cp may be clobbered
841
842  // Clear the context before we push it when entering the JS frame.
843  __ mov(cp, Operand(0));
844
845  // Enter an internal frame.
846  __ EnterInternalFrame();
847
848  // Set up the context from the function argument.
849  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
850
851  // Set up the roots register.
852  ExternalReference roots_address = ExternalReference::roots_address();
853  __ mov(r10, Operand(roots_address));
854
855  // Push the function and the receiver onto the stack.
856  __ push(r1);
857  __ push(r2);
858
859  // Copy arguments to the stack in a loop.
860  // r1: function
861  // r3: argc
862  // r4: argv, i.e. points to first arg
863  Label loop, entry;
864  __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
865  // r2 points past last arg.
866  __ b(&entry);
867  __ bind(&loop);
868  __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex));  // read next parameter
869  __ ldr(r0, MemOperand(r0));  // dereference handle
870  __ push(r0);  // push parameter
871  __ bind(&entry);
872  __ cmp(r4, r2);
873  __ b(ne, &loop);
874
875  // Initialize all JavaScript callee-saved registers, since they will be seen
876  // by the garbage collector as part of handlers.
877  __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
878  __ mov(r5, Operand(r4));
879  __ mov(r6, Operand(r4));
880  __ mov(r7, Operand(r4));
881  if (kR9Available == 1) {
882    __ mov(r9, Operand(r4));
883  }
884
885  // Invoke the code and pass argc as r0.
886  __ mov(r0, Operand(r3));
887  if (is_construct) {
888    __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
889            RelocInfo::CODE_TARGET);
890  } else {
891    ParameterCount actual(r0);
892    __ InvokeFunction(r1, actual, CALL_FUNCTION);
893  }
894
895  // Exit the JS frame and remove the parameters (except function), and return.
896  // Respect ABI stack constraint.
897  __ LeaveInternalFrame();
898  __ Jump(lr);
899
900  // r0: result
901}
902
903
904void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
905  Generate_JSEntryTrampolineHelper(masm, false);
906}
907
908
909void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
910  Generate_JSEntryTrampolineHelper(masm, true);
911}
912
913
914void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
915  // Enter an internal frame.
916  __ EnterInternalFrame();
917
918  // Preserve the function.
919  __ push(r1);
920
921  // Push the function on the stack as the argument to the runtime function.
922  __ push(r1);
923  __ CallRuntime(Runtime::kLazyCompile, 1);
924  // Calculate the entry point.
925  __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
926  // Restore saved function.
927  __ pop(r1);
928
929  // Tear down temporary frame.
930  __ LeaveInternalFrame();
931
932  // Do a tail-call of the compiled function.
933  __ Jump(r2);
934}
935
936
937void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
938  // 1. Make sure we have at least one argument.
939  // r0: actual number of arguments
940  { Label done;
941    __ tst(r0, Operand(r0));
942    __ b(ne, &done);
943    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
944    __ push(r2);
945    __ add(r0, r0, Operand(1));
946    __ bind(&done);
947  }
948
949  // 2. Get the function to call (passed as receiver) from the stack, check
950  //    if it is a function.
951  // r0: actual number of arguments
952  Label non_function;
953  __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
954  __ tst(r1, Operand(kSmiTagMask));
955  __ b(eq, &non_function);
956  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
957  __ b(ne, &non_function);
958
959  // 3a. Patch the first argument if necessary when calling a function.
960  // r0: actual number of arguments
961  // r1: function
962  Label shift_arguments;
963  { Label convert_to_object, use_global_receiver, patch_receiver;
964    // Change context eagerly in case we need the global receiver.
965    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
966
967    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
968    __ ldr(r2, MemOperand(r2, -kPointerSize));
969    // r0: actual number of arguments
970    // r1: function
971    // r2: first argument
972    __ tst(r2, Operand(kSmiTagMask));
973    __ b(eq, &convert_to_object);
974
975    __ LoadRoot(r3, Heap::kNullValueRootIndex);
976    __ cmp(r2, r3);
977    __ b(eq, &use_global_receiver);
978    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
979    __ cmp(r2, r3);
980    __ b(eq, &use_global_receiver);
981
982    __ CompareObjectType(r2, r3, r3, FIRST_JS_OBJECT_TYPE);
983    __ b(lt, &convert_to_object);
984    __ cmp(r3, Operand(LAST_JS_OBJECT_TYPE));
985    __ b(le, &shift_arguments);
986
987    __ bind(&convert_to_object);
988    __ EnterInternalFrame();  // In order to preserve argument count.
989    __ mov(r0, Operand(r0, LSL, kSmiTagSize));  // Smi-tagged.
990    __ push(r0);
991
992    __ push(r2);
993    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
994    __ mov(r2, r0);
995
996    __ pop(r0);
997    __ mov(r0, Operand(r0, ASR, kSmiTagSize));
998    __ LeaveInternalFrame();
999    // Restore the function to r1.
1000    __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1001    __ jmp(&patch_receiver);
1002
1003    // Use the global receiver object from the called function as the
1004    // receiver.
1005    __ bind(&use_global_receiver);
1006    const int kGlobalIndex =
1007        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1008    __ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
1009    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
1010    __ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
1011    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
1012
1013    __ bind(&patch_receiver);
1014    __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
1015    __ str(r2, MemOperand(r3, -kPointerSize));
1016
1017    __ jmp(&shift_arguments);
1018  }
1019
1020  // 3b. Patch the first argument when calling a non-function.  The
1021  //     CALL_NON_FUNCTION builtin expects the non-function callee as
1022  //     receiver, so overwrite the first argument which will ultimately
1023  //     become the receiver.
1024  // r0: actual number of arguments
1025  // r1: function
1026  __ bind(&non_function);
1027  __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1028  __ str(r1, MemOperand(r2, -kPointerSize));
1029  // Clear r1 to indicate a non-function being called.
1030  __ mov(r1, Operand(0));
1031
1032  // 4. Shift arguments and return address one slot down on the stack
1033  //    (overwriting the original receiver).  Adjust argument count to make
1034  //    the original first argument the new receiver.
1035  // r0: actual number of arguments
1036  // r1: function
1037  __ bind(&shift_arguments);
1038  { Label loop;
1039    // Calculate the copy start address (destination). Copy end address is sp.
1040    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1041
1042    __ bind(&loop);
1043    __ ldr(ip, MemOperand(r2, -kPointerSize));
1044    __ str(ip, MemOperand(r2));
1045    __ sub(r2, r2, Operand(kPointerSize));
1046    __ cmp(r2, sp);
1047    __ b(ne, &loop);
1048    // Adjust the actual number of arguments and remove the top element
1049    // (which is a copy of the last argument).
1050    __ sub(r0, r0, Operand(1));
1051    __ pop();
1052  }
1053
1054  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
1055  // r0: actual number of arguments
1056  // r1: function
1057  { Label function;
1058    __ tst(r1, r1);
1059    __ b(ne, &function);
1060    __ mov(r2, Operand(0));  // expected arguments is 0 for CALL_NON_FUNCTION
1061    __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
1062    __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1063                         RelocInfo::CODE_TARGET);
1064    __ bind(&function);
1065  }
1066
1067  // 5b. Get the code to call from the function and check that the number of
1068  //     expected arguments matches what we're providing.  If so, jump
1069  //     (tail-call) to the code in register edx without checking arguments.
1070  // r0: actual number of arguments
1071  // r1: function
1072  __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1073  __ ldr(r2,
1074         FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
1075  __ mov(r2, Operand(r2, ASR, kSmiTagSize));
1076  __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeOffset));
1077  __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
1078  __ cmp(r2, r0);  // Check formal and actual parameter counts.
1079  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1080          RelocInfo::CODE_TARGET, ne);
1081
1082  ParameterCount expected(0);
1083  __ InvokeCode(r3, expected, expected, JUMP_FUNCTION);
1084}
1085
1086
1087void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1088  const int kIndexOffset    = -5 * kPointerSize;
1089  const int kLimitOffset    = -4 * kPointerSize;
1090  const int kArgsOffset     =  2 * kPointerSize;
1091  const int kRecvOffset     =  3 * kPointerSize;
1092  const int kFunctionOffset =  4 * kPointerSize;
1093
1094  __ EnterInternalFrame();
1095
1096  __ ldr(r0, MemOperand(fp, kFunctionOffset));  // get the function
1097  __ push(r0);
1098  __ ldr(r0, MemOperand(fp, kArgsOffset));  // get the args array
1099  __ push(r0);
1100  __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_JS);
1101
1102  // Check the stack for overflow. We are not trying need to catch
1103  // interruptions (e.g. debug break and preemption) here, so the "real stack
1104  // limit" is checked.
1105  Label okay;
1106  __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
1107  // Make r2 the space we have left. The stack might already be overflowed
1108  // here which will cause r2 to become negative.
1109  __ sub(r2, sp, r2);
1110  // Check if the arguments will overflow the stack.
1111  __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1112  __ b(gt, &okay);  // Signed comparison.
1113
1114  // Out of stack space.
1115  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1116  __ push(r1);
1117  __ push(r0);
1118  __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_JS);
1119  // End of stack check.
1120
1121  // Push current limit and index.
1122  __ bind(&okay);
1123  __ push(r0);  // limit
1124  __ mov(r1, Operand(0));  // initial index
1125  __ push(r1);
1126
1127  // Change context eagerly to get the right global object if necessary.
1128  __ ldr(r0, MemOperand(fp, kFunctionOffset));
1129  __ ldr(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
1130
1131  // Compute the receiver.
1132  Label call_to_object, use_global_receiver, push_receiver;
1133  __ ldr(r0, MemOperand(fp, kRecvOffset));
1134  __ tst(r0, Operand(kSmiTagMask));
1135  __ b(eq, &call_to_object);
1136  __ LoadRoot(r1, Heap::kNullValueRootIndex);
1137  __ cmp(r0, r1);
1138  __ b(eq, &use_global_receiver);
1139  __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1140  __ cmp(r0, r1);
1141  __ b(eq, &use_global_receiver);
1142
1143  // Check if the receiver is already a JavaScript object.
1144  // r0: receiver
1145  __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
1146  __ b(lt, &call_to_object);
1147  __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
1148  __ b(le, &push_receiver);
1149
1150  // Convert the receiver to a regular object.
1151  // r0: receiver
1152  __ bind(&call_to_object);
1153  __ push(r0);
1154  __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
1155  __ b(&push_receiver);
1156
1157  // Use the current global receiver object as the receiver.
1158  __ bind(&use_global_receiver);
1159  const int kGlobalOffset =
1160      Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1161  __ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
1162  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
1163  __ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
1164  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
1165
1166  // Push the receiver.
1167  // r0: receiver
1168  __ bind(&push_receiver);
1169  __ push(r0);
1170
1171  // Copy all arguments from the array to the stack.
1172  Label entry, loop;
1173  __ ldr(r0, MemOperand(fp, kIndexOffset));
1174  __ b(&entry);
1175
1176  // Load the current argument from the arguments array and push it to the
1177  // stack.
1178  // r0: current argument index
1179  __ bind(&loop);
1180  __ ldr(r1, MemOperand(fp, kArgsOffset));
1181  __ push(r1);
1182  __ push(r0);
1183
1184  // Call the runtime to access the property in the arguments array.
1185  __ CallRuntime(Runtime::kGetProperty, 2);
1186  __ push(r0);
1187
1188  // Use inline caching to access the arguments.
1189  __ ldr(r0, MemOperand(fp, kIndexOffset));
1190  __ add(r0, r0, Operand(1 << kSmiTagSize));
1191  __ str(r0, MemOperand(fp, kIndexOffset));
1192
1193  // Test if the copy loop has finished copying all the elements from the
1194  // arguments object.
1195  __ bind(&entry);
1196  __ ldr(r1, MemOperand(fp, kLimitOffset));
1197  __ cmp(r0, r1);
1198  __ b(ne, &loop);
1199
1200  // Invoke the function.
1201  ParameterCount actual(r0);
1202  __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1203  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1204  __ InvokeFunction(r1, actual, CALL_FUNCTION);
1205
1206  // Tear down the internal frame and remove function, receiver and args.
1207  __ LeaveInternalFrame();
1208  __ add(sp, sp, Operand(3 * kPointerSize));
1209  __ Jump(lr);
1210}
1211
1212
1213static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1214  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
1215  __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1216  __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
1217  __ add(fp, sp, Operand(3 * kPointerSize));
1218}
1219
1220
1221static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1222  // ----------- S t a t e -------------
1223  //  -- r0 : result being passed through
1224  // -----------------------------------
1225  // Get the number of arguments passed (as a smi), tear down the frame and
1226  // then tear down the parameters.
1227  __ ldr(r1, MemOperand(fp, -3 * kPointerSize));
1228  __ mov(sp, fp);
1229  __ ldm(ia_w, sp, fp.bit() | lr.bit());
1230  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
1231  __ add(sp, sp, Operand(kPointerSize));  // adjust for receiver
1232}
1233
1234
1235void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1236  // ----------- S t a t e -------------
1237  //  -- r0 : actual number of arguments
1238  //  -- r1 : function (passed through to callee)
1239  //  -- r2 : expected number of arguments
1240  //  -- r3 : code entry to call
1241  // -----------------------------------
1242
1243  Label invoke, dont_adapt_arguments;
1244
1245  Label enough, too_few;
1246  __ cmp(r0, r2);
1247  __ b(lt, &too_few);
1248  __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1249  __ b(eq, &dont_adapt_arguments);
1250
1251  {  // Enough parameters: actual >= expected
1252    __ bind(&enough);
1253    EnterArgumentsAdaptorFrame(masm);
1254
1255    // Calculate copy start address into r0 and copy end address into r2.
1256    // r0: actual number of arguments as a smi
1257    // r1: function
1258    // r2: expected number of arguments
1259    // r3: code entry to call
1260    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1261    // adjust for return address and receiver
1262    __ add(r0, r0, Operand(2 * kPointerSize));
1263    __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
1264
1265    // Copy the arguments (including the receiver) to the new stack frame.
1266    // r0: copy start address
1267    // r1: function
1268    // r2: copy end address
1269    // r3: code entry to call
1270
1271    Label copy;
1272    __ bind(&copy);
1273    __ ldr(ip, MemOperand(r0, 0));
1274    __ push(ip);
1275    __ cmp(r0, r2);  // Compare before moving to next argument.
1276    __ sub(r0, r0, Operand(kPointerSize));
1277    __ b(ne, &copy);
1278
1279    __ b(&invoke);
1280  }
1281
1282  {  // Too few parameters: Actual < expected
1283    __ bind(&too_few);
1284    EnterArgumentsAdaptorFrame(masm);
1285
1286    // Calculate copy start address into r0 and copy end address is fp.
1287    // r0: actual number of arguments as a smi
1288    // r1: function
1289    // r2: expected number of arguments
1290    // r3: code entry to call
1291    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1292
1293    // Copy the arguments (including the receiver) to the new stack frame.
1294    // r0: copy start address
1295    // r1: function
1296    // r2: expected number of arguments
1297    // r3: code entry to call
1298    Label copy;
1299    __ bind(&copy);
1300    // Adjust load for return address and receiver.
1301    __ ldr(ip, MemOperand(r0, 2 * kPointerSize));
1302    __ push(ip);
1303    __ cmp(r0, fp);  // Compare before moving to next argument.
1304    __ sub(r0, r0, Operand(kPointerSize));
1305    __ b(ne, &copy);
1306
1307    // Fill the remaining expected arguments with undefined.
1308    // r1: function
1309    // r2: expected number of arguments
1310    // r3: code entry to call
1311    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1312    __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
1313    __ sub(r2, r2, Operand(4 * kPointerSize));  // Adjust for frame.
1314
1315    Label fill;
1316    __ bind(&fill);
1317    __ push(ip);
1318    __ cmp(sp, r2);
1319    __ b(ne, &fill);
1320  }
1321
1322  // Call the entry point.
1323  __ bind(&invoke);
1324  __ Call(r3);
1325
1326  // Exit frame and return.
1327  LeaveArgumentsAdaptorFrame(masm);
1328  __ Jump(lr);
1329
1330
1331  // -------------------------------------------
1332  // Dont adapt arguments.
1333  // -------------------------------------------
1334  __ bind(&dont_adapt_arguments);
1335  __ Jump(r3);
1336}
1337
1338
1339#undef __
1340
1341} }  // namespace v8::internal
1342
1343#endif  // V8_TARGET_ARCH_ARM
1344