builtins-arm.cc revision 80d68eab642096c1a48b6474d6ec33064b0ad1f5
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "codegen-inl.h"
33#include "debug.h"
34#include "runtime.h"
35
36namespace v8 {
37namespace internal {
38
39
40#define __ ACCESS_MASM(masm)
41
42
43void Builtins::Generate_Adaptor(MacroAssembler* masm,
44                                CFunctionId id,
45                                BuiltinExtraArguments extra_args) {
46  // ----------- S t a t e -------------
47  //  -- r0                 : number of arguments excluding receiver
48  //  -- r1                 : called function (only guaranteed when
49  //                          extra_args requires it)
50  //  -- cp                 : context
51  //  -- sp[0]              : last argument
52  //  -- ...
53  //  -- sp[4 * (argc - 1)] : first argument (argc == r0)
54  //  -- sp[4 * argc]       : receiver
55  // -----------------------------------
56
57  // Insert extra arguments.
58  int num_extra_args = 0;
59  if (extra_args == NEEDS_CALLED_FUNCTION) {
60    num_extra_args = 1;
61    __ push(r1);
62  } else {
63    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
64  }
65
66  // JumpToExternalReference expects r0 to contain the number of arguments
67  // including the receiver and the extra arguments.
68  __ add(r0, r0, Operand(num_extra_args + 1));
69  __ JumpToExternalReference(ExternalReference(id));
70}
71
72
73// Load the built-in Array function from the current context.
74static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
75  // Load the global context.
76
77  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
78  __ ldr(result,
79         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
80  // Load the Array function from the global context.
81  __ ldr(result,
82         MemOperand(result,
83                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
84}
85
86
87// This constant has the same value as JSArray::kPreallocatedArrayElements and
88// if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding
89// below should be reconsidered.
90static const int kLoopUnfoldLimit = 4;
91
92
93// Allocate an empty JSArray. The allocated array is put into the result
94// register. An elements backing store is allocated with size initial_capacity
95// and filled with the hole values.
96static void AllocateEmptyJSArray(MacroAssembler* masm,
97                                 Register array_function,
98                                 Register result,
99                                 Register scratch1,
100                                 Register scratch2,
101                                 Register scratch3,
102                                 int initial_capacity,
103                                 Label* gc_required) {
104  ASSERT(initial_capacity > 0);
105  // Load the initial map from the array function.
106  __ ldr(scratch1, FieldMemOperand(array_function,
107                                   JSFunction::kPrototypeOrInitialMapOffset));
108
109  // Allocate the JSArray object together with space for a fixed array with the
110  // requested elements.
111  int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity);
112  __ AllocateInNewSpace(size,
113                        result,
114                        scratch2,
115                        scratch3,
116                        gc_required,
117                        TAG_OBJECT);
118
119  // Allocated the JSArray. Now initialize the fields except for the elements
120  // array.
121  // result: JSObject
122  // scratch1: initial map
123  // scratch2: start of next object
124  __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
125  __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
126  __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
127  // Field JSArray::kElementsOffset is initialized later.
128  __ mov(scratch3,  Operand(0));
129  __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
130
131  // Calculate the location of the elements array and set elements array member
132  // of the JSArray.
133  // result: JSObject
134  // scratch2: start of next object
135  __ add(scratch1, result, Operand(JSArray::kSize));
136  __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
137
138  // Clear the heap tag on the elements array.
139  ASSERT(kSmiTag == 0);
140  __ sub(scratch1, scratch1, Operand(kHeapObjectTag));
141
142  // Initialize the FixedArray and fill it with holes. FixedArray length is
143  // stored as a smi.
144  // result: JSObject
145  // scratch1: elements array (untagged)
146  // scratch2: start of next object
147  __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
148  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
149  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
150  __ mov(scratch3,  Operand(Smi::FromInt(initial_capacity)));
151  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
152  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
153
154  // Fill the FixedArray with the hole value.
155  ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
156  ASSERT(initial_capacity <= kLoopUnfoldLimit);
157  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
158  for (int i = 0; i < initial_capacity; i++) {
159    __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
160  }
161}
162
163// Allocate a JSArray with the number of elements stored in a register. The
164// register array_function holds the built-in Array function and the register
165// array_size holds the size of the array as a smi. The allocated array is put
166// into the result register and beginning and end of the FixedArray elements
167// storage is put into registers elements_array_storage and elements_array_end
168// (see  below for when that is not the case). If the parameter fill_with_holes
169// is true the allocated elements backing store is filled with the hole values
170// otherwise it is left uninitialized. When the backing store is filled the
171// register elements_array_storage is scratched.
172static void AllocateJSArray(MacroAssembler* masm,
173                            Register array_function,  // Array function.
174                            Register array_size,  // As a smi.
175                            Register result,
176                            Register elements_array_storage,
177                            Register elements_array_end,
178                            Register scratch1,
179                            Register scratch2,
180                            bool fill_with_hole,
181                            Label* gc_required) {
182  Label not_empty, allocated;
183
184  // Load the initial map from the array function.
185  __ ldr(elements_array_storage,
186         FieldMemOperand(array_function,
187                         JSFunction::kPrototypeOrInitialMapOffset));
188
189  // Check whether an empty sized array is requested.
190  __ tst(array_size, array_size);
191  __ b(nz, &not_empty);
192
193  // If an empty array is requested allocate a small elements array anyway. This
194  // keeps the code below free of special casing for the empty array.
195  int size = JSArray::kSize +
196             FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
197  __ AllocateInNewSpace(size,
198                        result,
199                        elements_array_end,
200                        scratch1,
201                        gc_required,
202                        TAG_OBJECT);
203  __ jmp(&allocated);
204
205  // Allocate the JSArray object together with space for a FixedArray with the
206  // requested number of elements.
207  __ bind(&not_empty);
208  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
209  __ mov(elements_array_end,
210         Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
211  __ add(elements_array_end,
212         elements_array_end,
213         Operand(array_size, ASR, kSmiTagSize));
214  __ AllocateInNewSpace(
215      elements_array_end,
216      result,
217      scratch1,
218      scratch2,
219      gc_required,
220      static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
221
222  // Allocated the JSArray. Now initialize the fields except for the elements
223  // array.
224  // result: JSObject
225  // elements_array_storage: initial map
226  // array_size: size of array (smi)
227  __ bind(&allocated);
228  __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
229  __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
230  __ str(elements_array_storage,
231         FieldMemOperand(result, JSArray::kPropertiesOffset));
232  // Field JSArray::kElementsOffset is initialized later.
233  __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
234
235  // Calculate the location of the elements array and set elements array member
236  // of the JSArray.
237  // result: JSObject
238  // array_size: size of array (smi)
239  __ add(elements_array_storage, result, Operand(JSArray::kSize));
240  __ str(elements_array_storage,
241         FieldMemOperand(result, JSArray::kElementsOffset));
242
243  // Clear the heap tag on the elements array.
244  ASSERT(kSmiTag == 0);
245  __ sub(elements_array_storage,
246         elements_array_storage,
247         Operand(kHeapObjectTag));
248  // Initialize the fixed array and fill it with holes. FixedArray length is
249  // stored as a smi.
250  // result: JSObject
251  // elements_array_storage: elements array (untagged)
252  // array_size: size of array (smi)
253  __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
254  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
255  __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
256  ASSERT(kSmiTag == 0);
257  __ tst(array_size, array_size);
258  // Length of the FixedArray is the number of pre-allocated elements if
259  // the actual JSArray has length 0 and the size of the JSArray for non-empty
260  // JSArrays. The length of a FixedArray is stored as a smi.
261  __ mov(array_size,
262         Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)),
263         LeaveCC,
264         eq);
265  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
266  __ str(array_size,
267         MemOperand(elements_array_storage, kPointerSize, PostIndex));
268
269  // Calculate elements array and elements array end.
270  // result: JSObject
271  // elements_array_storage: elements array element storage
272  // array_size: smi-tagged size of elements array
273  ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
274  __ add(elements_array_end,
275         elements_array_storage,
276         Operand(array_size, LSL, kPointerSizeLog2 - kSmiTagSize));
277
278  // Fill the allocated FixedArray with the hole value if requested.
279  // result: JSObject
280  // elements_array_storage: elements array element storage
281  // elements_array_end: start of next object
282  if (fill_with_hole) {
283    Label loop, entry;
284    __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
285    __ jmp(&entry);
286    __ bind(&loop);
287    __ str(scratch1,
288           MemOperand(elements_array_storage, kPointerSize, PostIndex));
289    __ bind(&entry);
290    __ cmp(elements_array_storage, elements_array_end);
291    __ b(lt, &loop);
292  }
293}
294
295// Create a new array for the built-in Array function. This function allocates
296// the JSArray object and the FixedArray elements array and initializes these.
297// If the Array cannot be constructed in native code the runtime is called. This
298// function assumes the following state:
299//   r0: argc
300//   r1: constructor (built-in Array function)
301//   lr: return address
302//   sp[0]: last argument
303// This function is used for both construct and normal calls of Array. The only
304// difference between handling a construct call and a normal call is that for a
305// construct call the constructor function in r1 needs to be preserved for
306// entering the generic code. In both cases argc in r0 needs to be preserved.
307// Both registers are preserved by this code so no need to differentiate between
308// construct call and normal call.
309static void ArrayNativeCode(MacroAssembler* masm,
310                            Label* call_generic_code) {
311  Label argc_one_or_more, argc_two_or_more;
312
313  // Check for array construction with zero arguments or one.
314  __ cmp(r0, Operand(0));
315  __ b(ne, &argc_one_or_more);
316
317  // Handle construction of an empty array.
318  AllocateEmptyJSArray(masm,
319                       r1,
320                       r2,
321                       r3,
322                       r4,
323                       r5,
324                       JSArray::kPreallocatedArrayElements,
325                       call_generic_code);
326  __ IncrementCounter(&Counters::array_function_native, 1, r3, r4);
327  // Setup return value, remove receiver from stack and return.
328  __ mov(r0, r2);
329  __ add(sp, sp, Operand(kPointerSize));
330  __ Jump(lr);
331
332  // Check for one argument. Bail out if argument is not smi or if it is
333  // negative.
334  __ bind(&argc_one_or_more);
335  __ cmp(r0, Operand(1));
336  __ b(ne, &argc_two_or_more);
337  ASSERT(kSmiTag == 0);
338  __ ldr(r2, MemOperand(sp));  // Get the argument from the stack.
339  __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
340  __ b(ne, call_generic_code);
341
342  // Handle construction of an empty array of a certain size. Bail out if size
343  // is too large to actually allocate an elements array.
344  ASSERT(kSmiTag == 0);
345  __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
346  __ b(ge, call_generic_code);
347
348  // r0: argc
349  // r1: constructor
350  // r2: array_size (smi)
351  // sp[0]: argument
352  AllocateJSArray(masm,
353                  r1,
354                  r2,
355                  r3,
356                  r4,
357                  r5,
358                  r6,
359                  r7,
360                  true,
361                  call_generic_code);
362  __ IncrementCounter(&Counters::array_function_native, 1, r2, r4);
363  // Setup return value, remove receiver and argument from stack and return.
364  __ mov(r0, r3);
365  __ add(sp, sp, Operand(2 * kPointerSize));
366  __ Jump(lr);
367
368  // Handle construction of an array from a list of arguments.
369  __ bind(&argc_two_or_more);
370  __ mov(r2, Operand(r0, LSL, kSmiTagSize));  // Convet argc to a smi.
371
372  // r0: argc
373  // r1: constructor
374  // r2: array_size (smi)
375  // sp[0]: last argument
376  AllocateJSArray(masm,
377                  r1,
378                  r2,
379                  r3,
380                  r4,
381                  r5,
382                  r6,
383                  r7,
384                  false,
385                  call_generic_code);
386  __ IncrementCounter(&Counters::array_function_native, 1, r2, r6);
387
388  // Fill arguments as array elements. Copy from the top of the stack (last
389  // element) to the array backing store filling it backwards. Note:
390  // elements_array_end points after the backing store therefore PreIndex is
391  // used when filling the backing store.
392  // r0: argc
393  // r3: JSArray
394  // r4: elements_array storage start (untagged)
395  // r5: elements_array_end (untagged)
396  // sp[0]: last argument
397  Label loop, entry;
398  __ jmp(&entry);
399  __ bind(&loop);
400  __ ldr(r2, MemOperand(sp, kPointerSize, PostIndex));
401  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
402  __ bind(&entry);
403  __ cmp(r4, r5);
404  __ b(lt, &loop);
405
406  // Remove caller arguments and receiver from the stack, setup return value and
407  // return.
408  // r0: argc
409  // r3: JSArray
410  // sp[0]: receiver
411  __ add(sp, sp, Operand(kPointerSize));
412  __ mov(r0, r3);
413  __ Jump(lr);
414}
415
416
417void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
418  // ----------- S t a t e -------------
419  //  -- r0     : number of arguments
420  //  -- lr     : return address
421  //  -- sp[...]: constructor arguments
422  // -----------------------------------
423  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
424
425  // Get the Array function.
426  GenerateLoadArrayFunction(masm, r1);
427
428  if (FLAG_debug_code) {
429    // Initial map for the builtin Array function shoud be a map.
430    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
431    __ tst(r2, Operand(kSmiTagMask));
432    __ Assert(ne, "Unexpected initial map for Array function");
433    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
434    __ Assert(eq, "Unexpected initial map for Array function");
435  }
436
437  // Run the native code for the Array function called as a normal function.
438  ArrayNativeCode(masm, &generic_array_code);
439
440  // Jump to the generic array code if the specialized code cannot handle
441  // the construction.
442  __ bind(&generic_array_code);
443  Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
444  Handle<Code> array_code(code);
445  __ Jump(array_code, RelocInfo::CODE_TARGET);
446}
447
448
449void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
450  // ----------- S t a t e -------------
451  //  -- r0     : number of arguments
452  //  -- r1     : constructor function
453  //  -- lr     : return address
454  //  -- sp[...]: constructor arguments
455  // -----------------------------------
456  Label generic_constructor;
457
458  if (FLAG_debug_code) {
459    // The array construct code is only set for the builtin Array function which
460    // always have a map.
461    GenerateLoadArrayFunction(masm, r2);
462    __ cmp(r1, r2);
463    __ Assert(eq, "Unexpected Array function");
464    // Initial map for the builtin Array function should be a map.
465    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
466    __ tst(r2, Operand(kSmiTagMask));
467    __ Assert(ne, "Unexpected initial map for Array function");
468    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
469    __ Assert(eq, "Unexpected initial map for Array function");
470  }
471
472  // Run the native code for the Array function called as a constructor.
473  ArrayNativeCode(masm, &generic_constructor);
474
475  // Jump to the generic construct code in case the specialized code cannot
476  // handle the construction.
477  __ bind(&generic_constructor);
478  Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
479  Handle<Code> generic_construct_stub(code);
480  __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
481}
482
483
484void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
485  // TODO(849): implement custom construct stub.
486  // Generate a copy of the generic stub for now.
487  Generate_JSConstructStubGeneric(masm);
488}
489
490
491void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
492  // ----------- S t a t e -------------
493  //  -- r0     : number of arguments
494  //  -- r1     : constructor function
495  //  -- lr     : return address
496  //  -- sp[...]: constructor arguments
497  // -----------------------------------
498
499  Label non_function_call;
500  // Check that the function is not a smi.
501  __ tst(r1, Operand(kSmiTagMask));
502  __ b(eq, &non_function_call);
503  // Check that the function is a JSFunction.
504  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
505  __ b(ne, &non_function_call);
506
507  // Jump to the function-specific construct stub.
508  __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
509  __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
510  __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
511
512  // r0: number of arguments
513  // r1: called object
514  __ bind(&non_function_call);
515  // Set expected number of arguments to zero (not changing r0).
516  __ mov(r2, Operand(0));
517  __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
518  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
519          RelocInfo::CODE_TARGET);
520}
521
522
523static void Generate_JSConstructStubHelper(MacroAssembler* masm,
524                                           bool is_api_function) {
525  // Enter a construct frame.
526  __ EnterConstructFrame();
527
528  // Preserve the two incoming parameters on the stack.
529  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
530  __ push(r0);  // Smi-tagged arguments count.
531  __ push(r1);  // Constructor function.
532
533  // Use r7 for holding undefined which is used in several places below.
534  __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
535
536  // Try to allocate the object without transitioning into C code. If any of the
537  // preconditions is not met, the code bails out to the runtime call.
538  Label rt_call, allocated;
539  if (FLAG_inline_new) {
540    Label undo_allocation;
541#ifdef ENABLE_DEBUGGER_SUPPORT
542    ExternalReference debug_step_in_fp =
543        ExternalReference::debug_step_in_fp_address();
544    __ mov(r2, Operand(debug_step_in_fp));
545    __ ldr(r2, MemOperand(r2));
546    __ tst(r2, r2);
547    __ b(nz, &rt_call);
548#endif
549
550    // Load the initial map and verify that it is in fact a map.
551    // r1: constructor function
552    // r7: undefined value
553    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
554    __ tst(r2, Operand(kSmiTagMask));
555    __ b(eq, &rt_call);
556    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
557    __ b(ne, &rt_call);
558
559    // Check that the constructor is not constructing a JSFunction (see comments
560    // in Runtime_NewObject in runtime.cc). In which case the initial map's
561    // instance type would be JS_FUNCTION_TYPE.
562    // r1: constructor function
563    // r2: initial map
564    // r7: undefined value
565    __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
566    __ b(eq, &rt_call);
567
568    // Now allocate the JSObject on the heap.
569    // r1: constructor function
570    // r2: initial map
571    // r7: undefined value
572    __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
573    __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS);
574
575    // Allocated the JSObject, now initialize the fields. Map is set to initial
576    // map and properties and elements are set to empty fixed array.
577    // r1: constructor function
578    // r2: initial map
579    // r3: object size
580    // r4: JSObject (not tagged)
581    // r7: undefined value
582    __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
583    __ mov(r5, r4);
584    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
585    __ str(r2, MemOperand(r5, kPointerSize, PostIndex));
586    ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
587    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
588    ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
589    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
590
591    // Fill all the in-object properties with undefined.
592    // r1: constructor function
593    // r2: initial map
594    // r3: object size (in words)
595    // r4: JSObject (not tagged)
596    // r5: First in-object property of JSObject (not tagged)
597    // r7: undefined value
598    __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
599    ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
600    { Label loop, entry;
601      __ b(&entry);
602      __ bind(&loop);
603      __ str(r7, MemOperand(r5, kPointerSize, PostIndex));
604      __ bind(&entry);
605      __ cmp(r5, r6);
606      __ b(lt, &loop);
607    }
608
609    // Add the object tag to make the JSObject real, so that we can continue and
610    // jump into the continuation code at any time from now on. Any failures
611    // need to undo the allocation, so that the heap is in a consistent state
612    // and verifiable.
613    __ add(r4, r4, Operand(kHeapObjectTag));
614
615    // Check if a non-empty properties array is needed. Continue with allocated
616    // object if not fall through to runtime call if it is.
617    // r1: constructor function
618    // r4: JSObject
619    // r5: start of next object (not tagged)
620    // r7: undefined value
621    __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
622    // The field instance sizes contains both pre-allocated property fields and
623    // in-object properties.
624    __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
625    __ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * 8, 8);
626    __ add(r3, r3, Operand(r6));
627    __ Ubfx(r6, r0, Map::kInObjectPropertiesByte * 8, 8);
628    __ sub(r3, r3, Operand(r6), SetCC);
629
630    // Done if no extra properties are to be allocated.
631    __ b(eq, &allocated);
632    __ Assert(pl, "Property allocation count failed.");
633
634    // Scale the number of elements by pointer size and add the header for
635    // FixedArrays to the start of the next object calculation from above.
636    // r1: constructor
637    // r3: number of elements in properties array
638    // r4: JSObject
639    // r5: start of next object
640    // r7: undefined value
641    __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
642    __ AllocateInNewSpace(
643        r0,
644        r5,
645        r6,
646        r2,
647        &undo_allocation,
648        static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
649
650    // Initialize the FixedArray.
651    // r1: constructor
652    // r3: number of elements in properties array
653    // r4: JSObject
654    // r5: FixedArray (not tagged)
655    // r7: undefined value
656    __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
657    __ mov(r2, r5);
658    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
659    __ str(r6, MemOperand(r2, kPointerSize, PostIndex));
660    ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
661    __ mov(r0, Operand(r3, LSL, kSmiTagSize));
662    __ str(r0, MemOperand(r2, kPointerSize, PostIndex));
663
664    // Initialize the fields to undefined.
665    // r1: constructor function
666    // r2: First element of FixedArray (not tagged)
667    // r3: number of elements in properties array
668    // r4: JSObject
669    // r5: FixedArray (not tagged)
670    // r7: undefined
671    __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
672    ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
673    { Label loop, entry;
674      __ b(&entry);
675      __ bind(&loop);
676      __ str(r7, MemOperand(r2, kPointerSize, PostIndex));
677      __ bind(&entry);
678      __ cmp(r2, r6);
679      __ b(lt, &loop);
680    }
681
682    // Store the initialized FixedArray into the properties field of
683    // the JSObject
684    // r1: constructor function
685    // r4: JSObject
686    // r5: FixedArray (not tagged)
687    __ add(r5, r5, Operand(kHeapObjectTag));  // Add the heap tag.
688    __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));
689
690    // Continue with JSObject being successfully allocated
691    // r1: constructor function
692    // r4: JSObject
693    __ jmp(&allocated);
694
695    // Undo the setting of the new top so that the heap is verifiable. For
696    // example, the map's unused properties potentially do not match the
697    // allocated objects unused properties.
698    // r4: JSObject (previous new top)
699    __ bind(&undo_allocation);
700    __ UndoAllocationInNewSpace(r4, r5);
701  }
702
703  // Allocate the new receiver object using the runtime call.
704  // r1: constructor function
705  __ bind(&rt_call);
706  __ push(r1);  // argument for Runtime_NewObject
707  __ CallRuntime(Runtime::kNewObject, 1);
708  __ mov(r4, r0);
709
710  // Receiver for constructor call allocated.
711  // r4: JSObject
712  __ bind(&allocated);
713  __ push(r4);
714
715  // Push the function and the allocated receiver from the stack.
716  // sp[0]: receiver (newly allocated object)
717  // sp[1]: constructor function
718  // sp[2]: number of arguments (smi-tagged)
719  __ ldr(r1, MemOperand(sp, kPointerSize));
720  __ push(r1);  // Constructor function.
721  __ push(r4);  // Receiver.
722
723  // Reload the number of arguments from the stack.
724  // r1: constructor function
725  // sp[0]: receiver
726  // sp[1]: constructor function
727  // sp[2]: receiver
728  // sp[3]: constructor function
729  // sp[4]: number of arguments (smi-tagged)
730  __ ldr(r3, MemOperand(sp, 4 * kPointerSize));
731
732  // Setup pointer to last argument.
733  __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
734
735  // Setup number of arguments for function call below
736  __ mov(r0, Operand(r3, LSR, kSmiTagSize));
737
738  // Copy arguments and receiver to the expression stack.
739  // r0: number of arguments
740  // r2: address of last argument (caller sp)
741  // r1: constructor function
742  // r3: number of arguments (smi-tagged)
743  // sp[0]: receiver
744  // sp[1]: constructor function
745  // sp[2]: receiver
746  // sp[3]: constructor function
747  // sp[4]: number of arguments (smi-tagged)
748  Label loop, entry;
749  __ b(&entry);
750  __ bind(&loop);
751  __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
752  __ push(ip);
753  __ bind(&entry);
754  __ sub(r3, r3, Operand(2), SetCC);
755  __ b(ge, &loop);
756
757  // Call the function.
758  // r0: number of arguments
759  // r1: constructor function
760  if (is_api_function) {
761    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
762    Handle<Code> code = Handle<Code>(
763        Builtins::builtin(Builtins::HandleApiCallConstruct));
764    ParameterCount expected(0);
765    __ InvokeCode(code, expected, expected,
766                  RelocInfo::CODE_TARGET, CALL_FUNCTION);
767  } else {
768    ParameterCount actual(r0);
769    __ InvokeFunction(r1, actual, CALL_FUNCTION);
770  }
771
772  // Pop the function from the stack.
773  // sp[0]: constructor function
774  // sp[2]: receiver
775  // sp[3]: constructor function
776  // sp[4]: number of arguments (smi-tagged)
777  __ pop();
778
779  // Restore context from the frame.
780  // r0: result
781  // sp[0]: receiver
782  // sp[1]: constructor function
783  // sp[2]: number of arguments (smi-tagged)
784  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
785
786  // If the result is an object (in the ECMA sense), we should get rid
787  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
788  // on page 74.
789  Label use_receiver, exit;
790
791  // If the result is a smi, it is *not* an object in the ECMA sense.
792  // r0: result
793  // sp[0]: receiver (newly allocated object)
794  // sp[1]: constructor function
795  // sp[2]: number of arguments (smi-tagged)
796  __ tst(r0, Operand(kSmiTagMask));
797  __ b(eq, &use_receiver);
798
799  // If the type of the result (stored in its map) is less than
800  // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
801  __ CompareObjectType(r0, r3, r3, FIRST_JS_OBJECT_TYPE);
802  __ b(ge, &exit);
803
804  // Throw away the result of the constructor invocation and use the
805  // on-stack receiver as the result.
806  __ bind(&use_receiver);
807  __ ldr(r0, MemOperand(sp));
808
809  // Remove receiver from the stack, remove caller arguments, and
810  // return.
811  __ bind(&exit);
812  // r0: result
813  // sp[0]: receiver (newly allocated object)
814  // sp[1]: constructor function
815  // sp[2]: number of arguments (smi-tagged)
816  __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
817  __ LeaveConstructFrame();
818  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
819  __ add(sp, sp, Operand(kPointerSize));
820  __ IncrementCounter(&Counters::constructed_objects, 1, r1, r2);
821  __ Jump(lr);
822}
823
824
825void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
826  Generate_JSConstructStubHelper(masm, false);
827}
828
829
830void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
831  Generate_JSConstructStubHelper(masm, true);
832}
833
834
835static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
836                                             bool is_construct) {
837  // Called from Generate_JS_Entry
838  // r0: code entry
839  // r1: function
840  // r2: receiver
841  // r3: argc
842  // r4: argv
843  // r5-r7, cp may be clobbered
844
845  // Clear the context before we push it when entering the JS frame.
846  __ mov(cp, Operand(0));
847
848  // Enter an internal frame.
849  __ EnterInternalFrame();
850
851  // Set up the context from the function argument.
852  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
853
854  // Set up the roots register.
855  ExternalReference roots_address = ExternalReference::roots_address();
856  __ mov(r10, Operand(roots_address));
857
858  // Push the function and the receiver onto the stack.
859  __ push(r1);
860  __ push(r2);
861
862  // Copy arguments to the stack in a loop.
863  // r1: function
864  // r3: argc
865  // r4: argv, i.e. points to first arg
866  Label loop, entry;
867  __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
868  // r2 points past last arg.
869  __ b(&entry);
870  __ bind(&loop);
871  __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex));  // read next parameter
872  __ ldr(r0, MemOperand(r0));  // dereference handle
873  __ push(r0);  // push parameter
874  __ bind(&entry);
875  __ cmp(r4, r2);
876  __ b(ne, &loop);
877
878  // Initialize all JavaScript callee-saved registers, since they will be seen
879  // by the garbage collector as part of handlers.
880  __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
881  __ mov(r5, Operand(r4));
882  __ mov(r6, Operand(r4));
883  __ mov(r7, Operand(r4));
884  if (kR9Available == 1) {
885    __ mov(r9, Operand(r4));
886  }
887
888  // Invoke the code and pass argc as r0.
889  __ mov(r0, Operand(r3));
890  if (is_construct) {
891    __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
892            RelocInfo::CODE_TARGET);
893  } else {
894    ParameterCount actual(r0);
895    __ InvokeFunction(r1, actual, CALL_FUNCTION);
896  }
897
898  // Exit the JS frame and remove the parameters (except function), and return.
899  // Respect ABI stack constraint.
900  __ LeaveInternalFrame();
901  __ Jump(lr);
902
903  // r0: result
904}
905
906
907void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
908  Generate_JSEntryTrampolineHelper(masm, false);
909}
910
911
912void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
913  Generate_JSEntryTrampolineHelper(masm, true);
914}
915
916
917void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
918  // Enter an internal frame.
919  __ EnterInternalFrame();
920
921  // Preserve the function.
922  __ push(r1);
923
924  // Push the function on the stack as the argument to the runtime function.
925  __ push(r1);
926  __ CallRuntime(Runtime::kLazyCompile, 1);
927  // Calculate the entry point.
928  __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
929  // Restore saved function.
930  __ pop(r1);
931
932  // Tear down temporary frame.
933  __ LeaveInternalFrame();
934
935  // Do a tail-call of the compiled function.
936  __ Jump(r2);
937}
938
939
940void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
941  // 1. Make sure we have at least one argument.
942  // r0: actual number of arguments
943  { Label done;
944    __ tst(r0, Operand(r0));
945    __ b(ne, &done);
946    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
947    __ push(r2);
948    __ add(r0, r0, Operand(1));
949    __ bind(&done);
950  }
951
952  // 2. Get the function to call (passed as receiver) from the stack, check
953  //    if it is a function.
954  // r0: actual number of arguments
955  Label non_function;
956  __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
957  __ tst(r1, Operand(kSmiTagMask));
958  __ b(eq, &non_function);
959  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
960  __ b(ne, &non_function);
961
962  // 3a. Patch the first argument if necessary when calling a function.
963  // r0: actual number of arguments
964  // r1: function
965  Label shift_arguments;
966  { Label convert_to_object, use_global_receiver, patch_receiver;
967    // Change context eagerly in case we need the global receiver.
968    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
969
970    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
971    __ ldr(r2, MemOperand(r2, -kPointerSize));
972    // r0: actual number of arguments
973    // r1: function
974    // r2: first argument
975    __ tst(r2, Operand(kSmiTagMask));
976    __ b(eq, &convert_to_object);
977
978    __ LoadRoot(r3, Heap::kNullValueRootIndex);
979    __ cmp(r2, r3);
980    __ b(eq, &use_global_receiver);
981    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
982    __ cmp(r2, r3);
983    __ b(eq, &use_global_receiver);
984
985    __ CompareObjectType(r2, r3, r3, FIRST_JS_OBJECT_TYPE);
986    __ b(lt, &convert_to_object);
987    __ cmp(r3, Operand(LAST_JS_OBJECT_TYPE));
988    __ b(le, &shift_arguments);
989
990    __ bind(&convert_to_object);
991    __ EnterInternalFrame();  // In order to preserve argument count.
992    __ mov(r0, Operand(r0, LSL, kSmiTagSize));  // Smi-tagged.
993    __ push(r0);
994
995    __ push(r2);
996    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
997    __ mov(r2, r0);
998
999    __ pop(r0);
1000    __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1001    __ LeaveInternalFrame();
1002    // Restore the function to r1.
1003    __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1004    __ jmp(&patch_receiver);
1005
1006    // Use the global receiver object from the called function as the
1007    // receiver.
1008    __ bind(&use_global_receiver);
1009    const int kGlobalIndex =
1010        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1011    __ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
1012    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
1013    __ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
1014    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
1015
1016    __ bind(&patch_receiver);
1017    __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
1018    __ str(r2, MemOperand(r3, -kPointerSize));
1019
1020    __ jmp(&shift_arguments);
1021  }
1022
1023  // 3b. Patch the first argument when calling a non-function.  The
1024  //     CALL_NON_FUNCTION builtin expects the non-function callee as
1025  //     receiver, so overwrite the first argument which will ultimately
1026  //     become the receiver.
1027  // r0: actual number of arguments
1028  // r1: function
1029  __ bind(&non_function);
1030  __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1031  __ str(r1, MemOperand(r2, -kPointerSize));
1032  // Clear r1 to indicate a non-function being called.
1033  __ mov(r1, Operand(0));
1034
1035  // 4. Shift arguments and return address one slot down on the stack
1036  //    (overwriting the original receiver).  Adjust argument count to make
1037  //    the original first argument the new receiver.
1038  // r0: actual number of arguments
1039  // r1: function
1040  __ bind(&shift_arguments);
1041  { Label loop;
1042    // Calculate the copy start address (destination). Copy end address is sp.
1043    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1044
1045    __ bind(&loop);
1046    __ ldr(ip, MemOperand(r2, -kPointerSize));
1047    __ str(ip, MemOperand(r2));
1048    __ sub(r2, r2, Operand(kPointerSize));
1049    __ cmp(r2, sp);
1050    __ b(ne, &loop);
1051    // Adjust the actual number of arguments and remove the top element
1052    // (which is a copy of the last argument).
1053    __ sub(r0, r0, Operand(1));
1054    __ pop();
1055  }
1056
1057  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
1058  // r0: actual number of arguments
1059  // r1: function
1060  { Label function;
1061    __ tst(r1, r1);
1062    __ b(ne, &function);
1063    __ mov(r2, Operand(0));  // expected arguments is 0 for CALL_NON_FUNCTION
1064    __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
1065    __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1066                         RelocInfo::CODE_TARGET);
1067    __ bind(&function);
1068  }
1069
1070  // 5b. Get the code to call from the function and check that the number of
1071  //     expected arguments matches what we're providing.  If so, jump
1072  //     (tail-call) to the code in register edx without checking arguments.
1073  // r0: actual number of arguments
1074  // r1: function
1075  __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1076  __ ldr(r2,
1077         FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
1078  __ mov(r2, Operand(r2, ASR, kSmiTagSize));
1079  __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
1080  __ cmp(r2, r0);  // Check formal and actual parameter counts.
1081  __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1082          RelocInfo::CODE_TARGET, ne);
1083
1084  ParameterCount expected(0);
1085  __ InvokeCode(r3, expected, expected, JUMP_FUNCTION);
1086}
1087
1088
1089void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1090  const int kIndexOffset    = -5 * kPointerSize;
1091  const int kLimitOffset    = -4 * kPointerSize;
1092  const int kArgsOffset     =  2 * kPointerSize;
1093  const int kRecvOffset     =  3 * kPointerSize;
1094  const int kFunctionOffset =  4 * kPointerSize;
1095
1096  __ EnterInternalFrame();
1097
1098  __ ldr(r0, MemOperand(fp, kFunctionOffset));  // get the function
1099  __ push(r0);
1100  __ ldr(r0, MemOperand(fp, kArgsOffset));  // get the args array
1101  __ push(r0);
1102  __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_JS);
1103
1104  // Check the stack for overflow. We are not trying need to catch
1105  // interruptions (e.g. debug break and preemption) here, so the "real stack
1106  // limit" is checked.
1107  Label okay;
1108  __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
1109  // Make r2 the space we have left. The stack might already be overflowed
1110  // here which will cause r2 to become negative.
1111  __ sub(r2, sp, r2);
1112  // Check if the arguments will overflow the stack.
1113  __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1114  __ b(gt, &okay);  // Signed comparison.
1115
1116  // Out of stack space.
1117  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1118  __ push(r1);
1119  __ push(r0);
1120  __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_JS);
1121  // End of stack check.
1122
1123  // Push current limit and index.
1124  __ bind(&okay);
1125  __ push(r0);  // limit
1126  __ mov(r1, Operand(0));  // initial index
1127  __ push(r1);
1128
1129  // Change context eagerly to get the right global object if necessary.
1130  __ ldr(r0, MemOperand(fp, kFunctionOffset));
1131  __ ldr(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
1132
1133  // Compute the receiver.
1134  Label call_to_object, use_global_receiver, push_receiver;
1135  __ ldr(r0, MemOperand(fp, kRecvOffset));
1136  __ tst(r0, Operand(kSmiTagMask));
1137  __ b(eq, &call_to_object);
1138  __ LoadRoot(r1, Heap::kNullValueRootIndex);
1139  __ cmp(r0, r1);
1140  __ b(eq, &use_global_receiver);
1141  __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1142  __ cmp(r0, r1);
1143  __ b(eq, &use_global_receiver);
1144
1145  // Check if the receiver is already a JavaScript object.
1146  // r0: receiver
1147  __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
1148  __ b(lt, &call_to_object);
1149  __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
1150  __ b(le, &push_receiver);
1151
1152  // Convert the receiver to a regular object.
1153  // r0: receiver
1154  __ bind(&call_to_object);
1155  __ push(r0);
1156  __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
1157  __ b(&push_receiver);
1158
1159  // Use the current global receiver object as the receiver.
1160  __ bind(&use_global_receiver);
1161  const int kGlobalOffset =
1162      Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1163  __ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
1164  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
1165  __ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
1166  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
1167
1168  // Push the receiver.
1169  // r0: receiver
1170  __ bind(&push_receiver);
1171  __ push(r0);
1172
1173  // Copy all arguments from the array to the stack.
1174  Label entry, loop;
1175  __ ldr(r0, MemOperand(fp, kIndexOffset));
1176  __ b(&entry);
1177
1178  // Load the current argument from the arguments array and push it to the
1179  // stack.
1180  // r0: current argument index
1181  __ bind(&loop);
1182  __ ldr(r1, MemOperand(fp, kArgsOffset));
1183  __ push(r1);
1184  __ push(r0);
1185
1186  // Call the runtime to access the property in the arguments array.
1187  __ CallRuntime(Runtime::kGetProperty, 2);
1188  __ push(r0);
1189
1190  // Use inline caching to access the arguments.
1191  __ ldr(r0, MemOperand(fp, kIndexOffset));
1192  __ add(r0, r0, Operand(1 << kSmiTagSize));
1193  __ str(r0, MemOperand(fp, kIndexOffset));
1194
1195  // Test if the copy loop has finished copying all the elements from the
1196  // arguments object.
1197  __ bind(&entry);
1198  __ ldr(r1, MemOperand(fp, kLimitOffset));
1199  __ cmp(r0, r1);
1200  __ b(ne, &loop);
1201
1202  // Invoke the function.
1203  ParameterCount actual(r0);
1204  __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1205  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1206  __ InvokeFunction(r1, actual, CALL_FUNCTION);
1207
1208  // Tear down the internal frame and remove function, receiver and args.
1209  __ LeaveInternalFrame();
1210  __ add(sp, sp, Operand(3 * kPointerSize));
1211  __ Jump(lr);
1212}
1213
1214
1215static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1216  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
1217  __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1218  __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
1219  __ add(fp, sp, Operand(3 * kPointerSize));
1220}
1221
1222
1223static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1224  // ----------- S t a t e -------------
1225  //  -- r0 : result being passed through
1226  // -----------------------------------
1227  // Get the number of arguments passed (as a smi), tear down the frame and
1228  // then tear down the parameters.
1229  __ ldr(r1, MemOperand(fp, -3 * kPointerSize));
1230  __ mov(sp, fp);
1231  __ ldm(ia_w, sp, fp.bit() | lr.bit());
1232  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
1233  __ add(sp, sp, Operand(kPointerSize));  // adjust for receiver
1234}
1235
1236
1237void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1238  // ----------- S t a t e -------------
1239  //  -- r0 : actual number of arguments
1240  //  -- r1 : function (passed through to callee)
1241  //  -- r2 : expected number of arguments
1242  //  -- r3 : code entry to call
1243  // -----------------------------------
1244
1245  Label invoke, dont_adapt_arguments;
1246
1247  Label enough, too_few;
1248  __ cmp(r0, r2);
1249  __ b(lt, &too_few);
1250  __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1251  __ b(eq, &dont_adapt_arguments);
1252
1253  {  // Enough parameters: actual >= expected
1254    __ bind(&enough);
1255    EnterArgumentsAdaptorFrame(masm);
1256
1257    // Calculate copy start address into r0 and copy end address into r2.
1258    // r0: actual number of arguments as a smi
1259    // r1: function
1260    // r2: expected number of arguments
1261    // r3: code entry to call
1262    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1263    // adjust for return address and receiver
1264    __ add(r0, r0, Operand(2 * kPointerSize));
1265    __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
1266
1267    // Copy the arguments (including the receiver) to the new stack frame.
1268    // r0: copy start address
1269    // r1: function
1270    // r2: copy end address
1271    // r3: code entry to call
1272
1273    Label copy;
1274    __ bind(&copy);
1275    __ ldr(ip, MemOperand(r0, 0));
1276    __ push(ip);
1277    __ cmp(r0, r2);  // Compare before moving to next argument.
1278    __ sub(r0, r0, Operand(kPointerSize));
1279    __ b(ne, &copy);
1280
1281    __ b(&invoke);
1282  }
1283
1284  {  // Too few parameters: Actual < expected
1285    __ bind(&too_few);
1286    EnterArgumentsAdaptorFrame(masm);
1287
1288    // Calculate copy start address into r0 and copy end address is fp.
1289    // r0: actual number of arguments as a smi
1290    // r1: function
1291    // r2: expected number of arguments
1292    // r3: code entry to call
1293    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1294
1295    // Copy the arguments (including the receiver) to the new stack frame.
1296    // r0: copy start address
1297    // r1: function
1298    // r2: expected number of arguments
1299    // r3: code entry to call
1300    Label copy;
1301    __ bind(&copy);
1302    // Adjust load for return address and receiver.
1303    __ ldr(ip, MemOperand(r0, 2 * kPointerSize));
1304    __ push(ip);
1305    __ cmp(r0, fp);  // Compare before moving to next argument.
1306    __ sub(r0, r0, Operand(kPointerSize));
1307    __ b(ne, &copy);
1308
1309    // Fill the remaining expected arguments with undefined.
1310    // r1: function
1311    // r2: expected number of arguments
1312    // r3: code entry to call
1313    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1314    __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
1315    __ sub(r2, r2, Operand(4 * kPointerSize));  // Adjust for frame.
1316
1317    Label fill;
1318    __ bind(&fill);
1319    __ push(ip);
1320    __ cmp(sp, r2);
1321    __ b(ne, &fill);
1322  }
1323
1324  // Call the entry point.
1325  __ bind(&invoke);
1326  __ Call(r3);
1327
1328  // Exit frame and return.
1329  LeaveArgumentsAdaptorFrame(masm);
1330  __ Jump(lr);
1331
1332
1333  // -------------------------------------------
1334  // Dont adapt arguments.
1335  // -------------------------------------------
1336  __ bind(&dont_adapt_arguments);
1337  __ Jump(r3);
1338}
1339
1340
1341#undef __
1342
1343} }  // namespace v8::internal
1344
1345#endif  // V8_TARGET_ARCH_ARM
1346