objects.h revision 086aeeaae12517475c22695a200be45495516549
1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_OBJECTS_H_
29#define V8_OBJECTS_H_
30
31#include "builtins.h"
32#include "smart-pointer.h"
33#include "unicode-inl.h"
34#if V8_TARGET_ARCH_ARM
35#include "arm/constants-arm.h"
36#elif V8_TARGET_ARCH_MIPS
37#include "mips/constants-mips.h"
38#endif
39
40//
41// Most object types in the V8 JavaScript are described in this file.
42//
43// Inheritance hierarchy:
44// - MaybeObject    (an object or a failure)
45//   - Failure      (immediate for marking failed operation)
46//   - Object
47//     - Smi          (immediate small integer)
48//     - HeapObject   (superclass for everything allocated in the heap)
49//       - JSObject
50//         - JSArray
51//         - JSRegExp
52//         - JSFunction
53//         - GlobalObject
54//           - JSGlobalObject
55//           - JSBuiltinsObject
56//         - JSGlobalProxy
57//        - JSValue
58//       - ByteArray
59//       - PixelArray
60//       - ExternalArray
61//         - ExternalByteArray
62//         - ExternalUnsignedByteArray
63//         - ExternalShortArray
64//         - ExternalUnsignedShortArray
65//         - ExternalIntArray
66//         - ExternalUnsignedIntArray
67//         - ExternalFloatArray
68//       - FixedArray
69//         - DescriptorArray
70//         - HashTable
71//           - Dictionary
72//           - SymbolTable
73//           - CompilationCacheTable
74//           - CodeCacheHashTable
75//           - MapCache
76//         - Context
77//         - JSFunctionResultCache
78//         - SerializedScopeInfo
79//       - String
80//         - SeqString
81//           - SeqAsciiString
82//           - SeqTwoByteString
83//         - ConsString
84//         - ExternalString
85//           - ExternalAsciiString
86//           - ExternalTwoByteString
87//       - HeapNumber
88//       - Code
89//       - Map
90//       - Oddball
91//       - Proxy
92//       - SharedFunctionInfo
93//       - Struct
94//         - AccessorInfo
95//         - AccessCheckInfo
96//         - InterceptorInfo
97//         - CallHandlerInfo
98//         - TemplateInfo
99//           - FunctionTemplateInfo
100//           - ObjectTemplateInfo
101//         - Script
102//         - SignatureInfo
103//         - TypeSwitchInfo
104//         - DebugInfo
105//         - BreakPointInfo
106//         - CodeCache
107//
108// Formats of Object*:
109//  Smi:        [31 bit signed int] 0
110//  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
111//  Failure:    [30 bit signed int] 11
112
113// Ecma-262 3rd 8.6.1
114enum PropertyAttributes {
115  NONE              = v8::None,
116  READ_ONLY         = v8::ReadOnly,
117  DONT_ENUM         = v8::DontEnum,
118  DONT_DELETE       = v8::DontDelete,
119  ABSENT            = 16  // Used in runtime to indicate a property is absent.
120  // ABSENT can never be stored in or returned from a descriptor's attributes
121  // bitfield.  It is only used as a return value meaning the attributes of
122  // a non-existent property.
123};
124
125namespace v8 {
126namespace internal {
127
128
129// PropertyDetails captures type and attributes for a property.
130// They are used both in property dictionaries and instance descriptors.
131class PropertyDetails BASE_EMBEDDED {
132 public:
133
134  PropertyDetails(PropertyAttributes attributes,
135                  PropertyType type,
136                  int index = 0) {
137    ASSERT(TypeField::is_valid(type));
138    ASSERT(AttributesField::is_valid(attributes));
139    ASSERT(IndexField::is_valid(index));
140
141    value_ = TypeField::encode(type)
142        | AttributesField::encode(attributes)
143        | IndexField::encode(index);
144
145    ASSERT(type == this->type());
146    ASSERT(attributes == this->attributes());
147    ASSERT(index == this->index());
148  }
149
150  // Conversion for storing details as Object*.
151  inline PropertyDetails(Smi* smi);
152  inline Smi* AsSmi();
153
154  PropertyType type() { return TypeField::decode(value_); }
155
156  bool IsTransition() {
157    PropertyType t = type();
158    ASSERT(t != INTERCEPTOR);
159    return t == MAP_TRANSITION || t == CONSTANT_TRANSITION;
160  }
161
162  bool IsProperty() {
163    return type() < FIRST_PHANTOM_PROPERTY_TYPE;
164  }
165
166  PropertyAttributes attributes() { return AttributesField::decode(value_); }
167
168  int index() { return IndexField::decode(value_); }
169
170  inline PropertyDetails AsDeleted();
171
172  static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
173
174  bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
175  bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
176  bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
177  bool IsDeleted() { return DeletedField::decode(value_) != 0;}
178
179  // Bit fields in value_ (type, shift, size). Must be public so the
180  // constants can be embedded in generated code.
181  class TypeField:       public BitField<PropertyType,       0, 3> {};
182  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
183  class DeletedField:    public BitField<uint32_t,           6, 1> {};
184  class IndexField:      public BitField<uint32_t,           7, 32-7> {};
185
186  static const int kInitialIndex = 1;
187 private:
188  uint32_t value_;
189};
190
191
192// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
193enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
194
195
196// PropertyNormalizationMode is used to specify whether to keep
197// inobject properties when normalizing properties of a JSObject.
198enum PropertyNormalizationMode {
199  CLEAR_INOBJECT_PROPERTIES,
200  KEEP_INOBJECT_PROPERTIES
201};
202
203
204// NormalizedMapSharingMode is used to specify whether a map may be shared
205// by different objects with normalized properties.
206enum NormalizedMapSharingMode {
207  UNIQUE_NORMALIZED_MAP,
208  SHARED_NORMALIZED_MAP
209};
210
211
212// Instance size sentinel for objects of variable size.
213static const int kVariableSizeSentinel = 0;
214
215
216// All Maps have a field instance_type containing a InstanceType.
217// It describes the type of the instances.
218//
219// As an example, a JavaScript object is a heap object and its map
220// instance_type is JS_OBJECT_TYPE.
221//
222// The names of the string instance types are intended to systematically
223// mirror their encoding in the instance_type field of the map.  The default
224// encoding is considered TWO_BYTE.  It is not mentioned in the name.  ASCII
225// encoding is mentioned explicitly in the name.  Likewise, the default
226// representation is considered sequential.  It is not mentioned in the
227// name.  The other representations (eg, CONS, EXTERNAL) are explicitly
228// mentioned.  Finally, the string is either a SYMBOL_TYPE (if it is a
229// symbol) or a STRING_TYPE (if it is not a symbol).
230//
231// NOTE: The following things are some that depend on the string types having
232// instance_types that are less than those of all other types:
233// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
234// Object::IsString.
235//
236// NOTE: Everything following JS_VALUE_TYPE is considered a
237// JSObject for GC purposes. The first four entries here have typeof
238// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
239#define INSTANCE_TYPE_LIST_ALL(V)                                              \
240  V(SYMBOL_TYPE)                                                               \
241  V(ASCII_SYMBOL_TYPE)                                                         \
242  V(CONS_SYMBOL_TYPE)                                                          \
243  V(CONS_ASCII_SYMBOL_TYPE)                                                    \
244  V(EXTERNAL_SYMBOL_TYPE)                                                      \
245  V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE)                                      \
246  V(EXTERNAL_ASCII_SYMBOL_TYPE)                                                \
247  V(STRING_TYPE)                                                               \
248  V(ASCII_STRING_TYPE)                                                         \
249  V(CONS_STRING_TYPE)                                                          \
250  V(CONS_ASCII_STRING_TYPE)                                                    \
251  V(EXTERNAL_STRING_TYPE)                                                      \
252  V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE)                                      \
253  V(EXTERNAL_ASCII_STRING_TYPE)                                                \
254  V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE)                                        \
255                                                                               \
256  V(MAP_TYPE)                                                                  \
257  V(CODE_TYPE)                                                                 \
258  V(ODDBALL_TYPE)                                                              \
259  V(JS_GLOBAL_PROPERTY_CELL_TYPE)                                              \
260                                                                               \
261  V(HEAP_NUMBER_TYPE)                                                          \
262  V(PROXY_TYPE)                                                                \
263  V(BYTE_ARRAY_TYPE)                                                           \
264  V(PIXEL_ARRAY_TYPE)                                                          \
265  /* Note: the order of these external array */                                \
266  /* types is relied upon in */                                                \
267  /* Object::IsExternalArray(). */                                             \
268  V(EXTERNAL_BYTE_ARRAY_TYPE)                                                  \
269  V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)                                         \
270  V(EXTERNAL_SHORT_ARRAY_TYPE)                                                 \
271  V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)                                        \
272  V(EXTERNAL_INT_ARRAY_TYPE)                                                   \
273  V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)                                          \
274  V(EXTERNAL_FLOAT_ARRAY_TYPE)                                                 \
275  V(FILLER_TYPE)                                                               \
276                                                                               \
277  V(ACCESSOR_INFO_TYPE)                                                        \
278  V(ACCESS_CHECK_INFO_TYPE)                                                    \
279  V(INTERCEPTOR_INFO_TYPE)                                                     \
280  V(CALL_HANDLER_INFO_TYPE)                                                    \
281  V(FUNCTION_TEMPLATE_INFO_TYPE)                                               \
282  V(OBJECT_TEMPLATE_INFO_TYPE)                                                 \
283  V(SIGNATURE_INFO_TYPE)                                                       \
284  V(TYPE_SWITCH_INFO_TYPE)                                                     \
285  V(SCRIPT_TYPE)                                                               \
286  V(CODE_CACHE_TYPE)                                                           \
287                                                                               \
288  V(FIXED_ARRAY_TYPE)                                                          \
289  V(SHARED_FUNCTION_INFO_TYPE)                                                 \
290                                                                               \
291  V(JS_VALUE_TYPE)                                                             \
292  V(JS_OBJECT_TYPE)                                                            \
293  V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)                                          \
294  V(JS_GLOBAL_OBJECT_TYPE)                                                     \
295  V(JS_BUILTINS_OBJECT_TYPE)                                                   \
296  V(JS_GLOBAL_PROXY_TYPE)                                                      \
297  V(JS_ARRAY_TYPE)                                                             \
298  V(JS_REGEXP_TYPE)                                                            \
299                                                                               \
300  V(JS_FUNCTION_TYPE)                                                          \
301
302#ifdef ENABLE_DEBUGGER_SUPPORT
303#define INSTANCE_TYPE_LIST_DEBUGGER(V)                                         \
304  V(DEBUG_INFO_TYPE)                                                           \
305  V(BREAK_POINT_INFO_TYPE)
306#else
307#define INSTANCE_TYPE_LIST_DEBUGGER(V)
308#endif
309
310#define INSTANCE_TYPE_LIST(V)                                                  \
311  INSTANCE_TYPE_LIST_ALL(V)                                                    \
312  INSTANCE_TYPE_LIST_DEBUGGER(V)
313
314
315// Since string types are not consecutive, this macro is used to
316// iterate over them.
317#define STRING_TYPE_LIST(V)                                                    \
318  V(SYMBOL_TYPE,                                                               \
319    kVariableSizeSentinel,                                                     \
320    symbol,                                                                    \
321    Symbol)                                                                    \
322  V(ASCII_SYMBOL_TYPE,                                                         \
323    kVariableSizeSentinel,                                                     \
324    ascii_symbol,                                                              \
325    AsciiSymbol)                                                               \
326  V(CONS_SYMBOL_TYPE,                                                          \
327    ConsString::kSize,                                                         \
328    cons_symbol,                                                               \
329    ConsSymbol)                                                                \
330  V(CONS_ASCII_SYMBOL_TYPE,                                                    \
331    ConsString::kSize,                                                         \
332    cons_ascii_symbol,                                                         \
333    ConsAsciiSymbol)                                                           \
334  V(EXTERNAL_SYMBOL_TYPE,                                                      \
335    ExternalTwoByteString::kSize,                                              \
336    external_symbol,                                                           \
337    ExternalSymbol)                                                            \
338  V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE,                                      \
339    ExternalTwoByteString::kSize,                                              \
340    external_symbol_with_ascii_data,                                           \
341    ExternalSymbolWithAsciiData)                                               \
342  V(EXTERNAL_ASCII_SYMBOL_TYPE,                                                \
343    ExternalAsciiString::kSize,                                                \
344    external_ascii_symbol,                                                     \
345    ExternalAsciiSymbol)                                                       \
346  V(STRING_TYPE,                                                               \
347    kVariableSizeSentinel,                                                     \
348    string,                                                                    \
349    String)                                                                    \
350  V(ASCII_STRING_TYPE,                                                         \
351    kVariableSizeSentinel,                                                     \
352    ascii_string,                                                              \
353    AsciiString)                                                               \
354  V(CONS_STRING_TYPE,                                                          \
355    ConsString::kSize,                                                         \
356    cons_string,                                                               \
357    ConsString)                                                                \
358  V(CONS_ASCII_STRING_TYPE,                                                    \
359    ConsString::kSize,                                                         \
360    cons_ascii_string,                                                         \
361    ConsAsciiString)                                                           \
362  V(EXTERNAL_STRING_TYPE,                                                      \
363    ExternalTwoByteString::kSize,                                              \
364    external_string,                                                           \
365    ExternalString)                                                            \
366  V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE,                                      \
367    ExternalTwoByteString::kSize,                                              \
368    external_string_with_ascii_data,                                           \
369    ExternalStringWithAsciiData)                                               \
370  V(EXTERNAL_ASCII_STRING_TYPE,                                                \
371    ExternalAsciiString::kSize,                                                \
372    external_ascii_string,                                                     \
373    ExternalAsciiString)
374
375// A struct is a simple object a set of object-valued fields.  Including an
376// object type in this causes the compiler to generate most of the boilerplate
377// code for the class including allocation and garbage collection routines,
378// casts and predicates.  All you need to define is the class, methods and
379// object verification routines.  Easy, no?
380//
381// Note that for subtle reasons related to the ordering or numerical values of
382// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
383// manually.
384#define STRUCT_LIST_ALL(V)                                                     \
385  V(ACCESSOR_INFO, AccessorInfo, accessor_info)                                \
386  V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                     \
387  V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                       \
388  V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                     \
389  V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info)      \
390  V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)            \
391  V(SIGNATURE_INFO, SignatureInfo, signature_info)                             \
392  V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                        \
393  V(SCRIPT, Script, script)                                                    \
394  V(CODE_CACHE, CodeCache, code_cache)
395
396#ifdef ENABLE_DEBUGGER_SUPPORT
397#define STRUCT_LIST_DEBUGGER(V)                                                \
398  V(DEBUG_INFO, DebugInfo, debug_info)                                         \
399  V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
400#else
401#define STRUCT_LIST_DEBUGGER(V)
402#endif
403
404#define STRUCT_LIST(V)                                                         \
405  STRUCT_LIST_ALL(V)                                                           \
406  STRUCT_LIST_DEBUGGER(V)
407
408// We use the full 8 bits of the instance_type field to encode heap object
409// instance types.  The high-order bit (bit 7) is set if the object is not a
410// string, and cleared if it is a string.
411const uint32_t kIsNotStringMask = 0x80;
412const uint32_t kStringTag = 0x0;
413const uint32_t kNotStringTag = 0x80;
414
415// Bit 6 indicates that the object is a symbol (if set) or not (if cleared).
416// There are not enough types that the non-string types (with bit 7 set) can
417// have bit 6 set too.
418const uint32_t kIsSymbolMask = 0x40;
419const uint32_t kNotSymbolTag = 0x0;
420const uint32_t kSymbolTag = 0x40;
421
422// If bit 7 is clear then bit 2 indicates whether the string consists of
423// two-byte characters or one-byte characters.
424const uint32_t kStringEncodingMask = 0x4;
425const uint32_t kTwoByteStringTag = 0x0;
426const uint32_t kAsciiStringTag = 0x4;
427
428// If bit 7 is clear, the low-order 2 bits indicate the representation
429// of the string.
430const uint32_t kStringRepresentationMask = 0x03;
431enum StringRepresentationTag {
432  kSeqStringTag = 0x0,
433  kConsStringTag = 0x1,
434  kExternalStringTag = 0x2
435};
436const uint32_t kIsConsStringMask = 0x1;
437
438// If bit 7 is clear, then bit 3 indicates whether this two-byte
439// string actually contains ascii data.
440const uint32_t kAsciiDataHintMask = 0x08;
441const uint32_t kAsciiDataHintTag = 0x08;
442
443
444// A ConsString with an empty string as the right side is a candidate
445// for being shortcut by the garbage collector unless it is a
446// symbol. It's not common to have non-flat symbols, so we do not
447// shortcut them thereby avoiding turning symbols into strings. See
448// heap.cc and mark-compact.cc.
449const uint32_t kShortcutTypeMask =
450    kIsNotStringMask |
451    kIsSymbolMask |
452    kStringRepresentationMask;
453const uint32_t kShortcutTypeTag = kConsStringTag;
454
455
456enum InstanceType {
457  // String types.
458  SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kSeqStringTag,
459  ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
460  CONS_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kConsStringTag,
461  CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
462  EXTERNAL_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kExternalStringTag,
463  EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE =
464      kTwoByteStringTag | kSymbolTag | kExternalStringTag | kAsciiDataHintTag,
465  EXTERNAL_ASCII_SYMBOL_TYPE =
466      kAsciiStringTag | kSymbolTag | kExternalStringTag,
467  STRING_TYPE = kTwoByteStringTag | kSeqStringTag,
468  ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
469  CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag,
470  CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
471  EXTERNAL_STRING_TYPE = kTwoByteStringTag | kExternalStringTag,
472  EXTERNAL_STRING_WITH_ASCII_DATA_TYPE =
473      kTwoByteStringTag | kExternalStringTag | kAsciiDataHintTag,
474  EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
475  PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
476
477  // Objects allocated in their own spaces (never in new space).
478  MAP_TYPE = kNotStringTag,  // FIRST_NONSTRING_TYPE
479  CODE_TYPE,
480  ODDBALL_TYPE,
481  JS_GLOBAL_PROPERTY_CELL_TYPE,
482
483  // "Data", objects that cannot contain non-map-word pointers to heap
484  // objects.
485  HEAP_NUMBER_TYPE,
486  PROXY_TYPE,
487  BYTE_ARRAY_TYPE,
488  PIXEL_ARRAY_TYPE,
489  EXTERNAL_BYTE_ARRAY_TYPE,  // FIRST_EXTERNAL_ARRAY_TYPE
490  EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
491  EXTERNAL_SHORT_ARRAY_TYPE,
492  EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
493  EXTERNAL_INT_ARRAY_TYPE,
494  EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
495  EXTERNAL_FLOAT_ARRAY_TYPE,  // LAST_EXTERNAL_ARRAY_TYPE
496  FILLER_TYPE,  // LAST_DATA_TYPE
497
498  // Structs.
499  ACCESSOR_INFO_TYPE,
500  ACCESS_CHECK_INFO_TYPE,
501  INTERCEPTOR_INFO_TYPE,
502  CALL_HANDLER_INFO_TYPE,
503  FUNCTION_TEMPLATE_INFO_TYPE,
504  OBJECT_TEMPLATE_INFO_TYPE,
505  SIGNATURE_INFO_TYPE,
506  TYPE_SWITCH_INFO_TYPE,
507  SCRIPT_TYPE,
508  CODE_CACHE_TYPE,
509  // The following two instance types are only used when ENABLE_DEBUGGER_SUPPORT
510  // is defined. However as include/v8.h contain some of the instance type
511  // constants always having them avoids them getting different numbers
512  // depending on whether ENABLE_DEBUGGER_SUPPORT is defined or not.
513  DEBUG_INFO_TYPE,
514  BREAK_POINT_INFO_TYPE,
515
516  FIXED_ARRAY_TYPE,
517  SHARED_FUNCTION_INFO_TYPE,
518
519  JS_VALUE_TYPE,  // FIRST_JS_OBJECT_TYPE
520  JS_OBJECT_TYPE,
521  JS_CONTEXT_EXTENSION_OBJECT_TYPE,
522  JS_GLOBAL_OBJECT_TYPE,
523  JS_BUILTINS_OBJECT_TYPE,
524  JS_GLOBAL_PROXY_TYPE,
525  JS_ARRAY_TYPE,
526  JS_REGEXP_TYPE,  // LAST_JS_OBJECT_TYPE
527
528  JS_FUNCTION_TYPE,
529
530  // Pseudo-types
531  FIRST_TYPE = 0x0,
532  LAST_TYPE = JS_FUNCTION_TYPE,
533  INVALID_TYPE = FIRST_TYPE - 1,
534  FIRST_NONSTRING_TYPE = MAP_TYPE,
535  // Boundaries for testing for an external array.
536  FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
537  LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_FLOAT_ARRAY_TYPE,
538  // Boundary for promotion to old data space/old pointer space.
539  LAST_DATA_TYPE = FILLER_TYPE,
540  // Boundaries for testing the type is a JavaScript "object".  Note that
541  // function objects are not counted as objects, even though they are
542  // implemented as such; only values whose typeof is "object" are included.
543  FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
544  LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE
545};
546
547
548STATIC_CHECK(JS_OBJECT_TYPE == Internals::kJSObjectType);
549STATIC_CHECK(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
550STATIC_CHECK(PROXY_TYPE == Internals::kProxyType);
551
552
553enum CompareResult {
554  LESS      = -1,
555  EQUAL     =  0,
556  GREATER   =  1,
557
558  NOT_EQUAL = GREATER
559};
560
561
562#define DECL_BOOLEAN_ACCESSORS(name)   \
563  inline bool name();                  \
564  inline void set_##name(bool value);  \
565
566
567#define DECL_ACCESSORS(name, type)                                      \
568  inline type* name();                                                  \
569  inline void set_##name(type* value,                                   \
570                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
571
572
573class StringStream;
574class ObjectVisitor;
575
576struct ValueInfo : public Malloced {
577  ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
578  InstanceType type;
579  Object* ptr;
580  const char* str;
581  double number;
582};
583
584
585// A template-ized version of the IsXXX functions.
586template <class C> static inline bool Is(Object* obj);
587
588
589class MaybeObject BASE_EMBEDDED {
590 public:
591  inline bool IsFailure();
592  inline bool IsRetryAfterGC();
593  inline bool IsOutOfMemory();
594  inline bool IsException();
595  INLINE(bool IsTheHole());
596  inline bool ToObject(Object** obj) {
597    if (IsFailure()) return false;
598    *obj = reinterpret_cast<Object*>(this);
599    return true;
600  }
601  inline Object* ToObjectUnchecked() {
602    ASSERT(!IsFailure());
603    return reinterpret_cast<Object*>(this);
604  }
605  inline Object* ToObjectChecked() {
606    CHECK(!IsFailure());
607    return reinterpret_cast<Object*>(this);
608  }
609
610#ifdef OBJECT_PRINT
611  // Prints this object with details.
612  inline void Print() {
613    Print(stdout);
614  };
615  inline void PrintLn() {
616    PrintLn(stdout);
617  }
618  void Print(FILE* out);
619  void PrintLn(FILE* out);
620#endif
621#ifdef DEBUG
622  // Verifies the object.
623  void Verify();
624#endif
625};
626
627// Object is the abstract superclass for all classes in the
628// object hierarchy.
629// Object does not use any virtual functions to avoid the
630// allocation of the C++ vtable.
631// Since Smi and Failure are subclasses of Object no
632// data members can be present in Object.
633class Object : public MaybeObject {
634 public:
635  // Type testing.
636  inline bool IsSmi();
637  inline bool IsHeapObject();
638  inline bool IsHeapNumber();
639  inline bool IsString();
640  inline bool IsSymbol();
641  // See objects-inl.h for more details
642  inline bool IsSeqString();
643  inline bool IsExternalString();
644  inline bool IsExternalTwoByteString();
645  inline bool IsExternalAsciiString();
646  inline bool IsSeqTwoByteString();
647  inline bool IsSeqAsciiString();
648  inline bool IsConsString();
649
650  inline bool IsNumber();
651  inline bool IsByteArray();
652  inline bool IsPixelArray();
653  inline bool IsExternalArray();
654  inline bool IsExternalByteArray();
655  inline bool IsExternalUnsignedByteArray();
656  inline bool IsExternalShortArray();
657  inline bool IsExternalUnsignedShortArray();
658  inline bool IsExternalIntArray();
659  inline bool IsExternalUnsignedIntArray();
660  inline bool IsExternalFloatArray();
661  inline bool IsJSObject();
662  inline bool IsJSContextExtensionObject();
663  inline bool IsMap();
664  inline bool IsFixedArray();
665  inline bool IsDescriptorArray();
666  inline bool IsDeoptimizationInputData();
667  inline bool IsDeoptimizationOutputData();
668  inline bool IsContext();
669  inline bool IsCatchContext();
670  inline bool IsGlobalContext();
671  inline bool IsJSFunction();
672  inline bool IsCode();
673  inline bool IsOddball();
674  inline bool IsSharedFunctionInfo();
675  inline bool IsJSValue();
676  inline bool IsStringWrapper();
677  inline bool IsProxy();
678  inline bool IsBoolean();
679  inline bool IsJSArray();
680  inline bool IsJSRegExp();
681  inline bool IsHashTable();
682  inline bool IsDictionary();
683  inline bool IsSymbolTable();
684  inline bool IsJSFunctionResultCache();
685  inline bool IsNormalizedMapCache();
686  inline bool IsCompilationCacheTable();
687  inline bool IsCodeCacheHashTable();
688  inline bool IsMapCache();
689  inline bool IsPrimitive();
690  inline bool IsGlobalObject();
691  inline bool IsJSGlobalObject();
692  inline bool IsJSBuiltinsObject();
693  inline bool IsJSGlobalProxy();
694  inline bool IsUndetectableObject();
695  inline bool IsAccessCheckNeeded();
696  inline bool IsJSGlobalPropertyCell();
697
698  // Returns true if this object is an instance of the specified
699  // function template.
700  inline bool IsInstanceOf(FunctionTemplateInfo* type);
701
702  inline bool IsStruct();
703#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
704  STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
705#undef DECLARE_STRUCT_PREDICATE
706
707  // Oddball testing.
708  INLINE(bool IsUndefined());
709  INLINE(bool IsNull());
710  INLINE(bool IsTrue());
711  INLINE(bool IsFalse());
712  inline bool IsArgumentsMarker();
713
714  // Extract the number.
715  inline double Number();
716
717  inline bool HasSpecificClassOf(String* name);
718
719  MUST_USE_RESULT MaybeObject* ToObject();             // ECMA-262 9.9.
720  Object* ToBoolean();                                 // ECMA-262 9.2.
721
722  // Convert to a JSObject if needed.
723  // global_context is used when creating wrapper object.
724  MUST_USE_RESULT MaybeObject* ToObject(Context* global_context);
725
726  // Converts this to a Smi if possible.
727  // Failure is returned otherwise.
728  MUST_USE_RESULT inline MaybeObject* ToSmi();
729
730  void Lookup(String* name, LookupResult* result);
731
732  // Property access.
733  MUST_USE_RESULT inline MaybeObject* GetProperty(String* key);
734  MUST_USE_RESULT inline MaybeObject* GetProperty(
735      String* key,
736      PropertyAttributes* attributes);
737  MUST_USE_RESULT MaybeObject* GetPropertyWithReceiver(
738      Object* receiver,
739      String* key,
740      PropertyAttributes* attributes);
741  MUST_USE_RESULT MaybeObject* GetProperty(Object* receiver,
742                                           LookupResult* result,
743                                           String* key,
744                                           PropertyAttributes* attributes);
745  MUST_USE_RESULT MaybeObject* GetPropertyWithCallback(Object* receiver,
746                                                       Object* structure,
747                                                       String* name,
748                                                       Object* holder);
749  MUST_USE_RESULT MaybeObject* GetPropertyWithDefinedGetter(Object* receiver,
750                                                            JSFunction* getter);
751
752  inline MaybeObject* GetElement(uint32_t index);
753  // For use when we know that no exception can be thrown.
754  inline Object* GetElementNoExceptionThrown(uint32_t index);
755  MaybeObject* GetElementWithReceiver(Object* receiver, uint32_t index);
756
757  // Return the object's prototype (might be Heap::null_value()).
758  Object* GetPrototype();
759
760  // Tries to convert an object to an array index.  Returns true and sets
761  // the output parameter if it succeeds.
762  inline bool ToArrayIndex(uint32_t* index);
763
764  // Returns true if this is a JSValue containing a string and the index is
765  // < the length of the string.  Used to implement [] on strings.
766  inline bool IsStringObjectWithCharacterAt(uint32_t index);
767
768#ifdef DEBUG
769  // Verify a pointer is a valid object pointer.
770  static void VerifyPointer(Object* p);
771#endif
772
773  // Prints this object without details.
774  inline void ShortPrint() {
775    ShortPrint(stdout);
776  }
777  void ShortPrint(FILE* out);
778
779  // Prints this object without details to a message accumulator.
780  void ShortPrint(StringStream* accumulator);
781
782  // Casting: This cast is only needed to satisfy macros in objects-inl.h.
783  static Object* cast(Object* value) { return value; }
784
785  // Layout description.
786  static const int kHeaderSize = 0;  // Object does not take up any space.
787
788 private:
789  DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
790};
791
792
793// Smi represents integer Numbers that can be stored in 31 bits.
794// Smis are immediate which means they are NOT allocated in the heap.
795// The this pointer has the following format: [31 bit signed int] 0
796// For long smis it has the following format:
797//     [32 bit signed int] [31 bits zero padding] 0
798// Smi stands for small integer.
799class Smi: public Object {
800 public:
801  // Returns the integer value.
802  inline int value();
803
804  // Convert a value to a Smi object.
805  static inline Smi* FromInt(int value);
806
807  static inline Smi* FromIntptr(intptr_t value);
808
809  // Returns whether value can be represented in a Smi.
810  static inline bool IsValid(intptr_t value);
811
812  // Casting.
813  static inline Smi* cast(Object* object);
814
815  // Dispatched behavior.
816  inline void SmiPrint() {
817    SmiPrint(stdout);
818  }
819  void SmiPrint(FILE* out);
820  void SmiPrint(StringStream* accumulator);
821#ifdef DEBUG
822  void SmiVerify();
823#endif
824
825  static const int kMinValue = (-1 << (kSmiValueSize - 1));
826  static const int kMaxValue = -(kMinValue + 1);
827
828 private:
829  DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
830};
831
832
833// Failure is used for reporting out of memory situations and
834// propagating exceptions through the runtime system.  Failure objects
835// are transient and cannot occur as part of the object graph.
836//
837// Failures are a single word, encoded as follows:
838// +-------------------------+---+--+--+
839// |.........unused..........|sss|tt|11|
840// +-------------------------+---+--+--+
841//                          7 6 4 32 10
842//
843//
844// The low two bits, 0-1, are the failure tag, 11.  The next two bits,
845// 2-3, are a failure type tag 'tt' with possible values:
846//   00 RETRY_AFTER_GC
847//   01 EXCEPTION
848//   10 INTERNAL_ERROR
849//   11 OUT_OF_MEMORY_EXCEPTION
850//
851// The next three bits, 4-6, are an allocation space tag 'sss'.  The
852// allocation space tag is 000 for all failure types except
853// RETRY_AFTER_GC.  For RETRY_AFTER_GC, the possible values are the
854// allocation spaces (the encoding is found in globals.h).
855
856// Failure type tag info.
857const int kFailureTypeTagSize = 2;
858const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
859
860class Failure: public MaybeObject {
861 public:
862  // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
863  enum Type {
864    RETRY_AFTER_GC = 0,
865    EXCEPTION = 1,       // Returning this marker tells the real exception
866                         // is in Top::pending_exception.
867    INTERNAL_ERROR = 2,
868    OUT_OF_MEMORY_EXCEPTION = 3
869  };
870
871  inline Type type() const;
872
873  // Returns the space that needs to be collected for RetryAfterGC failures.
874  inline AllocationSpace allocation_space() const;
875
876  inline bool IsInternalError() const;
877  inline bool IsOutOfMemoryException() const;
878
879  static inline Failure* RetryAfterGC(AllocationSpace space);
880  static inline Failure* RetryAfterGC();  // NEW_SPACE
881  static inline Failure* Exception();
882  static inline Failure* InternalError();
883  static inline Failure* OutOfMemoryException();
884  // Casting.
885  static inline Failure* cast(MaybeObject* object);
886
887  // Dispatched behavior.
888  inline void FailurePrint() {
889    FailurePrint(stdout);
890  }
891  void FailurePrint(FILE* out);
892  void FailurePrint(StringStream* accumulator);
893#ifdef DEBUG
894  void FailureVerify();
895#endif
896
897 private:
898  inline intptr_t value() const;
899  static inline Failure* Construct(Type type, intptr_t value = 0);
900
901  DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
902};
903
904
905// Heap objects typically have a map pointer in their first word.  However,
906// during GC other data (eg, mark bits, forwarding addresses) is sometimes
907// encoded in the first word.  The class MapWord is an abstraction of the
908// value in a heap object's first word.
909class MapWord BASE_EMBEDDED {
910 public:
911  // Normal state: the map word contains a map pointer.
912
913  // Create a map word from a map pointer.
914  static inline MapWord FromMap(Map* map);
915
916  // View this map word as a map pointer.
917  inline Map* ToMap();
918
919
920  // Scavenge collection: the map word of live objects in the from space
921  // contains a forwarding address (a heap object pointer in the to space).
922
923  // True if this map word is a forwarding address for a scavenge
924  // collection.  Only valid during a scavenge collection (specifically,
925  // when all map words are heap object pointers, ie. not during a full GC).
926  inline bool IsForwardingAddress();
927
928  // Create a map word from a forwarding address.
929  static inline MapWord FromForwardingAddress(HeapObject* object);
930
931  // View this map word as a forwarding address.
932  inline HeapObject* ToForwardingAddress();
933
934  // Marking phase of full collection: the map word of live objects is
935  // marked, and may be marked as overflowed (eg, the object is live, its
936  // children have not been visited, and it does not fit in the marking
937  // stack).
938
939  // True if this map word's mark bit is set.
940  inline bool IsMarked();
941
942  // Return this map word but with its mark bit set.
943  inline void SetMark();
944
945  // Return this map word but with its mark bit cleared.
946  inline void ClearMark();
947
948  // True if this map word's overflow bit is set.
949  inline bool IsOverflowed();
950
951  // Return this map word but with its overflow bit set.
952  inline void SetOverflow();
953
954  // Return this map word but with its overflow bit cleared.
955  inline void ClearOverflow();
956
957
958  // Compacting phase of a full compacting collection: the map word of live
959  // objects contains an encoding of the original map address along with the
960  // forwarding address (represented as an offset from the first live object
961  // in the same page as the (old) object address).
962
963  // Create a map word from a map address and a forwarding address offset.
964  static inline MapWord EncodeAddress(Address map_address, int offset);
965
966  // Return the map address encoded in this map word.
967  inline Address DecodeMapAddress(MapSpace* map_space);
968
969  // Return the forwarding offset encoded in this map word.
970  inline int DecodeOffset();
971
972
973  // During serialization: the map word is used to hold an encoded
974  // address, and possibly a mark bit (set and cleared with SetMark
975  // and ClearMark).
976
977  // Create a map word from an encoded address.
978  static inline MapWord FromEncodedAddress(Address address);
979
980  inline Address ToEncodedAddress();
981
982  // Bits used by the marking phase of the garbage collector.
983  //
984  // The first word of a heap object is normally a map pointer. The last two
985  // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
986  // mark an object as live and/or overflowed:
987  //   last bit = 0, marked as alive
988  //   second bit = 1, overflowed
989  // An object is only marked as overflowed when it is marked as live while
990  // the marking stack is overflowed.
991  static const int kMarkingBit = 0;  // marking bit
992  static const int kMarkingMask = (1 << kMarkingBit);  // marking mask
993  static const int kOverflowBit = 1;  // overflow bit
994  static const int kOverflowMask = (1 << kOverflowBit);  // overflow mask
995
996  // Forwarding pointers and map pointer encoding. On 32 bit all the bits are
997  // used.
998  // +-----------------+------------------+-----------------+
999  // |forwarding offset|page offset of map|page index of map|
1000  // +-----------------+------------------+-----------------+
1001  //          ^                 ^                  ^
1002  //          |                 |                  |
1003  //          |                 |          kMapPageIndexBits
1004  //          |         kMapPageOffsetBits
1005  // kForwardingOffsetBits
1006  static const int kMapPageOffsetBits = kPageSizeBits - kMapAlignmentBits;
1007  static const int kForwardingOffsetBits = kPageSizeBits - kObjectAlignmentBits;
1008#ifdef V8_HOST_ARCH_64_BIT
1009  static const int kMapPageIndexBits = 16;
1010#else
1011  // Use all the 32-bits to encode on a 32-bit platform.
1012  static const int kMapPageIndexBits =
1013      32 - (kMapPageOffsetBits + kForwardingOffsetBits);
1014#endif
1015
1016  static const int kMapPageIndexShift = 0;
1017  static const int kMapPageOffsetShift =
1018      kMapPageIndexShift + kMapPageIndexBits;
1019  static const int kForwardingOffsetShift =
1020      kMapPageOffsetShift + kMapPageOffsetBits;
1021
1022  // Bit masks covering the different parts the encoding.
1023  static const uintptr_t kMapPageIndexMask =
1024      (1 << kMapPageOffsetShift) - 1;
1025  static const uintptr_t kMapPageOffsetMask =
1026      ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
1027  static const uintptr_t kForwardingOffsetMask =
1028      ~(kMapPageIndexMask | kMapPageOffsetMask);
1029
1030 private:
1031  // HeapObject calls the private constructor and directly reads the value.
1032  friend class HeapObject;
1033
1034  explicit MapWord(uintptr_t value) : value_(value) {}
1035
1036  uintptr_t value_;
1037};
1038
1039
1040// HeapObject is the superclass for all classes describing heap allocated
1041// objects.
1042class HeapObject: public Object {
1043 public:
1044  // [map]: Contains a map which contains the object's reflective
1045  // information.
1046  inline Map* map();
1047  inline void set_map(Map* value);
1048
1049  // During garbage collection, the map word of a heap object does not
1050  // necessarily contain a map pointer.
1051  inline MapWord map_word();
1052  inline void set_map_word(MapWord map_word);
1053
1054  // Converts an address to a HeapObject pointer.
1055  static inline HeapObject* FromAddress(Address address);
1056
1057  // Returns the address of this HeapObject.
1058  inline Address address();
1059
1060  // Iterates over pointers contained in the object (including the Map)
1061  void Iterate(ObjectVisitor* v);
1062
1063  // Iterates over all pointers contained in the object except the
1064  // first map pointer.  The object type is given in the first
1065  // parameter. This function does not access the map pointer in the
1066  // object, and so is safe to call while the map pointer is modified.
1067  void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1068
1069  // Returns the heap object's size in bytes
1070  inline int Size();
1071
1072  // Given a heap object's map pointer, returns the heap size in bytes
1073  // Useful when the map pointer field is used for other purposes.
1074  // GC internal.
1075  inline int SizeFromMap(Map* map);
1076
1077  // Support for the marking heap objects during the marking phase of GC.
1078  // True if the object is marked live.
1079  inline bool IsMarked();
1080
1081  // Mutate this object's map pointer to indicate that the object is live.
1082  inline void SetMark();
1083
1084  // Mutate this object's map pointer to remove the indication that the
1085  // object is live (ie, partially restore the map pointer).
1086  inline void ClearMark();
1087
1088  // True if this object is marked as overflowed.  Overflowed objects have
1089  // been reached and marked during marking of the heap, but their children
1090  // have not necessarily been marked and they have not been pushed on the
1091  // marking stack.
1092  inline bool IsOverflowed();
1093
1094  // Mutate this object's map pointer to indicate that the object is
1095  // overflowed.
1096  inline void SetOverflow();
1097
1098  // Mutate this object's map pointer to remove the indication that the
1099  // object is overflowed (ie, partially restore the map pointer).
1100  inline void ClearOverflow();
1101
1102  // Returns the field at offset in obj, as a read/write Object* reference.
1103  // Does no checking, and is safe to use during GC, while maps are invalid.
1104  // Does not invoke write barrier, so should only be assigned to
1105  // during marking GC.
1106  static inline Object** RawField(HeapObject* obj, int offset);
1107
1108  // Casting.
1109  static inline HeapObject* cast(Object* obj);
1110
1111  // Return the write barrier mode for this. Callers of this function
1112  // must be able to present a reference to an AssertNoAllocation
1113  // object as a sign that they are not going to use this function
1114  // from code that allocates and thus invalidates the returned write
1115  // barrier mode.
1116  inline WriteBarrierMode GetWriteBarrierMode(const AssertNoAllocation&);
1117
1118  // Dispatched behavior.
1119  void HeapObjectShortPrint(StringStream* accumulator);
1120#ifdef OBJECT_PRINT
1121  inline void HeapObjectPrint() {
1122    HeapObjectPrint(stdout);
1123  }
1124  void HeapObjectPrint(FILE* out);
1125#endif
1126#ifdef DEBUG
1127  void HeapObjectVerify();
1128  inline void VerifyObjectField(int offset);
1129  inline void VerifySmiField(int offset);
1130#endif
1131
1132#ifdef OBJECT_PRINT
1133  void PrintHeader(FILE* out, const char* id);
1134#endif
1135
1136#ifdef DEBUG
1137  // Verify a pointer is a valid HeapObject pointer that points to object
1138  // areas in the heap.
1139  static void VerifyHeapPointer(Object* p);
1140#endif
1141
1142  // Layout description.
1143  // First field in a heap object is map.
1144  static const int kMapOffset = Object::kHeaderSize;
1145  static const int kHeaderSize = kMapOffset + kPointerSize;
1146
1147  STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1148
1149 protected:
1150  // helpers for calling an ObjectVisitor to iterate over pointers in the
1151  // half-open range [start, end) specified as integer offsets
1152  inline void IteratePointers(ObjectVisitor* v, int start, int end);
1153  // as above, for the single element at "offset"
1154  inline void IteratePointer(ObjectVisitor* v, int offset);
1155
1156 private:
1157  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1158};
1159
1160
1161#define SLOT_ADDR(obj, offset) \
1162  reinterpret_cast<Object**>((obj)->address() + offset)
1163
1164// This class describes a body of an object of a fixed size
1165// in which all pointer fields are located in the [start_offset, end_offset)
1166// interval.
1167template<int start_offset, int end_offset, int size>
1168class FixedBodyDescriptor {
1169 public:
1170  static const int kStartOffset = start_offset;
1171  static const int kEndOffset = end_offset;
1172  static const int kSize = size;
1173
1174  static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
1175
1176  template<typename StaticVisitor>
1177  static inline void IterateBody(HeapObject* obj) {
1178    StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset),
1179                                 SLOT_ADDR(obj, end_offset));
1180  }
1181};
1182
1183
1184// This class describes a body of an object of a variable size
1185// in which all pointer fields are located in the [start_offset, object_size)
1186// interval.
1187template<int start_offset>
1188class FlexibleBodyDescriptor {
1189 public:
1190  static const int kStartOffset = start_offset;
1191
1192  static inline void IterateBody(HeapObject* obj,
1193                                 int object_size,
1194                                 ObjectVisitor* v);
1195
1196  template<typename StaticVisitor>
1197  static inline void IterateBody(HeapObject* obj, int object_size) {
1198    StaticVisitor::VisitPointers(SLOT_ADDR(obj, start_offset),
1199                                 SLOT_ADDR(obj, object_size));
1200  }
1201};
1202
1203#undef SLOT_ADDR
1204
1205
1206// The HeapNumber class describes heap allocated numbers that cannot be
1207// represented in a Smi (small integer)
1208class HeapNumber: public HeapObject {
1209 public:
1210  // [value]: number value.
1211  inline double value();
1212  inline void set_value(double value);
1213
1214  // Casting.
1215  static inline HeapNumber* cast(Object* obj);
1216
1217  // Dispatched behavior.
1218  Object* HeapNumberToBoolean();
1219  inline void HeapNumberPrint() {
1220    HeapNumberPrint(stdout);
1221  }
1222  void HeapNumberPrint(FILE* out);
1223  void HeapNumberPrint(StringStream* accumulator);
1224#ifdef DEBUG
1225  void HeapNumberVerify();
1226#endif
1227
1228  inline int get_exponent();
1229  inline int get_sign();
1230
1231  // Layout description.
1232  static const int kValueOffset = HeapObject::kHeaderSize;
1233  // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
1234  // is a mixture of sign, exponent and mantissa.  Our current platforms are all
1235  // little endian apart from non-EABI arm which is little endian with big
1236  // endian floating point word ordering!
1237#if !defined(V8_HOST_ARCH_ARM) || defined(USE_ARM_EABI)
1238  static const int kMantissaOffset = kValueOffset;
1239  static const int kExponentOffset = kValueOffset + 4;
1240#else
1241  static const int kMantissaOffset = kValueOffset + 4;
1242  static const int kExponentOffset = kValueOffset;
1243# define BIG_ENDIAN_FLOATING_POINT 1
1244#endif
1245  static const int kSize = kValueOffset + kDoubleSize;
1246  static const uint32_t kSignMask = 0x80000000u;
1247  static const uint32_t kExponentMask = 0x7ff00000u;
1248  static const uint32_t kMantissaMask = 0xfffffu;
1249  static const int kMantissaBits = 52;
1250  static const int kExponentBits = 11;
1251  static const int kExponentBias = 1023;
1252  static const int kExponentShift = 20;
1253  static const int kMantissaBitsInTopWord = 20;
1254  static const int kNonMantissaBitsInTopWord = 12;
1255
1256 private:
1257  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1258};
1259
1260
1261// The JSObject describes real heap allocated JavaScript objects with
1262// properties.
1263// Note that the map of JSObject changes during execution to enable inline
1264// caching.
1265class JSObject: public HeapObject {
1266 public:
1267  enum DeleteMode { NORMAL_DELETION, FORCE_DELETION };
1268  enum ElementsKind {
1269    // The only "fast" kind.
1270    FAST_ELEMENTS,
1271    // All the kinds below are "slow".
1272    DICTIONARY_ELEMENTS,
1273    PIXEL_ELEMENTS,
1274    EXTERNAL_BYTE_ELEMENTS,
1275    EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
1276    EXTERNAL_SHORT_ELEMENTS,
1277    EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
1278    EXTERNAL_INT_ELEMENTS,
1279    EXTERNAL_UNSIGNED_INT_ELEMENTS,
1280    EXTERNAL_FLOAT_ELEMENTS
1281  };
1282
1283  // [properties]: Backing storage for properties.
1284  // properties is a FixedArray in the fast case and a Dictionary in the
1285  // slow case.
1286  DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
1287  inline void initialize_properties();
1288  inline bool HasFastProperties();
1289  inline StringDictionary* property_dictionary();  // Gets slow properties.
1290
1291  // [elements]: The elements (properties with names that are integers).
1292  //
1293  // Elements can be in two general modes: fast and slow. Each mode
1294  // corrensponds to a set of object representations of elements that
1295  // have something in common.
1296  //
1297  // In the fast mode elements is a FixedArray and so each element can
1298  // be quickly accessed. This fact is used in the generated code. The
1299  // elements array can have one of the two maps in this mode:
1300  // fixed_array_map or fixed_cow_array_map (for copy-on-write
1301  // arrays). In the latter case the elements array may be shared by a
1302  // few objects and so before writing to any element the array must
1303  // be copied. Use EnsureWritableFastElements in this case.
1304  //
1305  // In the slow mode elements is either a NumberDictionary or a
1306  // PixelArray or an ExternalArray.
1307  DECL_ACCESSORS(elements, HeapObject)
1308  inline void initialize_elements();
1309  MUST_USE_RESULT inline MaybeObject* ResetElements();
1310  inline ElementsKind GetElementsKind();
1311  inline bool HasFastElements();
1312  inline bool HasDictionaryElements();
1313  inline bool HasPixelElements();
1314  inline bool HasExternalArrayElements();
1315  inline bool HasExternalByteElements();
1316  inline bool HasExternalUnsignedByteElements();
1317  inline bool HasExternalShortElements();
1318  inline bool HasExternalUnsignedShortElements();
1319  inline bool HasExternalIntElements();
1320  inline bool HasExternalUnsignedIntElements();
1321  inline bool HasExternalFloatElements();
1322  inline bool AllowsSetElementsLength();
1323  inline NumberDictionary* element_dictionary();  // Gets slow elements.
1324  // Requires: this->HasFastElements().
1325  MUST_USE_RESULT inline MaybeObject* EnsureWritableFastElements();
1326
1327  // Collects elements starting at index 0.
1328  // Undefined values are placed after non-undefined values.
1329  // Returns the number of non-undefined values.
1330  MUST_USE_RESULT MaybeObject* PrepareElementsForSort(uint32_t limit);
1331  // As PrepareElementsForSort, but only on objects where elements is
1332  // a dictionary, and it will stay a dictionary.
1333  MUST_USE_RESULT MaybeObject* PrepareSlowElementsForSort(uint32_t limit);
1334
1335  MUST_USE_RESULT MaybeObject* SetProperty(String* key,
1336                                           Object* value,
1337                                           PropertyAttributes attributes);
1338  MUST_USE_RESULT MaybeObject* SetProperty(LookupResult* result,
1339                                           String* key,
1340                                           Object* value,
1341                                           PropertyAttributes attributes);
1342  MUST_USE_RESULT MaybeObject* SetPropertyWithFailedAccessCheck(
1343      LookupResult* result,
1344      String* name,
1345      Object* value,
1346      bool check_prototype);
1347  MUST_USE_RESULT MaybeObject* SetPropertyWithCallback(Object* structure,
1348                                                       String* name,
1349                                                       Object* value,
1350                                                       JSObject* holder);
1351  MUST_USE_RESULT MaybeObject* SetPropertyWithDefinedSetter(JSFunction* setter,
1352                                                            Object* value);
1353  MUST_USE_RESULT MaybeObject* SetPropertyWithInterceptor(
1354      String* name,
1355      Object* value,
1356      PropertyAttributes attributes);
1357  MUST_USE_RESULT MaybeObject* SetPropertyPostInterceptor(
1358      String* name,
1359      Object* value,
1360      PropertyAttributes attributes);
1361  MUST_USE_RESULT MaybeObject* SetLocalPropertyIgnoreAttributes(
1362      String* key,
1363      Object* value,
1364      PropertyAttributes attributes);
1365
1366  // Retrieve a value in a normalized object given a lookup result.
1367  // Handles the special representation of JS global objects.
1368  Object* GetNormalizedProperty(LookupResult* result);
1369
1370  // Sets the property value in a normalized object given a lookup result.
1371  // Handles the special representation of JS global objects.
1372  Object* SetNormalizedProperty(LookupResult* result, Object* value);
1373
1374  // Sets the property value in a normalized object given (key, value, details).
1375  // Handles the special representation of JS global objects.
1376  MUST_USE_RESULT MaybeObject* SetNormalizedProperty(String* name,
1377                                                     Object* value,
1378                                                     PropertyDetails details);
1379
1380  // Deletes the named property in a normalized object.
1381  MUST_USE_RESULT MaybeObject* DeleteNormalizedProperty(String* name,
1382                                                        DeleteMode mode);
1383
1384  // Returns the class name ([[Class]] property in the specification).
1385  String* class_name();
1386
1387  // Returns the constructor name (the name (possibly, inferred name) of the
1388  // function that was used to instantiate the object).
1389  String* constructor_name();
1390
1391  // Retrieve interceptors.
1392  InterceptorInfo* GetNamedInterceptor();
1393  InterceptorInfo* GetIndexedInterceptor();
1394
1395  inline PropertyAttributes GetPropertyAttribute(String* name);
1396  PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
1397                                                      String* name);
1398  PropertyAttributes GetLocalPropertyAttribute(String* name);
1399
1400  MUST_USE_RESULT MaybeObject* DefineAccessor(String* name,
1401                                              bool is_getter,
1402                                              Object* fun,
1403                                              PropertyAttributes attributes);
1404  Object* LookupAccessor(String* name, bool is_getter);
1405
1406  MUST_USE_RESULT MaybeObject* DefineAccessor(AccessorInfo* info);
1407
1408  // Used from Object::GetProperty().
1409  MaybeObject* GetPropertyWithFailedAccessCheck(
1410      Object* receiver,
1411      LookupResult* result,
1412      String* name,
1413      PropertyAttributes* attributes);
1414  MaybeObject* GetPropertyWithInterceptor(
1415      JSObject* receiver,
1416      String* name,
1417      PropertyAttributes* attributes);
1418  MaybeObject* GetPropertyPostInterceptor(
1419      JSObject* receiver,
1420      String* name,
1421      PropertyAttributes* attributes);
1422  MaybeObject* GetLocalPropertyPostInterceptor(JSObject* receiver,
1423                                               String* name,
1424                                               PropertyAttributes* attributes);
1425
1426  // Returns true if this is an instance of an api function and has
1427  // been modified since it was created.  May give false positives.
1428  bool IsDirty();
1429
1430  bool HasProperty(String* name) {
1431    return GetPropertyAttribute(name) != ABSENT;
1432  }
1433
1434  // Can cause a GC if it hits an interceptor.
1435  bool HasLocalProperty(String* name) {
1436    return GetLocalPropertyAttribute(name) != ABSENT;
1437  }
1438
1439  // If the receiver is a JSGlobalProxy this method will return its prototype,
1440  // otherwise the result is the receiver itself.
1441  inline Object* BypassGlobalProxy();
1442
1443  // Accessors for hidden properties object.
1444  //
1445  // Hidden properties are not local properties of the object itself.
1446  // Instead they are stored on an auxiliary JSObject stored as a local
1447  // property with a special name Heap::hidden_symbol(). But if the
1448  // receiver is a JSGlobalProxy then the auxiliary object is a property
1449  // of its prototype.
1450  //
1451  // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be
1452  // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real
1453  // holder.
1454  //
1455  // These accessors do not touch interceptors or accessors.
1456  inline bool HasHiddenPropertiesObject();
1457  inline Object* GetHiddenPropertiesObject();
1458  MUST_USE_RESULT inline MaybeObject* SetHiddenPropertiesObject(
1459      Object* hidden_obj);
1460
1461  MUST_USE_RESULT MaybeObject* DeleteProperty(String* name, DeleteMode mode);
1462  MUST_USE_RESULT MaybeObject* DeleteElement(uint32_t index, DeleteMode mode);
1463
1464  // Tests for the fast common case for property enumeration.
1465  bool IsSimpleEnum();
1466
1467  // Do we want to keep the elements in fast case when increasing the
1468  // capacity?
1469  bool ShouldConvertToSlowElements(int new_capacity);
1470  // Returns true if the backing storage for the slow-case elements of
1471  // this object takes up nearly as much space as a fast-case backing
1472  // storage would.  In that case the JSObject should have fast
1473  // elements.
1474  bool ShouldConvertToFastElements();
1475
1476  // Return the object's prototype (might be Heap::null_value()).
1477  inline Object* GetPrototype();
1478
1479  // Set the object's prototype (only JSObject and null are allowed).
1480  MUST_USE_RESULT MaybeObject* SetPrototype(Object* value,
1481                                            bool skip_hidden_prototypes);
1482
1483  // Tells whether the index'th element is present.
1484  inline bool HasElement(uint32_t index);
1485  bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
1486
1487  // Tells whether the index'th element is present and how it is stored.
1488  enum LocalElementType {
1489    // There is no element with given index.
1490    UNDEFINED_ELEMENT,
1491
1492    // Element with given index is handled by interceptor.
1493    INTERCEPTED_ELEMENT,
1494
1495    // Element with given index is character in string.
1496    STRING_CHARACTER_ELEMENT,
1497
1498    // Element with given index is stored in fast backing store.
1499    FAST_ELEMENT,
1500
1501    // Element with given index is stored in slow backing store.
1502    DICTIONARY_ELEMENT
1503  };
1504
1505  LocalElementType HasLocalElement(uint32_t index);
1506
1507  bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
1508  bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
1509
1510  MUST_USE_RESULT MaybeObject* SetFastElement(uint32_t index,
1511                                              Object* value,
1512                                              bool check_prototype = true);
1513
1514  // Set the index'th array element.
1515  // A Failure object is returned if GC is needed.
1516  MUST_USE_RESULT MaybeObject* SetElement(uint32_t index,
1517                                          Object* value,
1518                                          bool check_prototype = true);
1519
1520  // Returns the index'th element.
1521  // The undefined object if index is out of bounds.
1522  MaybeObject* GetElementWithReceiver(JSObject* receiver, uint32_t index);
1523  MaybeObject* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
1524
1525  MUST_USE_RESULT MaybeObject* SetFastElementsCapacityAndLength(int capacity,
1526                                                                int length);
1527  MUST_USE_RESULT MaybeObject* SetSlowElements(Object* length);
1528
1529  // Lookup interceptors are used for handling properties controlled by host
1530  // objects.
1531  inline bool HasNamedInterceptor();
1532  inline bool HasIndexedInterceptor();
1533
1534  // Support functions for v8 api (needed for correct interceptor behavior).
1535  bool HasRealNamedProperty(String* key);
1536  bool HasRealElementProperty(uint32_t index);
1537  bool HasRealNamedCallbackProperty(String* key);
1538
1539  // Initializes the array to a certain length
1540  MUST_USE_RESULT MaybeObject* SetElementsLength(Object* length);
1541
1542  // Get the header size for a JSObject.  Used to compute the index of
1543  // internal fields as well as the number of internal fields.
1544  inline int GetHeaderSize();
1545
1546  inline int GetInternalFieldCount();
1547  inline Object* GetInternalField(int index);
1548  inline void SetInternalField(int index, Object* value);
1549
1550  // Lookup a property.  If found, the result is valid and has
1551  // detailed information.
1552  void LocalLookup(String* name, LookupResult* result);
1553  void Lookup(String* name, LookupResult* result);
1554
1555  // The following lookup functions skip interceptors.
1556  void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1557  void LookupRealNamedProperty(String* name, LookupResult* result);
1558  void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1559  void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
1560  bool SetElementWithCallbackSetterInPrototypes(uint32_t index, Object* value);
1561  void LookupCallback(String* name, LookupResult* result);
1562
1563  // Returns the number of properties on this object filtering out properties
1564  // with the specified attributes (ignoring interceptors).
1565  int NumberOfLocalProperties(PropertyAttributes filter);
1566  // Returns the number of enumerable properties (ignoring interceptors).
1567  int NumberOfEnumProperties();
1568  // Fill in details for properties into storage starting at the specified
1569  // index.
1570  void GetLocalPropertyNames(FixedArray* storage, int index);
1571
1572  // Returns the number of properties on this object filtering out properties
1573  // with the specified attributes (ignoring interceptors).
1574  int NumberOfLocalElements(PropertyAttributes filter);
1575  // Returns the number of enumerable elements (ignoring interceptors).
1576  int NumberOfEnumElements();
1577  // Returns the number of elements on this object filtering out elements
1578  // with the specified attributes (ignoring interceptors).
1579  int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1580  // Count and fill in the enumerable elements into storage.
1581  // (storage->length() == NumberOfEnumElements()).
1582  // If storage is NULL, will count the elements without adding
1583  // them to any storage.
1584  // Returns the number of enumerable elements.
1585  int GetEnumElementKeys(FixedArray* storage);
1586
1587  // Add a property to a fast-case object using a map transition to
1588  // new_map.
1589  MUST_USE_RESULT MaybeObject* AddFastPropertyUsingMap(Map* new_map,
1590                                                       String* name,
1591                                                       Object* value);
1592
1593  // Add a constant function property to a fast-case object.
1594  // This leaves a CONSTANT_TRANSITION in the old map, and
1595  // if it is called on a second object with this map, a
1596  // normal property is added instead, with a map transition.
1597  // This avoids the creation of many maps with the same constant
1598  // function, all orphaned.
1599  MUST_USE_RESULT MaybeObject* AddConstantFunctionProperty(
1600      String* name,
1601      JSFunction* function,
1602      PropertyAttributes attributes);
1603
1604  MUST_USE_RESULT MaybeObject* ReplaceSlowProperty(
1605      String* name,
1606      Object* value,
1607      PropertyAttributes attributes);
1608
1609  // Converts a descriptor of any other type to a real field,
1610  // backed by the properties array.  Descriptors of visible
1611  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1612  // Converts the descriptor on the original object's map to a
1613  // map transition, and the the new field is on the object's new map.
1614  MUST_USE_RESULT MaybeObject* ConvertDescriptorToFieldAndMapTransition(
1615      String* name,
1616      Object* new_value,
1617      PropertyAttributes attributes);
1618
1619  // Converts a descriptor of any other type to a real field,
1620  // backed by the properties array.  Descriptors of visible
1621  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1622  MUST_USE_RESULT MaybeObject* ConvertDescriptorToField(
1623      String* name,
1624      Object* new_value,
1625      PropertyAttributes attributes);
1626
1627  // Add a property to a fast-case object.
1628  MUST_USE_RESULT MaybeObject* AddFastProperty(String* name,
1629                                               Object* value,
1630                                               PropertyAttributes attributes);
1631
1632  // Add a property to a slow-case object.
1633  MUST_USE_RESULT MaybeObject* AddSlowProperty(String* name,
1634                                               Object* value,
1635                                               PropertyAttributes attributes);
1636
1637  // Add a property to an object.
1638  MUST_USE_RESULT MaybeObject* AddProperty(String* name,
1639                                           Object* value,
1640                                           PropertyAttributes attributes);
1641
1642  // Convert the object to use the canonical dictionary
1643  // representation. If the object is expected to have additional properties
1644  // added this number can be indicated to have the backing store allocated to
1645  // an initial capacity for holding these properties.
1646  MUST_USE_RESULT MaybeObject* NormalizeProperties(
1647      PropertyNormalizationMode mode,
1648      int expected_additional_properties);
1649  MUST_USE_RESULT MaybeObject* NormalizeElements();
1650
1651  MUST_USE_RESULT MaybeObject* UpdateMapCodeCache(String* name, Code* code);
1652
1653  // Transform slow named properties to fast variants.
1654  // Returns failure if allocation failed.
1655  MUST_USE_RESULT MaybeObject* TransformToFastProperties(
1656      int unused_property_fields);
1657
1658  // Access fast-case object properties at index.
1659  inline Object* FastPropertyAt(int index);
1660  inline Object* FastPropertyAtPut(int index, Object* value);
1661
1662  // Access to in object properties.
1663  inline Object* InObjectPropertyAt(int index);
1664  inline Object* InObjectPropertyAtPut(int index,
1665                                       Object* value,
1666                                       WriteBarrierMode mode
1667                                       = UPDATE_WRITE_BARRIER);
1668
1669  // initializes the body after properties slot, properties slot is
1670  // initialized by set_properties
1671  // Note: this call does not update write barrier, it is caller's
1672  // reponsibility to ensure that *v* can be collected without WB here.
1673  inline void InitializeBody(int object_size, Object* value);
1674
1675  // Check whether this object references another object
1676  bool ReferencesObject(Object* obj);
1677
1678  // Casting.
1679  static inline JSObject* cast(Object* obj);
1680
1681  // Disalow further properties to be added to the object.
1682  MUST_USE_RESULT MaybeObject* PreventExtensions();
1683
1684
1685  // Dispatched behavior.
1686  void JSObjectShortPrint(StringStream* accumulator);
1687#ifdef OBJECT_PRINT
1688  inline void JSObjectPrint() {
1689    JSObjectPrint(stdout);
1690  }
1691  void JSObjectPrint(FILE* out);
1692#endif
1693#ifdef DEBUG
1694  void JSObjectVerify();
1695#endif
1696#ifdef OBJECT_PRINT
1697  inline void PrintProperties() {
1698    PrintProperties(stdout);
1699  }
1700  void PrintProperties(FILE* out);
1701
1702  inline void PrintElements() {
1703    PrintElements(stdout);
1704  }
1705  void PrintElements(FILE* out);
1706#endif
1707
1708#ifdef DEBUG
1709  // Structure for collecting spill information about JSObjects.
1710  class SpillInformation {
1711   public:
1712    void Clear();
1713    void Print();
1714    int number_of_objects_;
1715    int number_of_objects_with_fast_properties_;
1716    int number_of_objects_with_fast_elements_;
1717    int number_of_fast_used_fields_;
1718    int number_of_fast_unused_fields_;
1719    int number_of_slow_used_properties_;
1720    int number_of_slow_unused_properties_;
1721    int number_of_fast_used_elements_;
1722    int number_of_fast_unused_elements_;
1723    int number_of_slow_used_elements_;
1724    int number_of_slow_unused_elements_;
1725  };
1726
1727  void IncrementSpillStatistics(SpillInformation* info);
1728#endif
1729  Object* SlowReverseLookup(Object* value);
1730
1731  // Maximal number of fast properties for the JSObject. Used to
1732  // restrict the number of map transitions to avoid an explosion in
1733  // the number of maps for objects used as dictionaries.
1734  inline int MaxFastProperties();
1735
1736  // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
1737  // Also maximal value of JSArray's length property.
1738  static const uint32_t kMaxElementCount = 0xffffffffu;
1739
1740  static const uint32_t kMaxGap = 1024;
1741  static const int kMaxFastElementsLength = 5000;
1742  static const int kInitialMaxFastElementArray = 100000;
1743  static const int kMaxFastProperties = 12;
1744  static const int kMaxInstanceSize = 255 * kPointerSize;
1745  // When extending the backing storage for property values, we increase
1746  // its size by more than the 1 entry necessary, so sequentially adding fields
1747  // to the same object requires fewer allocations and copies.
1748  static const int kFieldsAdded = 3;
1749
1750  // Layout description.
1751  static const int kPropertiesOffset = HeapObject::kHeaderSize;
1752  static const int kElementsOffset = kPropertiesOffset + kPointerSize;
1753  static const int kHeaderSize = kElementsOffset + kPointerSize;
1754
1755  STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
1756
1757  class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
1758   public:
1759    static inline int SizeOf(Map* map, HeapObject* object);
1760  };
1761
1762 private:
1763  MUST_USE_RESULT MaybeObject* GetElementWithCallback(Object* receiver,
1764                                                      Object* structure,
1765                                                      uint32_t index,
1766                                                      Object* holder);
1767  MaybeObject* SetElementWithCallback(Object* structure,
1768                                      uint32_t index,
1769                                      Object* value,
1770                                      JSObject* holder);
1771  MUST_USE_RESULT MaybeObject* SetElementWithInterceptor(uint32_t index,
1772                                                         Object* value,
1773                                                         bool check_prototype);
1774  MUST_USE_RESULT MaybeObject* SetElementWithoutInterceptor(
1775      uint32_t index,
1776      Object* value,
1777      bool check_prototype);
1778
1779  MaybeObject* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
1780
1781  MUST_USE_RESULT MaybeObject* DeletePropertyPostInterceptor(String* name,
1782                                                             DeleteMode mode);
1783  MUST_USE_RESULT MaybeObject* DeletePropertyWithInterceptor(String* name);
1784
1785  MUST_USE_RESULT MaybeObject* DeleteElementPostInterceptor(uint32_t index,
1786                                                            DeleteMode mode);
1787  MUST_USE_RESULT MaybeObject* DeleteElementWithInterceptor(uint32_t index);
1788
1789  PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1790                                                         String* name,
1791                                                         bool continue_search);
1792  PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1793                                                         String* name,
1794                                                         bool continue_search);
1795  PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1796      Object* receiver,
1797      LookupResult* result,
1798      String* name,
1799      bool continue_search);
1800  PropertyAttributes GetPropertyAttribute(JSObject* receiver,
1801                                          LookupResult* result,
1802                                          String* name,
1803                                          bool continue_search);
1804
1805  // Returns true if most of the elements backing storage is used.
1806  bool HasDenseElements();
1807
1808  bool CanSetCallback(String* name);
1809  MUST_USE_RESULT MaybeObject* SetElementCallback(
1810      uint32_t index,
1811      Object* structure,
1812      PropertyAttributes attributes);
1813  MUST_USE_RESULT MaybeObject* SetPropertyCallback(
1814      String* name,
1815      Object* structure,
1816      PropertyAttributes attributes);
1817  MUST_USE_RESULT MaybeObject* DefineGetterSetter(
1818      String* name,
1819      PropertyAttributes attributes);
1820
1821  void LookupInDescriptor(String* name, LookupResult* result);
1822
1823  DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
1824};
1825
1826
1827// FixedArray describes fixed-sized arrays with element type Object*.
1828class FixedArray: public HeapObject {
1829 public:
1830  // [length]: length of the array.
1831  inline int length();
1832  inline void set_length(int value);
1833
1834  // Setter and getter for elements.
1835  inline Object* get(int index);
1836  // Setter that uses write barrier.
1837  inline void set(int index, Object* value);
1838
1839  // Setter that doesn't need write barrier).
1840  inline void set(int index, Smi* value);
1841  // Setter with explicit barrier mode.
1842  inline void set(int index, Object* value, WriteBarrierMode mode);
1843
1844  // Setters for frequently used oddballs located in old space.
1845  inline void set_undefined(int index);
1846  inline void set_null(int index);
1847  inline void set_the_hole(int index);
1848
1849  // Setters with less debug checks for the GC to use.
1850  inline void set_unchecked(int index, Smi* value);
1851  inline void set_null_unchecked(int index);
1852  inline void set_unchecked(int index, Object* value, WriteBarrierMode mode);
1853
1854  // Gives access to raw memory which stores the array's data.
1855  inline Object** data_start();
1856
1857  // Copy operations.
1858  MUST_USE_RESULT inline MaybeObject* Copy();
1859  MUST_USE_RESULT MaybeObject* CopySize(int new_length);
1860
1861  // Add the elements of a JSArray to this FixedArray.
1862  MUST_USE_RESULT MaybeObject* AddKeysFromJSArray(JSArray* array);
1863
1864  // Compute the union of this and other.
1865  MUST_USE_RESULT MaybeObject* UnionOfKeys(FixedArray* other);
1866
1867  // Copy a sub array from the receiver to dest.
1868  void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
1869
1870  // Garbage collection support.
1871  static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
1872
1873  // Code Generation support.
1874  static int OffsetOfElementAt(int index) { return SizeFor(index); }
1875
1876  // Casting.
1877  static inline FixedArray* cast(Object* obj);
1878
1879  // Layout description.
1880  // Length is smi tagged when it is stored.
1881  static const int kLengthOffset = HeapObject::kHeaderSize;
1882  static const int kHeaderSize = kLengthOffset + kPointerSize;
1883
1884  // Maximal allowed size, in bytes, of a single FixedArray.
1885  // Prevents overflowing size computations, as well as extreme memory
1886  // consumption.
1887  static const int kMaxSize = 512 * MB;
1888  // Maximally allowed length of a FixedArray.
1889  static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
1890
1891  // Dispatched behavior.
1892#ifdef OBJECT_PRINT
1893  inline void FixedArrayPrint() {
1894    FixedArrayPrint(stdout);
1895  }
1896  void FixedArrayPrint(FILE* out);
1897#endif
1898#ifdef DEBUG
1899  void FixedArrayVerify();
1900  // Checks if two FixedArrays have identical contents.
1901  bool IsEqualTo(FixedArray* other);
1902#endif
1903
1904  // Swap two elements in a pair of arrays.  If this array and the
1905  // numbers array are the same object, the elements are only swapped
1906  // once.
1907  void SwapPairs(FixedArray* numbers, int i, int j);
1908
1909  // Sort prefix of this array and the numbers array as pairs wrt. the
1910  // numbers.  If the numbers array and the this array are the same
1911  // object, the prefix of this array is sorted.
1912  void SortPairs(FixedArray* numbers, uint32_t len);
1913
1914  class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
1915   public:
1916    static inline int SizeOf(Map* map, HeapObject* object) {
1917      return SizeFor(reinterpret_cast<FixedArray*>(object)->length());
1918    }
1919  };
1920
1921 protected:
1922  // Set operation on FixedArray without using write barriers. Can
1923  // only be used for storing old space objects or smis.
1924  static inline void fast_set(FixedArray* array, int index, Object* value);
1925
1926 private:
1927  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
1928};
1929
1930
1931// DescriptorArrays are fixed arrays used to hold instance descriptors.
1932// The format of the these objects is:
1933//   [0]: point to a fixed array with (value, detail) pairs.
1934//   [1]: next enumeration index (Smi), or pointer to small fixed array:
1935//          [0]: next enumeration index (Smi)
1936//          [1]: pointer to fixed array with enum cache
1937//   [2]: first key
1938//   [length() - 1]: last key
1939//
1940class DescriptorArray: public FixedArray {
1941 public:
1942  // Is this the singleton empty_descriptor_array?
1943  inline bool IsEmpty();
1944
1945  // Returns the number of descriptors in the array.
1946  int number_of_descriptors() {
1947    return IsEmpty() ? 0 : length() - kFirstIndex;
1948  }
1949
1950  int NextEnumerationIndex() {
1951    if (IsEmpty()) return PropertyDetails::kInitialIndex;
1952    Object* obj = get(kEnumerationIndexIndex);
1953    if (obj->IsSmi()) {
1954      return Smi::cast(obj)->value();
1955    } else {
1956      Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
1957      return Smi::cast(index)->value();
1958    }
1959  }
1960
1961  // Set next enumeration index and flush any enum cache.
1962  void SetNextEnumerationIndex(int value) {
1963    if (!IsEmpty()) {
1964      fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
1965    }
1966  }
1967  bool HasEnumCache() {
1968    return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
1969  }
1970
1971  Object* GetEnumCache() {
1972    ASSERT(HasEnumCache());
1973    FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
1974    return bridge->get(kEnumCacheBridgeCacheIndex);
1975  }
1976
1977  // Initialize or change the enum cache,
1978  // using the supplied storage for the small "bridge".
1979  void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
1980
1981  // Accessors for fetching instance descriptor at descriptor number.
1982  inline String* GetKey(int descriptor_number);
1983  inline Object* GetValue(int descriptor_number);
1984  inline Smi* GetDetails(int descriptor_number);
1985  inline PropertyType GetType(int descriptor_number);
1986  inline int GetFieldIndex(int descriptor_number);
1987  inline JSFunction* GetConstantFunction(int descriptor_number);
1988  inline Object* GetCallbacksObject(int descriptor_number);
1989  inline AccessorDescriptor* GetCallbacks(int descriptor_number);
1990  inline bool IsProperty(int descriptor_number);
1991  inline bool IsTransition(int descriptor_number);
1992  inline bool IsNullDescriptor(int descriptor_number);
1993  inline bool IsDontEnum(int descriptor_number);
1994
1995  // Accessor for complete descriptor.
1996  inline void Get(int descriptor_number, Descriptor* desc);
1997  inline void Set(int descriptor_number, Descriptor* desc);
1998
1999  // Transfer complete descriptor from another descriptor array to
2000  // this one.
2001  inline void CopyFrom(int index, DescriptorArray* src, int src_index);
2002
2003  // Copy the descriptor array, insert a new descriptor and optionally
2004  // remove map transitions.  If the descriptor is already present, it is
2005  // replaced.  If a replaced descriptor is a real property (not a transition
2006  // or null), its enumeration index is kept as is.
2007  // If adding a real property, map transitions must be removed.  If adding
2008  // a transition, they must not be removed.  All null descriptors are removed.
2009  MUST_USE_RESULT MaybeObject* CopyInsert(Descriptor* descriptor,
2010                                          TransitionFlag transition_flag);
2011
2012  // Remove all transitions.  Return  a copy of the array with all transitions
2013  // removed, or a Failure object if the new array could not be allocated.
2014  MUST_USE_RESULT MaybeObject* RemoveTransitions();
2015
2016  // Sort the instance descriptors by the hash codes of their keys.
2017  // Does not check for duplicates.
2018  void SortUnchecked();
2019
2020  // Sort the instance descriptors by the hash codes of their keys.
2021  // Checks the result for duplicates.
2022  void Sort();
2023
2024  // Search the instance descriptors for given name.
2025  inline int Search(String* name);
2026
2027  // As the above, but uses DescriptorLookupCache and updates it when
2028  // necessary.
2029  inline int SearchWithCache(String* name);
2030
2031  // Tells whether the name is present int the array.
2032  bool Contains(String* name) { return kNotFound != Search(name); }
2033
2034  // Perform a binary search in the instance descriptors represented
2035  // by this fixed array.  low and high are descriptor indices.  If there
2036  // are three instance descriptors in this array it should be called
2037  // with low=0 and high=2.
2038  int BinarySearch(String* name, int low, int high);
2039
2040  // Perform a linear search in the instance descriptors represented
2041  // by this fixed array.  len is the number of descriptor indices that are
2042  // valid.  Does not require the descriptors to be sorted.
2043  int LinearSearch(String* name, int len);
2044
2045  // Allocates a DescriptorArray, but returns the singleton
2046  // empty descriptor array object if number_of_descriptors is 0.
2047  MUST_USE_RESULT static MaybeObject* Allocate(int number_of_descriptors);
2048
2049  // Casting.
2050  static inline DescriptorArray* cast(Object* obj);
2051
2052  // Constant for denoting key was not found.
2053  static const int kNotFound = -1;
2054
2055  static const int kContentArrayIndex = 0;
2056  static const int kEnumerationIndexIndex = 1;
2057  static const int kFirstIndex = 2;
2058
2059  // The length of the "bridge" to the enum cache.
2060  static const int kEnumCacheBridgeLength = 2;
2061  static const int kEnumCacheBridgeEnumIndex = 0;
2062  static const int kEnumCacheBridgeCacheIndex = 1;
2063
2064  // Layout description.
2065  static const int kContentArrayOffset = FixedArray::kHeaderSize;
2066  static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
2067  static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
2068
2069  // Layout description for the bridge array.
2070  static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
2071  static const int kEnumCacheBridgeCacheOffset =
2072    kEnumCacheBridgeEnumOffset + kPointerSize;
2073
2074#ifdef OBJECT_PRINT
2075  // Print all the descriptors.
2076  inline void PrintDescriptors() {
2077    PrintDescriptors(stdout);
2078  }
2079  void PrintDescriptors(FILE* out);
2080#endif
2081
2082#ifdef DEBUG
2083  // Is the descriptor array sorted and without duplicates?
2084  bool IsSortedNoDuplicates();
2085
2086  // Are two DescriptorArrays equal?
2087  bool IsEqualTo(DescriptorArray* other);
2088#endif
2089
2090  // The maximum number of descriptors we want in a descriptor array (should
2091  // fit in a page).
2092  static const int kMaxNumberOfDescriptors = 1024 + 512;
2093
2094 private:
2095  // Conversion from descriptor number to array indices.
2096  static int ToKeyIndex(int descriptor_number) {
2097    return descriptor_number+kFirstIndex;
2098  }
2099
2100  static int ToDetailsIndex(int descriptor_number) {
2101    return (descriptor_number << 1) + 1;
2102  }
2103
2104  static int ToValueIndex(int descriptor_number) {
2105    return descriptor_number << 1;
2106  }
2107
2108  bool is_null_descriptor(int descriptor_number) {
2109    return PropertyDetails(GetDetails(descriptor_number)).type() ==
2110        NULL_DESCRIPTOR;
2111  }
2112  // Swap operation on FixedArray without using write barriers.
2113  static inline void fast_swap(FixedArray* array, int first, int second);
2114
2115  // Swap descriptor first and second.
2116  inline void Swap(int first, int second);
2117
2118  FixedArray* GetContentArray() {
2119    return FixedArray::cast(get(kContentArrayIndex));
2120  }
2121  DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
2122};
2123
2124
2125// HashTable is a subclass of FixedArray that implements a hash table
2126// that uses open addressing and quadratic probing.
2127//
2128// In order for the quadratic probing to work, elements that have not
2129// yet been used and elements that have been deleted are
2130// distinguished.  Probing continues when deleted elements are
2131// encountered and stops when unused elements are encountered.
2132//
2133// - Elements with key == undefined have not been used yet.
2134// - Elements with key == null have been deleted.
2135//
2136// The hash table class is parameterized with a Shape and a Key.
2137// Shape must be a class with the following interface:
2138//   class ExampleShape {
2139//    public:
2140//      // Tells whether key matches other.
2141//     static bool IsMatch(Key key, Object* other);
2142//     // Returns the hash value for key.
2143//     static uint32_t Hash(Key key);
2144//     // Returns the hash value for object.
2145//     static uint32_t HashForObject(Key key, Object* object);
2146//     // Convert key to an object.
2147//     static inline Object* AsObject(Key key);
2148//     // The prefix size indicates number of elements in the beginning
2149//     // of the backing storage.
2150//     static const int kPrefixSize = ..;
2151//     // The Element size indicates number of elements per entry.
2152//     static const int kEntrySize = ..;
2153//   };
2154// The prefix size indicates an amount of memory in the
2155// beginning of the backing storage that can be used for non-element
2156// information by subclasses.
2157
2158template<typename Shape, typename Key>
2159class HashTable: public FixedArray {
2160 public:
2161  // Returns the number of elements in the hash table.
2162  int NumberOfElements() {
2163    return Smi::cast(get(kNumberOfElementsIndex))->value();
2164  }
2165
2166  // Returns the number of deleted elements in the hash table.
2167  int NumberOfDeletedElements() {
2168    return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
2169  }
2170
2171  // Returns the capacity of the hash table.
2172  int Capacity() {
2173    return Smi::cast(get(kCapacityIndex))->value();
2174  }
2175
2176  // ElementAdded should be called whenever an element is added to a
2177  // hash table.
2178  void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
2179
2180  // ElementRemoved should be called whenever an element is removed from
2181  // a hash table.
2182  void ElementRemoved() {
2183    SetNumberOfElements(NumberOfElements() - 1);
2184    SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
2185  }
2186  void ElementsRemoved(int n) {
2187    SetNumberOfElements(NumberOfElements() - n);
2188    SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
2189  }
2190
2191  // Returns a new HashTable object. Might return Failure.
2192  MUST_USE_RESULT static MaybeObject* Allocate(
2193      int at_least_space_for,
2194      PretenureFlag pretenure = NOT_TENURED);
2195
2196  // Returns the key at entry.
2197  Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
2198
2199  // Tells whether k is a real key.  Null and undefined are not allowed
2200  // as keys and can be used to indicate missing or deleted elements.
2201  bool IsKey(Object* k) {
2202    return !k->IsNull() && !k->IsUndefined();
2203  }
2204
2205  // Garbage collection support.
2206  void IteratePrefix(ObjectVisitor* visitor);
2207  void IterateElements(ObjectVisitor* visitor);
2208
2209  // Casting.
2210  static inline HashTable* cast(Object* obj);
2211
2212  // Compute the probe offset (quadratic probing).
2213  INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
2214    return (n + n * n) >> 1;
2215  }
2216
2217  static const int kNumberOfElementsIndex = 0;
2218  static const int kNumberOfDeletedElementsIndex = 1;
2219  static const int kCapacityIndex = 2;
2220  static const int kPrefixStartIndex = 3;
2221  static const int kElementsStartIndex =
2222      kPrefixStartIndex + Shape::kPrefixSize;
2223  static const int kEntrySize = Shape::kEntrySize;
2224  static const int kElementsStartOffset =
2225      kHeaderSize + kElementsStartIndex * kPointerSize;
2226  static const int kCapacityOffset =
2227      kHeaderSize + kCapacityIndex * kPointerSize;
2228
2229  // Constant used for denoting a absent entry.
2230  static const int kNotFound = -1;
2231
2232  // Maximal capacity of HashTable. Based on maximal length of underlying
2233  // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
2234  // cannot overflow.
2235  static const int kMaxCapacity =
2236      (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
2237
2238  // Find entry for key otherwise return kNotFound.
2239  int FindEntry(Key key);
2240
2241 protected:
2242
2243  // Find the entry at which to insert element with the given key that
2244  // has the given hash value.
2245  uint32_t FindInsertionEntry(uint32_t hash);
2246
2247  // Returns the index for an entry (of the key)
2248  static inline int EntryToIndex(int entry) {
2249    return (entry * kEntrySize) + kElementsStartIndex;
2250  }
2251
2252  // Update the number of elements in the hash table.
2253  void SetNumberOfElements(int nof) {
2254    fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
2255  }
2256
2257  // Update the number of deleted elements in the hash table.
2258  void SetNumberOfDeletedElements(int nod) {
2259    fast_set(this, kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
2260  }
2261
2262  // Sets the capacity of the hash table.
2263  void SetCapacity(int capacity) {
2264    // To scale a computed hash code to fit within the hash table, we
2265    // use bit-wise AND with a mask, so the capacity must be positive
2266    // and non-zero.
2267    ASSERT(capacity > 0);
2268    ASSERT(capacity <= kMaxCapacity);
2269    fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
2270  }
2271
2272
2273  // Returns probe entry.
2274  static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2275    ASSERT(IsPowerOf2(size));
2276    return (hash + GetProbeOffset(number)) & (size - 1);
2277  }
2278
2279  static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2280    return hash & (size - 1);
2281  }
2282
2283  static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) {
2284    return (last + number) & (size - 1);
2285  }
2286
2287  // Ensure enough space for n additional elements.
2288  MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
2289};
2290
2291
2292
2293// HashTableKey is an abstract superclass for virtual key behavior.
2294class HashTableKey {
2295 public:
2296  // Returns whether the other object matches this key.
2297  virtual bool IsMatch(Object* other) = 0;
2298  // Returns the hash value for this key.
2299  virtual uint32_t Hash() = 0;
2300  // Returns the hash value for object.
2301  virtual uint32_t HashForObject(Object* key) = 0;
2302  // Returns the key object for storing into the hash table.
2303  // If allocations fails a failure object is returned.
2304  MUST_USE_RESULT virtual MaybeObject* AsObject() = 0;
2305  // Required.
2306  virtual ~HashTableKey() {}
2307};
2308
2309class SymbolTableShape {
2310 public:
2311  static bool IsMatch(HashTableKey* key, Object* value) {
2312    return key->IsMatch(value);
2313  }
2314  static uint32_t Hash(HashTableKey* key) {
2315    return key->Hash();
2316  }
2317  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2318    return key->HashForObject(object);
2319  }
2320  MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
2321    return key->AsObject();
2322  }
2323
2324  static const int kPrefixSize = 0;
2325  static const int kEntrySize = 1;
2326};
2327
2328// SymbolTable.
2329//
2330// No special elements in the prefix and the element size is 1
2331// because only the symbol itself (the key) needs to be stored.
2332class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2333 public:
2334  // Find symbol in the symbol table.  If it is not there yet, it is
2335  // added.  The return value is the symbol table which might have
2336  // been enlarged.  If the return value is not a failure, the symbol
2337  // pointer *s is set to the symbol found.
2338  MUST_USE_RESULT MaybeObject* LookupSymbol(Vector<const char> str, Object** s);
2339  MUST_USE_RESULT MaybeObject* LookupAsciiSymbol(Vector<const char> str,
2340                                                 Object** s);
2341  MUST_USE_RESULT MaybeObject* LookupTwoByteSymbol(Vector<const uc16> str,
2342                                                   Object** s);
2343  MUST_USE_RESULT MaybeObject* LookupString(String* key, Object** s);
2344
2345  // Looks up a symbol that is equal to the given string and returns
2346  // true if it is found, assigning the symbol to the given output
2347  // parameter.
2348  bool LookupSymbolIfExists(String* str, String** symbol);
2349  bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
2350
2351  // Casting.
2352  static inline SymbolTable* cast(Object* obj);
2353
2354 private:
2355  MUST_USE_RESULT MaybeObject* LookupKey(HashTableKey* key, Object** s);
2356
2357  DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2358};
2359
2360
2361class MapCacheShape {
2362 public:
2363  static bool IsMatch(HashTableKey* key, Object* value) {
2364    return key->IsMatch(value);
2365  }
2366  static uint32_t Hash(HashTableKey* key) {
2367    return key->Hash();
2368  }
2369
2370  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2371    return key->HashForObject(object);
2372  }
2373
2374  MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
2375    return key->AsObject();
2376  }
2377
2378  static const int kPrefixSize = 0;
2379  static const int kEntrySize = 2;
2380};
2381
2382
2383// MapCache.
2384//
2385// Maps keys that are a fixed array of symbols to a map.
2386// Used for canonicalize maps for object literals.
2387class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2388 public:
2389  // Find cached value for a string key, otherwise return null.
2390  Object* Lookup(FixedArray* key);
2391  MUST_USE_RESULT MaybeObject* Put(FixedArray* key, Map* value);
2392  static inline MapCache* cast(Object* obj);
2393
2394 private:
2395  DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2396};
2397
2398
2399template <typename Shape, typename Key>
2400class Dictionary: public HashTable<Shape, Key> {
2401 public:
2402
2403  static inline Dictionary<Shape, Key>* cast(Object* obj) {
2404    return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2405  }
2406
2407  // Returns the value at entry.
2408  Object* ValueAt(int entry) {
2409    return this->get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
2410  }
2411
2412  // Set the value for entry.
2413  void ValueAtPut(int entry, Object* value) {
2414    // Check that this value can actually be written.
2415    PropertyDetails details = DetailsAt(entry);
2416    // If a value has not been initilized we allow writing to it even if
2417    // it is read only (a declared const that has not been initialized).
2418    if (details.IsReadOnly() && !ValueAt(entry)->IsTheHole()) return;
2419    this->set(HashTable<Shape, Key>::EntryToIndex(entry)+1, value);
2420  }
2421
2422  // Returns the property details for the property at entry.
2423  PropertyDetails DetailsAt(int entry) {
2424    ASSERT(entry >= 0);  // Not found is -1, which is not caught by get().
2425    return PropertyDetails(
2426        Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
2427  }
2428
2429  // Set the details for entry.
2430  void DetailsAtPut(int entry, PropertyDetails value) {
2431    this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
2432  }
2433
2434  // Sorting support
2435  void CopyValuesTo(FixedArray* elements);
2436
2437  // Delete a property from the dictionary.
2438  Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
2439
2440  // Returns the number of elements in the dictionary filtering out properties
2441  // with the specified attributes.
2442  int NumberOfElementsFilterAttributes(PropertyAttributes filter);
2443
2444  // Returns the number of enumerable elements in the dictionary.
2445  int NumberOfEnumElements();
2446
2447  // Copies keys to preallocated fixed array.
2448  void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
2449  // Fill in details for properties into storage.
2450  void CopyKeysTo(FixedArray* storage);
2451
2452  // Accessors for next enumeration index.
2453  void SetNextEnumerationIndex(int index) {
2454    this->fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
2455  }
2456
2457  int NextEnumerationIndex() {
2458    return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
2459  }
2460
2461  // Returns a new array for dictionary usage. Might return Failure.
2462  MUST_USE_RESULT static MaybeObject* Allocate(int at_least_space_for);
2463
2464  // Ensure enough space for n additional elements.
2465  MUST_USE_RESULT MaybeObject* EnsureCapacity(int n, Key key);
2466
2467#ifdef OBJECT_PRINT
2468  inline void Print() {
2469    Print(stdout);
2470  }
2471  void Print(FILE* out);
2472#endif
2473  // Returns the key (slow).
2474  Object* SlowReverseLookup(Object* value);
2475
2476  // Sets the entry to (key, value) pair.
2477  inline void SetEntry(int entry,
2478                       Object* key,
2479                       Object* value,
2480                       PropertyDetails details);
2481
2482  MUST_USE_RESULT MaybeObject* Add(Key key,
2483                                   Object* value,
2484                                   PropertyDetails details);
2485
2486 protected:
2487  // Generic at put operation.
2488  MUST_USE_RESULT MaybeObject* AtPut(Key key, Object* value);
2489
2490  // Add entry to dictionary.
2491  MUST_USE_RESULT MaybeObject* AddEntry(Key key,
2492                                        Object* value,
2493                                        PropertyDetails details,
2494                                        uint32_t hash);
2495
2496  // Generate new enumeration indices to avoid enumeration index overflow.
2497  MUST_USE_RESULT MaybeObject* GenerateNewEnumerationIndices();
2498  static const int kMaxNumberKeyIndex =
2499      HashTable<Shape, Key>::kPrefixStartIndex;
2500  static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
2501};
2502
2503
2504class StringDictionaryShape {
2505 public:
2506  static inline bool IsMatch(String* key, Object* other);
2507  static inline uint32_t Hash(String* key);
2508  static inline uint32_t HashForObject(String* key, Object* object);
2509  MUST_USE_RESULT static inline MaybeObject* AsObject(String* key);
2510  static const int kPrefixSize = 2;
2511  static const int kEntrySize = 3;
2512  static const bool kIsEnumerable = true;
2513};
2514
2515
2516class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
2517 public:
2518  static inline StringDictionary* cast(Object* obj) {
2519    ASSERT(obj->IsDictionary());
2520    return reinterpret_cast<StringDictionary*>(obj);
2521  }
2522
2523  // Copies enumerable keys to preallocated fixed array.
2524  void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
2525
2526  // For transforming properties of a JSObject.
2527  MUST_USE_RESULT MaybeObject* TransformPropertiesToFastFor(
2528      JSObject* obj,
2529      int unused_property_fields);
2530
2531  // Find entry for key otherwise return kNotFound. Optimzed version of
2532  // HashTable::FindEntry.
2533  int FindEntry(String* key);
2534};
2535
2536
2537class NumberDictionaryShape {
2538 public:
2539  static inline bool IsMatch(uint32_t key, Object* other);
2540  static inline uint32_t Hash(uint32_t key);
2541  static inline uint32_t HashForObject(uint32_t key, Object* object);
2542  MUST_USE_RESULT static inline MaybeObject* AsObject(uint32_t key);
2543  static const int kPrefixSize = 2;
2544  static const int kEntrySize = 3;
2545  static const bool kIsEnumerable = false;
2546};
2547
2548
2549class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
2550 public:
2551  static NumberDictionary* cast(Object* obj) {
2552    ASSERT(obj->IsDictionary());
2553    return reinterpret_cast<NumberDictionary*>(obj);
2554  }
2555
2556  // Type specific at put (default NONE attributes is used when adding).
2557  MUST_USE_RESULT MaybeObject* AtNumberPut(uint32_t key, Object* value);
2558  MUST_USE_RESULT MaybeObject* AddNumberEntry(uint32_t key,
2559                                              Object* value,
2560                                              PropertyDetails details);
2561
2562  // Set an existing entry or add a new one if needed.
2563  MUST_USE_RESULT MaybeObject* Set(uint32_t key,
2564                                   Object* value,
2565                                   PropertyDetails details);
2566
2567  void UpdateMaxNumberKey(uint32_t key);
2568
2569  // If slow elements are required we will never go back to fast-case
2570  // for the elements kept in this dictionary.  We require slow
2571  // elements if an element has been added at an index larger than
2572  // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
2573  // when defining a getter or setter with a number key.
2574  inline bool requires_slow_elements();
2575  inline void set_requires_slow_elements();
2576
2577  // Get the value of the max number key that has been added to this
2578  // dictionary.  max_number_key can only be called if
2579  // requires_slow_elements returns false.
2580  inline uint32_t max_number_key();
2581
2582  // Remove all entries were key is a number and (from <= key && key < to).
2583  void RemoveNumberEntries(uint32_t from, uint32_t to);
2584
2585  // Bit masks.
2586  static const int kRequiresSlowElementsMask = 1;
2587  static const int kRequiresSlowElementsTagSize = 1;
2588  static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
2589};
2590
2591
2592// JSFunctionResultCache caches results of some JSFunction invocation.
2593// It is a fixed array with fixed structure:
2594//   [0]: factory function
2595//   [1]: finger index
2596//   [2]: current cache size
2597//   [3]: dummy field.
2598// The rest of array are key/value pairs.
2599class JSFunctionResultCache: public FixedArray {
2600 public:
2601  static const int kFactoryIndex = 0;
2602  static const int kFingerIndex = kFactoryIndex + 1;
2603  static const int kCacheSizeIndex = kFingerIndex + 1;
2604  static const int kDummyIndex = kCacheSizeIndex + 1;
2605  static const int kEntriesIndex = kDummyIndex + 1;
2606
2607  static const int kEntrySize = 2;  // key + value
2608
2609  static const int kFactoryOffset = kHeaderSize;
2610  static const int kFingerOffset = kFactoryOffset + kPointerSize;
2611  static const int kCacheSizeOffset = kFingerOffset + kPointerSize;
2612
2613  inline void MakeZeroSize();
2614  inline void Clear();
2615
2616  // Casting
2617  static inline JSFunctionResultCache* cast(Object* obj);
2618
2619#ifdef DEBUG
2620  void JSFunctionResultCacheVerify();
2621#endif
2622};
2623
2624
2625// The cache for maps used by normalized (dictionary mode) objects.
2626// Such maps do not have property descriptors, so a typical program
2627// needs very limited number of distinct normalized maps.
2628class NormalizedMapCache: public FixedArray {
2629 public:
2630  static const int kEntries = 64;
2631
2632  MUST_USE_RESULT MaybeObject* Get(JSObject* object,
2633                                   PropertyNormalizationMode mode);
2634
2635  void Clear();
2636
2637  // Casting
2638  static inline NormalizedMapCache* cast(Object* obj);
2639
2640#ifdef DEBUG
2641  void NormalizedMapCacheVerify();
2642#endif
2643
2644 private:
2645  static int Hash(Map* fast);
2646
2647  static bool CheckHit(Map* slow, Map* fast, PropertyNormalizationMode mode);
2648};
2649
2650
2651// ByteArray represents fixed sized byte arrays.  Used by the outside world,
2652// such as PCRE, and also by the memory allocator and garbage collector to
2653// fill in free blocks in the heap.
2654class ByteArray: public HeapObject {
2655 public:
2656  // [length]: length of the array.
2657  inline int length();
2658  inline void set_length(int value);
2659
2660  // Setter and getter.
2661  inline byte get(int index);
2662  inline void set(int index, byte value);
2663
2664  // Treat contents as an int array.
2665  inline int get_int(int index);
2666
2667  static int SizeFor(int length) {
2668    return OBJECT_POINTER_ALIGN(kHeaderSize + length);
2669  }
2670  // We use byte arrays for free blocks in the heap.  Given a desired size in
2671  // bytes that is a multiple of the word size and big enough to hold a byte
2672  // array, this function returns the number of elements a byte array should
2673  // have.
2674  static int LengthFor(int size_in_bytes) {
2675    ASSERT(IsAligned(size_in_bytes, kPointerSize));
2676    ASSERT(size_in_bytes >= kHeaderSize);
2677    return size_in_bytes - kHeaderSize;
2678  }
2679
2680  // Returns data start address.
2681  inline Address GetDataStartAddress();
2682
2683  // Returns a pointer to the ByteArray object for a given data start address.
2684  static inline ByteArray* FromDataStartAddress(Address address);
2685
2686  // Casting.
2687  static inline ByteArray* cast(Object* obj);
2688
2689  // Dispatched behavior.
2690  inline int ByteArraySize() {
2691    return SizeFor(this->length());
2692  }
2693#ifdef OBJECT_PRINT
2694  inline void ByteArrayPrint() {
2695    ByteArrayPrint(stdout);
2696  }
2697  void ByteArrayPrint(FILE* out);
2698#endif
2699#ifdef DEBUG
2700  void ByteArrayVerify();
2701#endif
2702
2703  // Layout description.
2704  // Length is smi tagged when it is stored.
2705  static const int kLengthOffset = HeapObject::kHeaderSize;
2706  static const int kHeaderSize = kLengthOffset + kPointerSize;
2707
2708  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
2709
2710  // Maximal memory consumption for a single ByteArray.
2711  static const int kMaxSize = 512 * MB;
2712  // Maximal length of a single ByteArray.
2713  static const int kMaxLength = kMaxSize - kHeaderSize;
2714
2715 private:
2716  DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
2717};
2718
2719
2720// A PixelArray represents a fixed-size byte array with special semantics
2721// used for implementing the CanvasPixelArray object. Please see the
2722// specification at:
2723// http://www.whatwg.org/specs/web-apps/current-work/
2724//                      multipage/the-canvas-element.html#canvaspixelarray
2725// In particular, write access clamps the value written to 0 or 255 if the
2726// value written is outside this range.
2727class PixelArray: public HeapObject {
2728 public:
2729  // [length]: length of the array.
2730  inline int length();
2731  inline void set_length(int value);
2732
2733  // [external_pointer]: The pointer to the external memory area backing this
2734  // pixel array.
2735  DECL_ACCESSORS(external_pointer, uint8_t)  // Pointer to the data store.
2736
2737  // Setter and getter.
2738  inline uint8_t get(int index);
2739  inline void set(int index, uint8_t value);
2740
2741  // This accessor applies the correct conversion from Smi, HeapNumber and
2742  // undefined and clamps the converted value between 0 and 255.
2743  Object* SetValue(uint32_t index, Object* value);
2744
2745  // Casting.
2746  static inline PixelArray* cast(Object* obj);
2747
2748#ifdef OBJECT_PRINT
2749  inline void PixelArrayPrint() {
2750    PixelArrayPrint(stdout);
2751  }
2752  void PixelArrayPrint(FILE* out);
2753#endif
2754#ifdef DEBUG
2755  void PixelArrayVerify();
2756#endif  // DEBUG
2757
2758  // Maximal acceptable length for a pixel array.
2759  static const int kMaxLength = 0x3fffffff;
2760
2761  // PixelArray headers are not quadword aligned.
2762  static const int kLengthOffset = HeapObject::kHeaderSize;
2763  static const int kExternalPointerOffset =
2764      POINTER_SIZE_ALIGN(kLengthOffset + kIntSize);
2765  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2766  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
2767
2768 private:
2769  DISALLOW_IMPLICIT_CONSTRUCTORS(PixelArray);
2770};
2771
2772
2773// An ExternalArray represents a fixed-size array of primitive values
2774// which live outside the JavaScript heap. Its subclasses are used to
2775// implement the CanvasArray types being defined in the WebGL
2776// specification. As of this writing the first public draft is not yet
2777// available, but Khronos members can access the draft at:
2778//   https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
2779//
2780// The semantics of these arrays differ from CanvasPixelArray.
2781// Out-of-range values passed to the setter are converted via a C
2782// cast, not clamping. Out-of-range indices cause exceptions to be
2783// raised rather than being silently ignored.
2784class ExternalArray: public HeapObject {
2785 public:
2786  // [length]: length of the array.
2787  inline int length();
2788  inline void set_length(int value);
2789
2790  // [external_pointer]: The pointer to the external memory area backing this
2791  // external array.
2792  DECL_ACCESSORS(external_pointer, void)  // Pointer to the data store.
2793
2794  // Casting.
2795  static inline ExternalArray* cast(Object* obj);
2796
2797  // Maximal acceptable length for an external array.
2798  static const int kMaxLength = 0x3fffffff;
2799
2800  // ExternalArray headers are not quadword aligned.
2801  static const int kLengthOffset = HeapObject::kHeaderSize;
2802  static const int kExternalPointerOffset =
2803      POINTER_SIZE_ALIGN(kLengthOffset + kIntSize);
2804  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2805  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
2806
2807 private:
2808  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
2809};
2810
2811
2812class ExternalByteArray: public ExternalArray {
2813 public:
2814  // Setter and getter.
2815  inline int8_t get(int index);
2816  inline void set(int index, int8_t value);
2817
2818  // This accessor applies the correct conversion from Smi, HeapNumber
2819  // and undefined.
2820  MaybeObject* SetValue(uint32_t index, Object* value);
2821
2822  // Casting.
2823  static inline ExternalByteArray* cast(Object* obj);
2824
2825#ifdef OBJECT_PRINT
2826  inline void ExternalByteArrayPrint() {
2827    ExternalByteArrayPrint(stdout);
2828  }
2829  void ExternalByteArrayPrint(FILE* out);
2830#endif
2831#ifdef DEBUG
2832  void ExternalByteArrayVerify();
2833#endif  // DEBUG
2834
2835 private:
2836  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
2837};
2838
2839
2840class ExternalUnsignedByteArray: public ExternalArray {
2841 public:
2842  // Setter and getter.
2843  inline uint8_t get(int index);
2844  inline void set(int index, uint8_t value);
2845
2846  // This accessor applies the correct conversion from Smi, HeapNumber
2847  // and undefined.
2848  MaybeObject* SetValue(uint32_t index, Object* value);
2849
2850  // Casting.
2851  static inline ExternalUnsignedByteArray* cast(Object* obj);
2852
2853#ifdef OBJECT_PRINT
2854  inline void ExternalUnsignedByteArrayPrint() {
2855    ExternalUnsignedByteArrayPrint(stdout);
2856  }
2857  void ExternalUnsignedByteArrayPrint(FILE* out);
2858#endif
2859#ifdef DEBUG
2860  void ExternalUnsignedByteArrayVerify();
2861#endif  // DEBUG
2862
2863 private:
2864  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
2865};
2866
2867
2868class ExternalShortArray: public ExternalArray {
2869 public:
2870  // Setter and getter.
2871  inline int16_t get(int index);
2872  inline void set(int index, int16_t value);
2873
2874  // This accessor applies the correct conversion from Smi, HeapNumber
2875  // and undefined.
2876  MaybeObject* SetValue(uint32_t index, Object* value);
2877
2878  // Casting.
2879  static inline ExternalShortArray* cast(Object* obj);
2880
2881#ifdef OBJECT_PRINT
2882  inline void ExternalShortArrayPrint() {
2883    ExternalShortArrayPrint(stdout);
2884  }
2885  void ExternalShortArrayPrint(FILE* out);
2886#endif
2887#ifdef DEBUG
2888  void ExternalShortArrayVerify();
2889#endif  // DEBUG
2890
2891 private:
2892  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
2893};
2894
2895
2896class ExternalUnsignedShortArray: public ExternalArray {
2897 public:
2898  // Setter and getter.
2899  inline uint16_t get(int index);
2900  inline void set(int index, uint16_t value);
2901
2902  // This accessor applies the correct conversion from Smi, HeapNumber
2903  // and undefined.
2904  MaybeObject* SetValue(uint32_t index, Object* value);
2905
2906  // Casting.
2907  static inline ExternalUnsignedShortArray* cast(Object* obj);
2908
2909#ifdef OBJECT_PRINT
2910  inline void ExternalUnsignedShortArrayPrint() {
2911    ExternalUnsignedShortArrayPrint(stdout);
2912  }
2913  void ExternalUnsignedShortArrayPrint(FILE* out);
2914#endif
2915#ifdef DEBUG
2916  void ExternalUnsignedShortArrayVerify();
2917#endif  // DEBUG
2918
2919 private:
2920  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
2921};
2922
2923
2924class ExternalIntArray: public ExternalArray {
2925 public:
2926  // Setter and getter.
2927  inline int32_t get(int index);
2928  inline void set(int index, int32_t value);
2929
2930  // This accessor applies the correct conversion from Smi, HeapNumber
2931  // and undefined.
2932  MaybeObject* SetValue(uint32_t index, Object* value);
2933
2934  // Casting.
2935  static inline ExternalIntArray* cast(Object* obj);
2936
2937#ifdef OBJECT_PRINT
2938  inline void ExternalIntArrayPrint() {
2939    ExternalIntArrayPrint(stdout);
2940  }
2941  void ExternalIntArrayPrint(FILE* out);
2942#endif
2943#ifdef DEBUG
2944  void ExternalIntArrayVerify();
2945#endif  // DEBUG
2946
2947 private:
2948  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
2949};
2950
2951
2952class ExternalUnsignedIntArray: public ExternalArray {
2953 public:
2954  // Setter and getter.
2955  inline uint32_t get(int index);
2956  inline void set(int index, uint32_t value);
2957
2958  // This accessor applies the correct conversion from Smi, HeapNumber
2959  // and undefined.
2960  MaybeObject* SetValue(uint32_t index, Object* value);
2961
2962  // Casting.
2963  static inline ExternalUnsignedIntArray* cast(Object* obj);
2964
2965#ifdef OBJECT_PRINT
2966  inline void ExternalUnsignedIntArrayPrint() {
2967    ExternalUnsignedIntArrayPrint(stdout);
2968  }
2969  void ExternalUnsignedIntArrayPrint(FILE* out);
2970#endif
2971#ifdef DEBUG
2972  void ExternalUnsignedIntArrayVerify();
2973#endif  // DEBUG
2974
2975 private:
2976  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
2977};
2978
2979
2980class ExternalFloatArray: public ExternalArray {
2981 public:
2982  // Setter and getter.
2983  inline float get(int index);
2984  inline void set(int index, float value);
2985
2986  // This accessor applies the correct conversion from Smi, HeapNumber
2987  // and undefined.
2988  MaybeObject* SetValue(uint32_t index, Object* value);
2989
2990  // Casting.
2991  static inline ExternalFloatArray* cast(Object* obj);
2992
2993#ifdef OBJECT_PRINT
2994  inline void ExternalFloatArrayPrint() {
2995    ExternalFloatArrayPrint(stdout);
2996  }
2997  void ExternalFloatArrayPrint(FILE* out);
2998#endif
2999#ifdef DEBUG
3000  void ExternalFloatArrayVerify();
3001#endif  // DEBUG
3002
3003 private:
3004  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
3005};
3006
3007
3008// DeoptimizationInputData is a fixed array used to hold the deoptimization
3009// data for code generated by the Hydrogen/Lithium compiler.  It also
3010// contains information about functions that were inlined.  If N different
3011// functions were inlined then first N elements of the literal array will
3012// contain these functions.
3013//
3014// It can be empty.
3015class DeoptimizationInputData: public FixedArray {
3016 public:
3017  // Layout description.  Indices in the array.
3018  static const int kTranslationByteArrayIndex = 0;
3019  static const int kInlinedFunctionCountIndex = 1;
3020  static const int kLiteralArrayIndex = 2;
3021  static const int kOsrAstIdIndex = 3;
3022  static const int kOsrPcOffsetIndex = 4;
3023  static const int kFirstDeoptEntryIndex = 5;
3024
3025  // Offsets of deopt entry elements relative to the start of the entry.
3026  static const int kAstIdOffset = 0;
3027  static const int kTranslationIndexOffset = 1;
3028  static const int kArgumentsStackHeightOffset = 2;
3029  static const int kDeoptEntrySize = 3;
3030
3031  // Simple element accessors.
3032#define DEFINE_ELEMENT_ACCESSORS(name, type)      \
3033  type* name() {                                  \
3034    return type::cast(get(k##name##Index));       \
3035  }                                               \
3036  void Set##name(type* value) {                   \
3037    set(k##name##Index, value);                   \
3038  }
3039
3040  DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
3041  DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
3042  DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
3043  DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi)
3044  DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
3045
3046  // Unchecked accessor to be used during GC.
3047  FixedArray* UncheckedLiteralArray() {
3048    return reinterpret_cast<FixedArray*>(get(kLiteralArrayIndex));
3049  }
3050
3051#undef DEFINE_ELEMENT_ACCESSORS
3052
3053  // Accessors for elements of the ith deoptimization entry.
3054#define DEFINE_ENTRY_ACCESSORS(name, type)                       \
3055  type* name(int i) {                                            \
3056    return type::cast(get(IndexForEntry(i) + k##name##Offset));  \
3057  }                                                              \
3058  void Set##name(int i, type* value) {                           \
3059    set(IndexForEntry(i) + k##name##Offset, value);              \
3060  }
3061
3062  DEFINE_ENTRY_ACCESSORS(AstId, Smi)
3063  DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi)
3064  DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
3065
3066#undef DEFINE_ENTRY_ACCESSORS
3067
3068  int DeoptCount() {
3069    return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
3070  }
3071
3072  // Allocates a DeoptimizationInputData.
3073  MUST_USE_RESULT static MaybeObject* Allocate(int deopt_entry_count,
3074                                               PretenureFlag pretenure);
3075
3076  // Casting.
3077  static inline DeoptimizationInputData* cast(Object* obj);
3078
3079#ifdef OBJECT_PRINT
3080  void DeoptimizationInputDataPrint(FILE* out);
3081#endif
3082
3083 private:
3084  static int IndexForEntry(int i) {
3085    return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
3086  }
3087
3088  static int LengthFor(int entry_count) {
3089    return IndexForEntry(entry_count);
3090  }
3091};
3092
3093
3094// DeoptimizationOutputData is a fixed array used to hold the deoptimization
3095// data for code generated by the full compiler.
3096// The format of the these objects is
3097//   [i * 2]: Ast ID for ith deoptimization.
3098//   [i * 2 + 1]: PC and state of ith deoptimization
3099class DeoptimizationOutputData: public FixedArray {
3100 public:
3101  int DeoptPoints() { return length() / 2; }
3102  Smi* AstId(int index) { return Smi::cast(get(index * 2)); }
3103  void SetAstId(int index, Smi* id) { set(index * 2, id); }
3104  Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); }
3105  void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); }
3106
3107  static int LengthOfFixedArray(int deopt_points) {
3108    return deopt_points * 2;
3109  }
3110
3111  // Allocates a DeoptimizationOutputData.
3112  MUST_USE_RESULT static MaybeObject* Allocate(int number_of_deopt_points,
3113                                               PretenureFlag pretenure);
3114
3115  // Casting.
3116  static inline DeoptimizationOutputData* cast(Object* obj);
3117
3118#ifdef OBJECT_PRINT
3119  void DeoptimizationOutputDataPrint(FILE* out);
3120#endif
3121};
3122
3123
3124// Code describes objects with on-the-fly generated machine code.
3125class Code: public HeapObject {
3126 public:
3127  // Opaque data type for encapsulating code flags like kind, inline
3128  // cache state, and arguments count.
3129  // FLAGS_MIN_VALUE and FLAGS_MAX_VALUE are specified to ensure that
3130  // enumeration type has correct value range (see Issue 830 for more details).
3131  enum Flags {
3132    FLAGS_MIN_VALUE = kMinInt,
3133    FLAGS_MAX_VALUE = kMaxInt
3134  };
3135
3136  enum Kind {
3137    FUNCTION,
3138    OPTIMIZED_FUNCTION,
3139    STUB,
3140    BUILTIN,
3141    LOAD_IC,
3142    KEYED_LOAD_IC,
3143    CALL_IC,
3144    KEYED_CALL_IC,
3145    STORE_IC,
3146    KEYED_STORE_IC,
3147    BINARY_OP_IC,
3148    TYPE_RECORDING_BINARY_OP_IC,
3149    COMPARE_IC,
3150    // No more than 16 kinds. The value currently encoded in four bits in
3151    // Flags.
3152
3153    // Pseudo-kinds.
3154    REGEXP = BUILTIN,
3155    FIRST_IC_KIND = LOAD_IC,
3156    LAST_IC_KIND = COMPARE_IC
3157  };
3158
3159  enum {
3160    NUMBER_OF_KINDS = LAST_IC_KIND + 1
3161  };
3162
3163#ifdef ENABLE_DISASSEMBLER
3164  // Printing
3165  static const char* Kind2String(Kind kind);
3166  static const char* ICState2String(InlineCacheState state);
3167  static const char* PropertyType2String(PropertyType type);
3168  inline void Disassemble(const char* name) {
3169    Disassemble(name, stdout);
3170  }
3171  void Disassemble(const char* name, FILE* out);
3172#endif  // ENABLE_DISASSEMBLER
3173
3174  // [instruction_size]: Size of the native instructions
3175  inline int instruction_size();
3176  inline void set_instruction_size(int value);
3177
3178  // [relocation_info]: Code relocation information
3179  DECL_ACCESSORS(relocation_info, ByteArray)
3180  void InvalidateRelocation();
3181
3182  // [deoptimization_data]: Array containing data for deopt.
3183  DECL_ACCESSORS(deoptimization_data, FixedArray)
3184
3185  // Unchecked accessors to be used during GC.
3186  inline ByteArray* unchecked_relocation_info();
3187  inline FixedArray* unchecked_deoptimization_data();
3188
3189  inline int relocation_size();
3190
3191  // [flags]: Various code flags.
3192  inline Flags flags();
3193  inline void set_flags(Flags flags);
3194
3195  // [flags]: Access to specific code flags.
3196  inline Kind kind();
3197  inline InlineCacheState ic_state();  // Only valid for IC stubs.
3198  inline InLoopFlag ic_in_loop();  // Only valid for IC stubs.
3199  inline PropertyType type();  // Only valid for monomorphic IC stubs.
3200  inline int arguments_count();  // Only valid for call IC stubs.
3201
3202  // Testers for IC stub kinds.
3203  inline bool is_inline_cache_stub();
3204  inline bool is_load_stub() { return kind() == LOAD_IC; }
3205  inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
3206  inline bool is_store_stub() { return kind() == STORE_IC; }
3207  inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
3208  inline bool is_call_stub() { return kind() == CALL_IC; }
3209  inline bool is_keyed_call_stub() { return kind() == KEYED_CALL_IC; }
3210  inline bool is_binary_op_stub() { return kind() == BINARY_OP_IC; }
3211  inline bool is_type_recording_binary_op_stub() {
3212    return kind() == TYPE_RECORDING_BINARY_OP_IC;
3213  }
3214  inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; }
3215
3216  // [major_key]: For kind STUB or BINARY_OP_IC, the major key.
3217  inline int major_key();
3218  inline void set_major_key(int value);
3219
3220  // [optimizable]: For FUNCTION kind, tells if it is optimizable.
3221  inline bool optimizable();
3222  inline void set_optimizable(bool value);
3223
3224  // [has_deoptimization_support]: For FUNCTION kind, tells if it has
3225  // deoptimization support.
3226  inline bool has_deoptimization_support();
3227  inline void set_has_deoptimization_support(bool value);
3228
3229  // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
3230  // how long the function has been marked for OSR and therefore which
3231  // level of loop nesting we are willing to do on-stack replacement
3232  // for.
3233  inline void set_allow_osr_at_loop_nesting_level(int level);
3234  inline int allow_osr_at_loop_nesting_level();
3235
3236  // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
3237  // reserved in the code prologue.
3238  inline unsigned stack_slots();
3239  inline void set_stack_slots(unsigned slots);
3240
3241  // [safepoint_table_start]: For kind OPTIMIZED_CODE, the offset in
3242  // the instruction stream where the safepoint table starts.
3243  inline unsigned safepoint_table_start();
3244  inline void set_safepoint_table_start(unsigned offset);
3245
3246  // [stack_check_table_start]: For kind FUNCTION, the offset in the
3247  // instruction stream where the stack check table starts.
3248  inline unsigned stack_check_table_start();
3249  inline void set_stack_check_table_start(unsigned offset);
3250
3251  // [check type]: For kind CALL_IC, tells how to check if the
3252  // receiver is valid for the given call.
3253  inline CheckType check_type();
3254  inline void set_check_type(CheckType value);
3255
3256  // [binary op type]: For all BINARY_OP_IC.
3257  inline byte binary_op_type();
3258  inline void set_binary_op_type(byte value);
3259
3260  // [type-recording binary op type]: For all TYPE_RECORDING_BINARY_OP_IC.
3261  inline byte type_recording_binary_op_type();
3262  inline void set_type_recording_binary_op_type(byte value);
3263  inline byte type_recording_binary_op_result_type();
3264  inline void set_type_recording_binary_op_result_type(byte value);
3265
3266  // [compare state]: For kind compare IC stubs, tells what state the
3267  // stub is in.
3268  inline byte compare_state();
3269  inline void set_compare_state(byte value);
3270
3271  // Get the safepoint entry for the given pc. Returns NULL for
3272  // non-safepoint pcs.
3273  uint8_t* GetSafepointEntry(Address pc);
3274
3275  // Mark this code object as not having a stack check table.  Assumes kind
3276  // is FUNCTION.
3277  void SetNoStackCheckTable();
3278
3279  // Find the first map in an IC stub.
3280  Map* FindFirstMap();
3281
3282  // Flags operations.
3283  static inline Flags ComputeFlags(Kind kind,
3284                                   InLoopFlag in_loop = NOT_IN_LOOP,
3285                                   InlineCacheState ic_state = UNINITIALIZED,
3286                                   PropertyType type = NORMAL,
3287                                   int argc = -1,
3288                                   InlineCacheHolderFlag holder = OWN_MAP);
3289
3290  static inline Flags ComputeMonomorphicFlags(
3291      Kind kind,
3292      PropertyType type,
3293      InlineCacheHolderFlag holder = OWN_MAP,
3294      InLoopFlag in_loop = NOT_IN_LOOP,
3295      int argc = -1);
3296
3297  static inline Kind ExtractKindFromFlags(Flags flags);
3298  static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
3299  static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
3300  static inline PropertyType ExtractTypeFromFlags(Flags flags);
3301  static inline int ExtractArgumentsCountFromFlags(Flags flags);
3302  static inline InlineCacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
3303  static inline Flags RemoveTypeFromFlags(Flags flags);
3304
3305  // Convert a target address into a code object.
3306  static inline Code* GetCodeFromTargetAddress(Address address);
3307
3308  // Convert an entry address into an object.
3309  static inline Object* GetObjectFromEntryAddress(Address location_of_address);
3310
3311  // Returns the address of the first instruction.
3312  inline byte* instruction_start();
3313
3314  // Returns the address right after the last instruction.
3315  inline byte* instruction_end();
3316
3317  // Returns the size of the instructions, padding, and relocation information.
3318  inline int body_size();
3319
3320  // Returns the address of the first relocation info (read backwards!).
3321  inline byte* relocation_start();
3322
3323  // Code entry point.
3324  inline byte* entry();
3325
3326  // Returns true if pc is inside this object's instructions.
3327  inline bool contains(byte* pc);
3328
3329  // Relocate the code by delta bytes. Called to signal that this code
3330  // object has been moved by delta bytes.
3331  void Relocate(intptr_t delta);
3332
3333  // Migrate code described by desc.
3334  void CopyFrom(const CodeDesc& desc);
3335
3336  // Returns the object size for a given body (used for allocation).
3337  static int SizeFor(int body_size) {
3338    ASSERT_SIZE_TAG_ALIGNED(body_size);
3339    return RoundUp(kHeaderSize + body_size, kCodeAlignment);
3340  }
3341
3342  // Calculate the size of the code object to report for log events. This takes
3343  // the layout of the code object into account.
3344  int ExecutableSize() {
3345    // Check that the assumptions about the layout of the code object holds.
3346    ASSERT_EQ(static_cast<int>(instruction_start() - address()),
3347              Code::kHeaderSize);
3348    return instruction_size() + Code::kHeaderSize;
3349  }
3350
3351  // Locating source position.
3352  int SourcePosition(Address pc);
3353  int SourceStatementPosition(Address pc);
3354
3355  // Casting.
3356  static inline Code* cast(Object* obj);
3357
3358  // Dispatched behavior.
3359  int CodeSize() { return SizeFor(body_size()); }
3360  inline void CodeIterateBody(ObjectVisitor* v);
3361
3362  template<typename StaticVisitor>
3363  inline void CodeIterateBody();
3364#ifdef OBJECT_PRINT
3365  inline void CodePrint() {
3366    CodePrint(stdout);
3367  }
3368  void CodePrint(FILE* out);
3369#endif
3370#ifdef DEBUG
3371  void CodeVerify();
3372#endif
3373
3374  // Max loop nesting marker used to postpose OSR. We don't take loop
3375  // nesting that is deeper than 5 levels into account.
3376  static const int kMaxLoopNestingMarker = 6;
3377
3378  // Layout description.
3379  static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
3380  static const int kRelocationInfoOffset = kInstructionSizeOffset + kIntSize;
3381  static const int kDeoptimizationDataOffset =
3382      kRelocationInfoOffset + kPointerSize;
3383  static const int kFlagsOffset = kDeoptimizationDataOffset + kPointerSize;
3384  static const int kKindSpecificFlagsOffset  = kFlagsOffset + kIntSize;
3385
3386  static const int kKindSpecificFlagsSize = 2 * kIntSize;
3387
3388  static const int kHeaderPaddingStart = kKindSpecificFlagsOffset +
3389      kKindSpecificFlagsSize;
3390
3391  // Add padding to align the instruction start following right after
3392  // the Code object header.
3393  static const int kHeaderSize =
3394      (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
3395
3396  // Byte offsets within kKindSpecificFlagsOffset.
3397  static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset;
3398  static const int kOptimizableOffset = kKindSpecificFlagsOffset;
3399  static const int kStackSlotsOffset = kKindSpecificFlagsOffset;
3400  static const int kCheckTypeOffset = kKindSpecificFlagsOffset;
3401
3402  static const int kCompareStateOffset = kStubMajorKeyOffset + 1;
3403  static const int kBinaryOpTypeOffset = kStubMajorKeyOffset + 1;
3404  static const int kHasDeoptimizationSupportOffset = kOptimizableOffset + 1;
3405
3406  static const int kBinaryOpReturnTypeOffset = kBinaryOpTypeOffset + 1;
3407  static const int kAllowOSRAtLoopNestingLevelOffset =
3408      kHasDeoptimizationSupportOffset + 1;
3409
3410  static const int kSafepointTableStartOffset = kStackSlotsOffset + kIntSize;
3411  static const int kStackCheckTableStartOffset = kStackSlotsOffset + kIntSize;
3412
3413  // Flags layout.
3414  static const int kFlagsICStateShift        = 0;
3415  static const int kFlagsICInLoopShift       = 3;
3416  static const int kFlagsTypeShift           = 4;
3417  static const int kFlagsKindShift           = 7;
3418  static const int kFlagsICHolderShift       = 11;
3419  static const int kFlagsArgumentsCountShift = 12;
3420
3421  static const int kFlagsICStateMask        = 0x00000007;  // 00000000111
3422  static const int kFlagsICInLoopMask       = 0x00000008;  // 00000001000
3423  static const int kFlagsTypeMask           = 0x00000070;  // 00001110000
3424  static const int kFlagsKindMask           = 0x00000780;  // 11110000000
3425  static const int kFlagsCacheInPrototypeMapMask = 0x00000800;
3426  static const int kFlagsArgumentsCountMask = 0xFFFFF000;
3427
3428  static const int kFlagsNotUsedInLookup =
3429      (kFlagsICInLoopMask | kFlagsTypeMask | kFlagsCacheInPrototypeMapMask);
3430
3431 private:
3432  DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
3433};
3434
3435
3436// All heap objects have a Map that describes their structure.
3437//  A Map contains information about:
3438//  - Size information about the object
3439//  - How to iterate over an object (for garbage collection)
3440class Map: public HeapObject {
3441 public:
3442  // Instance size.
3443  // Size in bytes or kVariableSizeSentinel if instances do not have
3444  // a fixed size.
3445  inline int instance_size();
3446  inline void set_instance_size(int value);
3447
3448  // Count of properties allocated in the object.
3449  inline int inobject_properties();
3450  inline void set_inobject_properties(int value);
3451
3452  // Count of property fields pre-allocated in the object when first allocated.
3453  inline int pre_allocated_property_fields();
3454  inline void set_pre_allocated_property_fields(int value);
3455
3456  // Instance type.
3457  inline InstanceType instance_type();
3458  inline void set_instance_type(InstanceType value);
3459
3460  // Tells how many unused property fields are available in the
3461  // instance (only used for JSObject in fast mode).
3462  inline int unused_property_fields();
3463  inline void set_unused_property_fields(int value);
3464
3465  // Bit field.
3466  inline byte bit_field();
3467  inline void set_bit_field(byte value);
3468
3469  // Bit field 2.
3470  inline byte bit_field2();
3471  inline void set_bit_field2(byte value);
3472
3473  // Tells whether the object in the prototype property will be used
3474  // for instances created from this function.  If the prototype
3475  // property is set to a value that is not a JSObject, the prototype
3476  // property will not be used to create instances of the function.
3477  // See ECMA-262, 13.2.2.
3478  inline void set_non_instance_prototype(bool value);
3479  inline bool has_non_instance_prototype();
3480
3481  // Tells whether function has special prototype property. If not, prototype
3482  // property will not be created when accessed (will return undefined),
3483  // and construction from this function will not be allowed.
3484  inline void set_function_with_prototype(bool value);
3485  inline bool function_with_prototype();
3486
3487  // Tells whether the instance with this map should be ignored by the
3488  // __proto__ accessor.
3489  inline void set_is_hidden_prototype() {
3490    set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
3491  }
3492
3493  inline bool is_hidden_prototype() {
3494    return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
3495  }
3496
3497  // Records and queries whether the instance has a named interceptor.
3498  inline void set_has_named_interceptor() {
3499    set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
3500  }
3501
3502  inline bool has_named_interceptor() {
3503    return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
3504  }
3505
3506  // Records and queries whether the instance has an indexed interceptor.
3507  inline void set_has_indexed_interceptor() {
3508    set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
3509  }
3510
3511  inline bool has_indexed_interceptor() {
3512    return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
3513  }
3514
3515  // Tells whether the instance is undetectable.
3516  // An undetectable object is a special class of JSObject: 'typeof' operator
3517  // returns undefined, ToBoolean returns false. Otherwise it behaves like
3518  // a normal JS object.  It is useful for implementing undetectable
3519  // document.all in Firefox & Safari.
3520  // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
3521  inline void set_is_undetectable() {
3522    set_bit_field(bit_field() | (1 << kIsUndetectable));
3523  }
3524
3525  inline bool is_undetectable() {
3526    return ((1 << kIsUndetectable) & bit_field()) != 0;
3527  }
3528
3529  // Tells whether the instance has a call-as-function handler.
3530  inline void set_has_instance_call_handler() {
3531    set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
3532  }
3533
3534  inline bool has_instance_call_handler() {
3535    return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
3536  }
3537
3538  inline void set_is_extensible(bool value);
3539  inline bool is_extensible();
3540
3541  // Tells whether the instance has fast elements.
3542  // Equivalent to instance->GetElementsKind() == FAST_ELEMENTS.
3543  inline void set_has_fast_elements(bool value) {
3544    if (value) {
3545      set_bit_field2(bit_field2() | (1 << kHasFastElements));
3546    } else {
3547      set_bit_field2(bit_field2() & ~(1 << kHasFastElements));
3548    }
3549  }
3550
3551  inline bool has_fast_elements() {
3552    return ((1 << kHasFastElements) & bit_field2()) != 0;
3553  }
3554
3555  // Tells whether the map is attached to SharedFunctionInfo
3556  // (for inobject slack tracking).
3557  inline void set_attached_to_shared_function_info(bool value);
3558
3559  inline bool attached_to_shared_function_info();
3560
3561  // Tells whether the map is shared between objects that may have different
3562  // behavior. If true, the map should never be modified, instead a clone
3563  // should be created and modified.
3564  inline void set_is_shared(bool value);
3565
3566  inline bool is_shared();
3567
3568  // Tells whether the instance needs security checks when accessing its
3569  // properties.
3570  inline void set_is_access_check_needed(bool access_check_needed);
3571  inline bool is_access_check_needed();
3572
3573  // [prototype]: implicit prototype object.
3574  DECL_ACCESSORS(prototype, Object)
3575
3576  // [constructor]: points back to the function responsible for this map.
3577  DECL_ACCESSORS(constructor, Object)
3578
3579  inline JSFunction* unchecked_constructor();
3580
3581  // [instance descriptors]: describes the object.
3582  DECL_ACCESSORS(instance_descriptors, DescriptorArray)
3583
3584  // [stub cache]: contains stubs compiled for this map.
3585  DECL_ACCESSORS(code_cache, Object)
3586
3587  // Lookup in the map's instance descriptors and fill out the result
3588  // with the given holder if the name is found. The holder may be
3589  // NULL when this function is used from the compiler.
3590  void LookupInDescriptors(JSObject* holder,
3591                           String* name,
3592                           LookupResult* result);
3593
3594  MUST_USE_RESULT MaybeObject* CopyDropDescriptors();
3595
3596  MUST_USE_RESULT MaybeObject* CopyNormalized(PropertyNormalizationMode mode,
3597                                              NormalizedMapSharingMode sharing);
3598
3599  // Returns a copy of the map, with all transitions dropped from the
3600  // instance descriptors.
3601  MUST_USE_RESULT MaybeObject* CopyDropTransitions();
3602
3603  // Returns this map if it has the fast elements bit set, otherwise
3604  // returns a copy of the map, with all transitions dropped from the
3605  // descriptors and the fast elements bit set.
3606  MUST_USE_RESULT inline MaybeObject* GetFastElementsMap();
3607
3608  // Returns this map if it has the fast elements bit cleared,
3609  // otherwise returns a copy of the map, with all transitions dropped
3610  // from the descriptors and the fast elements bit cleared.
3611  MUST_USE_RESULT inline MaybeObject* GetSlowElementsMap();
3612
3613  // Returns the property index for name (only valid for FAST MODE).
3614  int PropertyIndexFor(String* name);
3615
3616  // Returns the next free property index (only valid for FAST MODE).
3617  int NextFreePropertyIndex();
3618
3619  // Returns the number of properties described in instance_descriptors.
3620  int NumberOfDescribedProperties();
3621
3622  // Casting.
3623  static inline Map* cast(Object* obj);
3624
3625  // Locate an accessor in the instance descriptor.
3626  AccessorDescriptor* FindAccessor(String* name);
3627
3628  // Code cache operations.
3629
3630  // Clears the code cache.
3631  inline void ClearCodeCache();
3632
3633  // Update code cache.
3634  MUST_USE_RESULT MaybeObject* UpdateCodeCache(String* name, Code* code);
3635
3636  // Returns the found code or undefined if absent.
3637  Object* FindInCodeCache(String* name, Code::Flags flags);
3638
3639  // Returns the non-negative index of the code object if it is in the
3640  // cache and -1 otherwise.
3641  int IndexInCodeCache(Object* name, Code* code);
3642
3643  // Removes a code object from the code cache at the given index.
3644  void RemoveFromCodeCache(String* name, Code* code, int index);
3645
3646  // For every transition in this map, makes the transition's
3647  // target's prototype pointer point back to this map.
3648  // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
3649  void CreateBackPointers();
3650
3651  // Set all map transitions from this map to dead maps to null.
3652  // Also, restore the original prototype on the targets of these
3653  // transitions, so that we do not process this map again while
3654  // following back pointers.
3655  void ClearNonLiveTransitions(Object* real_prototype);
3656
3657  // Dispatched behavior.
3658#ifdef OBJECT_PRINT
3659  inline void MapPrint() {
3660    MapPrint(stdout);
3661  }
3662  void MapPrint(FILE* out);
3663#endif
3664#ifdef DEBUG
3665  void MapVerify();
3666  void SharedMapVerify();
3667#endif
3668
3669  inline int visitor_id();
3670  inline void set_visitor_id(int visitor_id);
3671
3672  typedef void (*TraverseCallback)(Map* map, void* data);
3673
3674  void TraverseTransitionTree(TraverseCallback callback, void* data);
3675
3676  static const int kMaxPreAllocatedPropertyFields = 255;
3677
3678  // Layout description.
3679  static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
3680  static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
3681  static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
3682  static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
3683  static const int kInstanceDescriptorsOffset =
3684      kConstructorOffset + kPointerSize;
3685  static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
3686  static const int kPadStart = kCodeCacheOffset + kPointerSize;
3687  static const int kSize = MAP_POINTER_ALIGN(kPadStart);
3688
3689  // Layout of pointer fields. Heap iteration code relies on them
3690  // being continiously allocated.
3691  static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
3692  static const int kPointerFieldsEndOffset =
3693      Map::kCodeCacheOffset + kPointerSize;
3694
3695  // Byte offsets within kInstanceSizesOffset.
3696  static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
3697  static const int kInObjectPropertiesByte = 1;
3698  static const int kInObjectPropertiesOffset =
3699      kInstanceSizesOffset + kInObjectPropertiesByte;
3700  static const int kPreAllocatedPropertyFieldsByte = 2;
3701  static const int kPreAllocatedPropertyFieldsOffset =
3702      kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
3703  static const int kVisitorIdByte = 3;
3704  static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
3705
3706  // Byte offsets within kInstanceAttributesOffset attributes.
3707  static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
3708  static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
3709  static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
3710  static const int kBitField2Offset = kInstanceAttributesOffset + 3;
3711
3712  STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
3713
3714  // Bit positions for bit field.
3715  static const int kUnused = 0;  // To be used for marking recently used maps.
3716  static const int kHasNonInstancePrototype = 1;
3717  static const int kIsHiddenPrototype = 2;
3718  static const int kHasNamedInterceptor = 3;
3719  static const int kHasIndexedInterceptor = 4;
3720  static const int kIsUndetectable = 5;
3721  static const int kHasInstanceCallHandler = 6;
3722  static const int kIsAccessCheckNeeded = 7;
3723
3724  // Bit positions for bit field 2
3725  static const int kIsExtensible = 0;
3726  static const int kFunctionWithPrototype = 1;
3727  static const int kHasFastElements = 2;
3728  static const int kStringWrapperSafeForDefaultValueOf = 3;
3729  static const int kAttachedToSharedFunctionInfo = 4;
3730  static const int kIsShared = 5;
3731
3732  // Layout of the default cache. It holds alternating name and code objects.
3733  static const int kCodeCacheEntrySize = 2;
3734  static const int kCodeCacheEntryNameOffset = 0;
3735  static const int kCodeCacheEntryCodeOffset = 1;
3736
3737  typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
3738                              kPointerFieldsEndOffset,
3739                              kSize> BodyDescriptor;
3740
3741 private:
3742  DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
3743};
3744
3745
3746// An abstract superclass, a marker class really, for simple structure classes.
3747// It doesn't carry much functionality but allows struct classes to me
3748// identified in the type system.
3749class Struct: public HeapObject {
3750 public:
3751  inline void InitializeBody(int object_size);
3752  static inline Struct* cast(Object* that);
3753};
3754
3755
3756// Script describes a script which has been added to the VM.
3757class Script: public Struct {
3758 public:
3759  // Script types.
3760  enum Type {
3761    TYPE_NATIVE = 0,
3762    TYPE_EXTENSION = 1,
3763    TYPE_NORMAL = 2
3764  };
3765
3766  // Script compilation types.
3767  enum CompilationType {
3768    COMPILATION_TYPE_HOST = 0,
3769    COMPILATION_TYPE_EVAL = 1
3770  };
3771
3772  // [source]: the script source.
3773  DECL_ACCESSORS(source, Object)
3774
3775  // [name]: the script name.
3776  DECL_ACCESSORS(name, Object)
3777
3778  // [id]: the script id.
3779  DECL_ACCESSORS(id, Object)
3780
3781  // [line_offset]: script line offset in resource from where it was extracted.
3782  DECL_ACCESSORS(line_offset, Smi)
3783
3784  // [column_offset]: script column offset in resource from where it was
3785  // extracted.
3786  DECL_ACCESSORS(column_offset, Smi)
3787
3788  // [data]: additional data associated with this script.
3789  DECL_ACCESSORS(data, Object)
3790
3791  // [context_data]: context data for the context this script was compiled in.
3792  DECL_ACCESSORS(context_data, Object)
3793
3794  // [wrapper]: the wrapper cache.
3795  DECL_ACCESSORS(wrapper, Proxy)
3796
3797  // [type]: the script type.
3798  DECL_ACCESSORS(type, Smi)
3799
3800  // [compilation]: how the the script was compiled.
3801  DECL_ACCESSORS(compilation_type, Smi)
3802
3803  // [line_ends]: FixedArray of line ends positions.
3804  DECL_ACCESSORS(line_ends, Object)
3805
3806  // [eval_from_shared]: for eval scripts the shared funcion info for the
3807  // function from which eval was called.
3808  DECL_ACCESSORS(eval_from_shared, Object)
3809
3810  // [eval_from_instructions_offset]: the instruction offset in the code for the
3811  // function from which eval was called where eval was called.
3812  DECL_ACCESSORS(eval_from_instructions_offset, Smi)
3813
3814  static inline Script* cast(Object* obj);
3815
3816  // If script source is an external string, check that the underlying
3817  // resource is accessible. Otherwise, always return true.
3818  inline bool HasValidSource();
3819
3820#ifdef OBJECT_PRINT
3821  inline void ScriptPrint() {
3822    ScriptPrint(stdout);
3823  }
3824  void ScriptPrint(FILE* out);
3825#endif
3826#ifdef DEBUG
3827  void ScriptVerify();
3828#endif
3829
3830  static const int kSourceOffset = HeapObject::kHeaderSize;
3831  static const int kNameOffset = kSourceOffset + kPointerSize;
3832  static const int kLineOffsetOffset = kNameOffset + kPointerSize;
3833  static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
3834  static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
3835  static const int kContextOffset = kDataOffset + kPointerSize;
3836  static const int kWrapperOffset = kContextOffset + kPointerSize;
3837  static const int kTypeOffset = kWrapperOffset + kPointerSize;
3838  static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
3839  static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
3840  static const int kIdOffset = kLineEndsOffset + kPointerSize;
3841  static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
3842  static const int kEvalFrominstructionsOffsetOffset =
3843      kEvalFromSharedOffset + kPointerSize;
3844  static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
3845
3846 private:
3847  DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
3848};
3849
3850
3851// List of builtin functions we want to identify to improve code
3852// generation.
3853//
3854// Each entry has a name of a global object property holding an object
3855// optionally followed by ".prototype", a name of a builtin function
3856// on the object (the one the id is set for), and a label.
3857//
3858// Installation of ids for the selected builtin functions is handled
3859// by the bootstrapper.
3860//
3861// NOTE: Order is important: math functions should be at the end of
3862// the list and MathFloor should be the first math function.
3863#define FUNCTIONS_WITH_ID_LIST(V)                   \
3864  V(Array.prototype, push, ArrayPush)               \
3865  V(Array.prototype, pop, ArrayPop)                 \
3866  V(String.prototype, charCodeAt, StringCharCodeAt) \
3867  V(String.prototype, charAt, StringCharAt)         \
3868  V(String, fromCharCode, StringFromCharCode)       \
3869  V(Math, floor, MathFloor)                         \
3870  V(Math, round, MathRound)                         \
3871  V(Math, ceil, MathCeil)                           \
3872  V(Math, abs, MathAbs)                             \
3873  V(Math, log, MathLog)                             \
3874  V(Math, sin, MathSin)                             \
3875  V(Math, cos, MathCos)                             \
3876  V(Math, tan, MathTan)                             \
3877  V(Math, asin, MathASin)                           \
3878  V(Math, acos, MathACos)                           \
3879  V(Math, atan, MathATan)                           \
3880  V(Math, exp, MathExp)                             \
3881  V(Math, sqrt, MathSqrt)                           \
3882  V(Math, pow, MathPow)
3883
3884
3885enum BuiltinFunctionId {
3886#define DECLARE_FUNCTION_ID(ignored1, ignore2, name)    \
3887  k##name,
3888  FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
3889#undef DECLARE_FUNCTION_ID
3890  // Fake id for a special case of Math.pow. Note, it continues the
3891  // list of math functions.
3892  kMathPowHalf,
3893  kFirstMathFunctionId = kMathFloor
3894};
3895
3896
3897// SharedFunctionInfo describes the JSFunction information that can be
3898// shared by multiple instances of the function.
3899class SharedFunctionInfo: public HeapObject {
3900 public:
3901  // [name]: Function name.
3902  DECL_ACCESSORS(name, Object)
3903
3904  // [code]: Function code.
3905  DECL_ACCESSORS(code, Code)
3906
3907  // [scope_info]: Scope info.
3908  DECL_ACCESSORS(scope_info, SerializedScopeInfo)
3909
3910  // [construct stub]: Code stub for constructing instances of this function.
3911  DECL_ACCESSORS(construct_stub, Code)
3912
3913  inline Code* unchecked_code();
3914
3915  // Returns if this function has been compiled to native code yet.
3916  inline bool is_compiled();
3917
3918  // [length]: The function length - usually the number of declared parameters.
3919  // Use up to 2^30 parameters.
3920  inline int length();
3921  inline void set_length(int value);
3922
3923  // [formal parameter count]: The declared number of parameters.
3924  inline int formal_parameter_count();
3925  inline void set_formal_parameter_count(int value);
3926
3927  // Set the formal parameter count so the function code will be
3928  // called without using argument adaptor frames.
3929  inline void DontAdaptArguments();
3930
3931  // [expected_nof_properties]: Expected number of properties for the function.
3932  inline int expected_nof_properties();
3933  inline void set_expected_nof_properties(int value);
3934
3935  // Inobject slack tracking is the way to reclaim unused inobject space.
3936  //
3937  // The instance size is initially determined by adding some slack to
3938  // expected_nof_properties (to allow for a few extra properties added
3939  // after the constructor). There is no guarantee that the extra space
3940  // will not be wasted.
3941  //
3942  // Here is the algorithm to reclaim the unused inobject space:
3943  // - Detect the first constructor call for this SharedFunctionInfo.
3944  //   When it happens enter the "in progress" state: remember the
3945  //   constructor's initial_map and install a special construct stub that
3946  //   counts constructor calls.
3947  // - While the tracking is in progress create objects filled with
3948  //   one_pointer_filler_map instead of undefined_value. This way they can be
3949  //   resized quickly and safely.
3950  // - Once enough (kGenerousAllocationCount) objects have been created
3951  //   compute the 'slack' (traverse the map transition tree starting from the
3952  //   initial_map and find the lowest value of unused_property_fields).
3953  // - Traverse the transition tree again and decrease the instance size
3954  //   of every map. Existing objects will resize automatically (they are
3955  //   filled with one_pointer_filler_map). All further allocations will
3956  //   use the adjusted instance size.
3957  // - Decrease expected_nof_properties so that an allocations made from
3958  //   another context will use the adjusted instance size too.
3959  // - Exit "in progress" state by clearing the reference to the initial_map
3960  //   and setting the regular construct stub (generic or inline).
3961  //
3962  //  The above is the main event sequence. Some special cases are possible
3963  //  while the tracking is in progress:
3964  //
3965  // - GC occurs.
3966  //   Check if the initial_map is referenced by any live objects (except this
3967  //   SharedFunctionInfo). If it is, continue tracking as usual.
3968  //   If it is not, clear the reference and reset the tracking state. The
3969  //   tracking will be initiated again on the next constructor call.
3970  //
3971  // - The constructor is called from another context.
3972  //   Immediately complete the tracking, perform all the necessary changes
3973  //   to maps. This is  necessary because there is no efficient way to track
3974  //   multiple initial_maps.
3975  //   Proceed to create an object in the current context (with the adjusted
3976  //   size).
3977  //
3978  // - A different constructor function sharing the same SharedFunctionInfo is
3979  //   called in the same context. This could be another closure in the same
3980  //   context, or the first function could have been disposed.
3981  //   This is handled the same way as the previous case.
3982  //
3983  //  Important: inobject slack tracking is not attempted during the snapshot
3984  //  creation.
3985
3986  static const int kGenerousAllocationCount = 8;
3987
3988  // [construction_count]: Counter for constructor calls made during
3989  // the tracking phase.
3990  inline int construction_count();
3991  inline void set_construction_count(int value);
3992
3993  // [initial_map]: initial map of the first function called as a constructor.
3994  // Saved for the duration of the tracking phase.
3995  // This is a weak link (GC resets it to undefined_value if no other live
3996  // object reference this map).
3997  DECL_ACCESSORS(initial_map, Object)
3998
3999  // True if the initial_map is not undefined and the countdown stub is
4000  // installed.
4001  inline bool IsInobjectSlackTrackingInProgress();
4002
4003  // Starts the tracking.
4004  // Stores the initial map and installs the countdown stub.
4005  // IsInobjectSlackTrackingInProgress is normally true after this call,
4006  // except when tracking have not been started (e.g. the map has no unused
4007  // properties or the snapshot is being built).
4008  void StartInobjectSlackTracking(Map* map);
4009
4010  // Completes the tracking.
4011  // IsInobjectSlackTrackingInProgress is false after this call.
4012  void CompleteInobjectSlackTracking();
4013
4014  // Clears the initial_map before the GC marking phase to ensure the reference
4015  // is weak. IsInobjectSlackTrackingInProgress is false after this call.
4016  void DetachInitialMap();
4017
4018  // Restores the link to the initial map after the GC marking phase.
4019  // IsInobjectSlackTrackingInProgress is true after this call.
4020  void AttachInitialMap(Map* map);
4021
4022  // False if there are definitely no live objects created from this function.
4023  // True if live objects _may_ exist (existence not guaranteed).
4024  // May go back from true to false after GC.
4025  inline bool live_objects_may_exist();
4026
4027  inline void set_live_objects_may_exist(bool value);
4028
4029  // [instance class name]: class name for instances.
4030  DECL_ACCESSORS(instance_class_name, Object)
4031
4032  // [function data]: This field holds some additional data for function.
4033  // Currently it either has FunctionTemplateInfo to make benefit the API
4034  // or Smi identifying a builtin function.
4035  // In the long run we don't want all functions to have this field but
4036  // we can fix that when we have a better model for storing hidden data
4037  // on objects.
4038  DECL_ACCESSORS(function_data, Object)
4039
4040  inline bool IsApiFunction();
4041  inline FunctionTemplateInfo* get_api_func_data();
4042  inline bool HasBuiltinFunctionId();
4043  inline bool IsBuiltinMathFunction();
4044  inline BuiltinFunctionId builtin_function_id();
4045
4046  // [script info]: Script from which the function originates.
4047  DECL_ACCESSORS(script, Object)
4048
4049  // [num_literals]: Number of literals used by this function.
4050  inline int num_literals();
4051  inline void set_num_literals(int value);
4052
4053  // [start_position_and_type]: Field used to store both the source code
4054  // position, whether or not the function is a function expression,
4055  // and whether or not the function is a toplevel function. The two
4056  // least significants bit indicates whether the function is an
4057  // expression and the rest contains the source code position.
4058  inline int start_position_and_type();
4059  inline void set_start_position_and_type(int value);
4060
4061  // [debug info]: Debug information.
4062  DECL_ACCESSORS(debug_info, Object)
4063
4064  // [inferred name]: Name inferred from variable or property
4065  // assignment of this function. Used to facilitate debugging and
4066  // profiling of JavaScript code written in OO style, where almost
4067  // all functions are anonymous but are assigned to object
4068  // properties.
4069  DECL_ACCESSORS(inferred_name, String)
4070
4071  // The function's name if it is non-empty, otherwise the inferred name.
4072  String* DebugName();
4073
4074  // Position of the 'function' token in the script source.
4075  inline int function_token_position();
4076  inline void set_function_token_position(int function_token_position);
4077
4078  // Position of this function in the script source.
4079  inline int start_position();
4080  inline void set_start_position(int start_position);
4081
4082  // End position of this function in the script source.
4083  inline int end_position();
4084  inline void set_end_position(int end_position);
4085
4086  // Is this function a function expression in the source code.
4087  inline bool is_expression();
4088  inline void set_is_expression(bool value);
4089
4090  // Is this function a top-level function (scripts, evals).
4091  inline bool is_toplevel();
4092  inline void set_is_toplevel(bool value);
4093
4094  // Bit field containing various information collected by the compiler to
4095  // drive optimization.
4096  inline int compiler_hints();
4097  inline void set_compiler_hints(int value);
4098
4099  // A counter used to determine when to stress the deoptimizer with a
4100  // deopt.
4101  inline Smi* deopt_counter();
4102  inline void set_deopt_counter(Smi* counter);
4103
4104  // Add information on assignments of the form this.x = ...;
4105  void SetThisPropertyAssignmentsInfo(
4106      bool has_only_simple_this_property_assignments,
4107      FixedArray* this_property_assignments);
4108
4109  // Clear information on assignments of the form this.x = ...;
4110  void ClearThisPropertyAssignmentsInfo();
4111
4112  // Indicate that this function only consists of assignments of the form
4113  // this.x = y; where y is either a constant or refers to an argument.
4114  inline bool has_only_simple_this_property_assignments();
4115
4116  inline bool try_full_codegen();
4117  inline void set_try_full_codegen(bool flag);
4118
4119  // Indicates if this function can be lazy compiled.
4120  // This is used to determine if we can safely flush code from a function
4121  // when doing GC if we expect that the function will no longer be used.
4122  inline bool allows_lazy_compilation();
4123  inline void set_allows_lazy_compilation(bool flag);
4124
4125  // Indicates how many full GCs this function has survived with assigned
4126  // code object. Used to determine when it is relatively safe to flush
4127  // this code object and replace it with lazy compilation stub.
4128  // Age is reset when GC notices that the code object is referenced
4129  // from the stack or compilation cache.
4130  inline int code_age();
4131  inline void set_code_age(int age);
4132
4133  // Indicates whether optimizations have been disabled for this
4134  // shared function info. If a function is repeatedly optimized or if
4135  // we cannot optimize the function we disable optimization to avoid
4136  // spending time attempting to optimize it again.
4137  inline bool optimization_disabled();
4138  inline void set_optimization_disabled(bool value);
4139
4140  // Indicates whether or not the code in the shared function support
4141  // deoptimization.
4142  inline bool has_deoptimization_support();
4143
4144  // Enable deoptimization support through recompiled code.
4145  void EnableDeoptimizationSupport(Code* recompiled);
4146
4147  // Lookup the bailout ID and ASSERT that it exists in the non-optimized
4148  // code, returns whether it asserted (i.e., always true if assertions are
4149  // disabled).
4150  bool VerifyBailoutId(int id);
4151
4152  // Check whether a inlined constructor can be generated with the given
4153  // prototype.
4154  bool CanGenerateInlineConstructor(Object* prototype);
4155
4156  // Prevents further attempts to generate inline constructors.
4157  // To be called if generation failed for any reason.
4158  void ForbidInlineConstructor();
4159
4160  // For functions which only contains this property assignments this provides
4161  // access to the names for the properties assigned.
4162  DECL_ACCESSORS(this_property_assignments, Object)
4163  inline int this_property_assignments_count();
4164  inline void set_this_property_assignments_count(int value);
4165  String* GetThisPropertyAssignmentName(int index);
4166  bool IsThisPropertyAssignmentArgument(int index);
4167  int GetThisPropertyAssignmentArgument(int index);
4168  Object* GetThisPropertyAssignmentConstant(int index);
4169
4170  // [source code]: Source code for the function.
4171  bool HasSourceCode();
4172  Object* GetSourceCode();
4173
4174  inline int opt_count();
4175  inline void set_opt_count(int opt_count);
4176
4177  // Source size of this function.
4178  int SourceSize();
4179
4180  // Calculate the instance size.
4181  int CalculateInstanceSize();
4182
4183  // Calculate the number of in-object properties.
4184  int CalculateInObjectProperties();
4185
4186  // Dispatched behavior.
4187  // Set max_length to -1 for unlimited length.
4188  void SourceCodePrint(StringStream* accumulator, int max_length);
4189#ifdef OBJECT_PRINT
4190  inline void SharedFunctionInfoPrint() {
4191    SharedFunctionInfoPrint(stdout);
4192  }
4193  void SharedFunctionInfoPrint(FILE* out);
4194#endif
4195#ifdef DEBUG
4196  void SharedFunctionInfoVerify();
4197#endif
4198
4199  // Casting.
4200  static inline SharedFunctionInfo* cast(Object* obj);
4201
4202  // Constants.
4203  static const int kDontAdaptArgumentsSentinel = -1;
4204
4205  // Layout description.
4206  // Pointer fields.
4207  static const int kNameOffset = HeapObject::kHeaderSize;
4208  static const int kCodeOffset = kNameOffset + kPointerSize;
4209  static const int kScopeInfoOffset = kCodeOffset + kPointerSize;
4210  static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
4211  static const int kInstanceClassNameOffset =
4212      kConstructStubOffset + kPointerSize;
4213  static const int kFunctionDataOffset =
4214      kInstanceClassNameOffset + kPointerSize;
4215  static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
4216  static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
4217  static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
4218  static const int kInitialMapOffset =
4219      kInferredNameOffset + kPointerSize;
4220  static const int kThisPropertyAssignmentsOffset =
4221      kInitialMapOffset + kPointerSize;
4222  static const int kDeoptCounterOffset =
4223      kThisPropertyAssignmentsOffset + kPointerSize;
4224#if V8_HOST_ARCH_32_BIT
4225  // Smi fields.
4226  static const int kLengthOffset =
4227      kDeoptCounterOffset + kPointerSize;
4228  static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
4229  static const int kExpectedNofPropertiesOffset =
4230      kFormalParameterCountOffset + kPointerSize;
4231  static const int kNumLiteralsOffset =
4232      kExpectedNofPropertiesOffset + kPointerSize;
4233  static const int kStartPositionAndTypeOffset =
4234      kNumLiteralsOffset + kPointerSize;
4235  static const int kEndPositionOffset =
4236      kStartPositionAndTypeOffset + kPointerSize;
4237  static const int kFunctionTokenPositionOffset =
4238      kEndPositionOffset + kPointerSize;
4239  static const int kCompilerHintsOffset =
4240      kFunctionTokenPositionOffset + kPointerSize;
4241  static const int kThisPropertyAssignmentsCountOffset =
4242      kCompilerHintsOffset + kPointerSize;
4243  static const int kOptCountOffset =
4244      kThisPropertyAssignmentsCountOffset + kPointerSize;
4245  // Total size.
4246  static const int kSize = kOptCountOffset + kPointerSize;
4247#else
4248  // The only reason to use smi fields instead of int fields
4249  // is to allow iteration without maps decoding during
4250  // garbage collections.
4251  // To avoid wasting space on 64-bit architectures we use
4252  // the following trick: we group integer fields into pairs
4253  // First integer in each pair is shifted left by 1.
4254  // By doing this we guarantee that LSB of each kPointerSize aligned
4255  // word is not set and thus this word cannot be treated as pointer
4256  // to HeapObject during old space traversal.
4257  static const int kLengthOffset =
4258      kDeoptCounterOffset + kPointerSize;
4259  static const int kFormalParameterCountOffset =
4260      kLengthOffset + kIntSize;
4261
4262  static const int kExpectedNofPropertiesOffset =
4263      kFormalParameterCountOffset + kIntSize;
4264  static const int kNumLiteralsOffset =
4265      kExpectedNofPropertiesOffset + kIntSize;
4266
4267  static const int kEndPositionOffset =
4268      kNumLiteralsOffset + kIntSize;
4269  static const int kStartPositionAndTypeOffset =
4270      kEndPositionOffset + kIntSize;
4271
4272  static const int kFunctionTokenPositionOffset =
4273      kStartPositionAndTypeOffset + kIntSize;
4274  static const int kCompilerHintsOffset =
4275      kFunctionTokenPositionOffset + kIntSize;
4276
4277  static const int kThisPropertyAssignmentsCountOffset =
4278      kCompilerHintsOffset + kIntSize;
4279  static const int kOptCountOffset =
4280      kThisPropertyAssignmentsCountOffset + kIntSize;
4281
4282  // Total size.
4283  static const int kSize = kOptCountOffset + kIntSize;
4284
4285#endif
4286
4287  // The construction counter for inobject slack tracking is stored in the
4288  // most significant byte of compiler_hints which is otherwise unused.
4289  // Its offset depends on the endian-ness of the architecture.
4290#if __BYTE_ORDER == __LITTLE_ENDIAN
4291  static const int kConstructionCountOffset = kCompilerHintsOffset + 3;
4292#elif __BYTE_ORDER == __BIG_ENDIAN
4293  static const int kConstructionCountOffset = kCompilerHintsOffset + 0;
4294#else
4295#error Unknown byte ordering
4296#endif
4297
4298  static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
4299
4300  typedef FixedBodyDescriptor<kNameOffset,
4301                              kThisPropertyAssignmentsOffset + kPointerSize,
4302                              kSize> BodyDescriptor;
4303
4304 private:
4305  // Bit positions in start_position_and_type.
4306  // The source code start position is in the 30 most significant bits of
4307  // the start_position_and_type field.
4308  static const int kIsExpressionBit = 0;
4309  static const int kIsTopLevelBit   = 1;
4310  static const int kStartPositionShift = 2;
4311  static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
4312
4313  // Bit positions in compiler_hints.
4314  static const int kHasOnlySimpleThisPropertyAssignments = 0;
4315  static const int kTryFullCodegen = 1;
4316  static const int kAllowLazyCompilation = 2;
4317  static const int kLiveObjectsMayExist = 3;
4318  static const int kCodeAgeShift = 4;
4319  static const int kCodeAgeMask = 0x7;
4320  static const int kOptimizationDisabled = 7;
4321
4322  DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
4323};
4324
4325
4326// JSFunction describes JavaScript functions.
4327class JSFunction: public JSObject {
4328 public:
4329  // [prototype_or_initial_map]:
4330  DECL_ACCESSORS(prototype_or_initial_map, Object)
4331
4332  // [shared_function_info]: The information about the function that
4333  // can be shared by instances.
4334  DECL_ACCESSORS(shared, SharedFunctionInfo)
4335
4336  inline SharedFunctionInfo* unchecked_shared();
4337
4338  // [context]: The context for this function.
4339  inline Context* context();
4340  inline Object* unchecked_context();
4341  inline void set_context(Object* context);
4342
4343  // [code]: The generated code object for this function.  Executed
4344  // when the function is invoked, e.g. foo() or new foo(). See
4345  // [[Call]] and [[Construct]] description in ECMA-262, section
4346  // 8.6.2, page 27.
4347  inline Code* code();
4348  inline void set_code(Code* code);
4349  inline void ReplaceCode(Code* code);
4350
4351  inline Code* unchecked_code();
4352
4353  // Tells whether this function is builtin.
4354  inline bool IsBuiltin();
4355
4356  // Tells whether or not the function needs arguments adaption.
4357  inline bool NeedsArgumentsAdaption();
4358
4359  // Tells whether or not this function has been optimized.
4360  inline bool IsOptimized();
4361
4362  // Mark this function for lazy recompilation. The function will be
4363  // recompiled the next time it is executed.
4364  void MarkForLazyRecompilation();
4365
4366  // Tells whether or not the function is already marked for lazy
4367  // recompilation.
4368  inline bool IsMarkedForLazyRecompilation();
4369
4370  // Compute a hash code for the source code of this function.
4371  uint32_t SourceHash();
4372
4373  // Check whether or not this function is inlineable.
4374  bool IsInlineable();
4375
4376  // [literals]: Fixed array holding the materialized literals.
4377  //
4378  // If the function contains object, regexp or array literals, the
4379  // literals array prefix contains the object, regexp, and array
4380  // function to be used when creating these literals.  This is
4381  // necessary so that we do not dynamically lookup the object, regexp
4382  // or array functions.  Performing a dynamic lookup, we might end up
4383  // using the functions from a new context that we should not have
4384  // access to.
4385  DECL_ACCESSORS(literals, FixedArray)
4386
4387  // The initial map for an object created by this constructor.
4388  inline Map* initial_map();
4389  inline void set_initial_map(Map* value);
4390  inline bool has_initial_map();
4391
4392  // Get and set the prototype property on a JSFunction. If the
4393  // function has an initial map the prototype is set on the initial
4394  // map. Otherwise, the prototype is put in the initial map field
4395  // until an initial map is needed.
4396  inline bool has_prototype();
4397  inline bool has_instance_prototype();
4398  inline Object* prototype();
4399  inline Object* instance_prototype();
4400  Object* SetInstancePrototype(Object* value);
4401  MUST_USE_RESULT MaybeObject* SetPrototype(Object* value);
4402
4403  // After prototype is removed, it will not be created when accessed, and
4404  // [[Construct]] from this function will not be allowed.
4405  Object* RemovePrototype();
4406  inline bool should_have_prototype();
4407
4408  // Accessor for this function's initial map's [[class]]
4409  // property. This is primarily used by ECMA native functions.  This
4410  // method sets the class_name field of this function's initial map
4411  // to a given value. It creates an initial map if this function does
4412  // not have one. Note that this method does not copy the initial map
4413  // if it has one already, but simply replaces it with the new value.
4414  // Instances created afterwards will have a map whose [[class]] is
4415  // set to 'value', but there is no guarantees on instances created
4416  // before.
4417  Object* SetInstanceClassName(String* name);
4418
4419  // Returns if this function has been compiled to native code yet.
4420  inline bool is_compiled();
4421
4422  // [next_function_link]: Field for linking functions. This list is treated as
4423  // a weak list by the GC.
4424  DECL_ACCESSORS(next_function_link, Object)
4425
4426  // Prints the name of the function using PrintF.
4427  inline void PrintName() {
4428    PrintName(stdout);
4429  }
4430  void PrintName(FILE* out);
4431
4432  // Casting.
4433  static inline JSFunction* cast(Object* obj);
4434
4435  // Iterates the objects, including code objects indirectly referenced
4436  // through pointers to the first instruction in the code object.
4437  void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
4438
4439  // Dispatched behavior.
4440#ifdef OBJECT_PRINT
4441  inline void JSFunctionPrint() {
4442    JSFunctionPrint(stdout);
4443  }
4444  void JSFunctionPrint(FILE* out);
4445#endif
4446#ifdef DEBUG
4447  void JSFunctionVerify();
4448#endif
4449
4450  // Returns the number of allocated literals.
4451  inline int NumberOfLiterals();
4452
4453  // Retrieve the global context from a function's literal array.
4454  static Context* GlobalContextFromLiterals(FixedArray* literals);
4455
4456  // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
4457  // kSize) is weak and has special handling during garbage collection.
4458  static const int kCodeEntryOffset = JSObject::kHeaderSize;
4459  static const int kPrototypeOrInitialMapOffset =
4460      kCodeEntryOffset + kPointerSize;
4461  static const int kSharedFunctionInfoOffset =
4462      kPrototypeOrInitialMapOffset + kPointerSize;
4463  static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
4464  static const int kLiteralsOffset = kContextOffset + kPointerSize;
4465  static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
4466  static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
4467  static const int kSize = kNextFunctionLinkOffset + kPointerSize;
4468
4469  // Layout of the literals array.
4470  static const int kLiteralsPrefixSize = 1;
4471  static const int kLiteralGlobalContextIndex = 0;
4472 private:
4473  DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
4474};
4475
4476
4477// JSGlobalProxy's prototype must be a JSGlobalObject or null,
4478// and the prototype is hidden. JSGlobalProxy always delegates
4479// property accesses to its prototype if the prototype is not null.
4480//
4481// A JSGlobalProxy can be reinitialized which will preserve its identity.
4482//
4483// Accessing a JSGlobalProxy requires security check.
4484
4485class JSGlobalProxy : public JSObject {
4486 public:
4487  // [context]: the owner global context of this proxy object.
4488  // It is null value if this object is not used by any context.
4489  DECL_ACCESSORS(context, Object)
4490
4491  // Casting.
4492  static inline JSGlobalProxy* cast(Object* obj);
4493
4494  // Dispatched behavior.
4495#ifdef OBJECT_PRINT
4496  inline void JSGlobalProxyPrint() {
4497    JSGlobalProxyPrint(stdout);
4498  }
4499  void JSGlobalProxyPrint(FILE* out);
4500#endif
4501#ifdef DEBUG
4502  void JSGlobalProxyVerify();
4503#endif
4504
4505  // Layout description.
4506  static const int kContextOffset = JSObject::kHeaderSize;
4507  static const int kSize = kContextOffset + kPointerSize;
4508
4509 private:
4510
4511  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
4512};
4513
4514
4515// Forward declaration.
4516class JSBuiltinsObject;
4517class JSGlobalPropertyCell;
4518
4519// Common super class for JavaScript global objects and the special
4520// builtins global objects.
4521class GlobalObject: public JSObject {
4522 public:
4523  // [builtins]: the object holding the runtime routines written in JS.
4524  DECL_ACCESSORS(builtins, JSBuiltinsObject)
4525
4526  // [global context]: the global context corresponding to this global object.
4527  DECL_ACCESSORS(global_context, Context)
4528
4529  // [global receiver]: the global receiver object of the context
4530  DECL_ACCESSORS(global_receiver, JSObject)
4531
4532  // Retrieve the property cell used to store a property.
4533  JSGlobalPropertyCell* GetPropertyCell(LookupResult* result);
4534
4535  // This is like GetProperty, but is used when you know the lookup won't fail
4536  // by throwing an exception.  This is for the debug and builtins global
4537  // objects, where it is known which properties can be expected to be present
4538  // on the object.
4539  Object* GetPropertyNoExceptionThrown(String* key) {
4540    Object* answer = GetProperty(key)->ToObjectUnchecked();
4541    return answer;
4542  }
4543
4544  // Ensure that the global object has a cell for the given property name.
4545  MUST_USE_RESULT MaybeObject* EnsurePropertyCell(String* name);
4546
4547  // Casting.
4548  static inline GlobalObject* cast(Object* obj);
4549
4550  // Layout description.
4551  static const int kBuiltinsOffset = JSObject::kHeaderSize;
4552  static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
4553  static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
4554  static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
4555
4556 private:
4557  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
4558
4559  DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
4560};
4561
4562
4563// JavaScript global object.
4564class JSGlobalObject: public GlobalObject {
4565 public:
4566
4567  // Casting.
4568  static inline JSGlobalObject* cast(Object* obj);
4569
4570  // Dispatched behavior.
4571#ifdef OBJECT_PRINT
4572  inline void JSGlobalObjectPrint() {
4573    JSGlobalObjectPrint(stdout);
4574  }
4575  void JSGlobalObjectPrint(FILE* out);
4576#endif
4577#ifdef DEBUG
4578  void JSGlobalObjectVerify();
4579#endif
4580
4581  // Layout description.
4582  static const int kSize = GlobalObject::kHeaderSize;
4583
4584 private:
4585  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
4586};
4587
4588
4589// Builtins global object which holds the runtime routines written in
4590// JavaScript.
4591class JSBuiltinsObject: public GlobalObject {
4592 public:
4593  // Accessors for the runtime routines written in JavaScript.
4594  inline Object* javascript_builtin(Builtins::JavaScript id);
4595  inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
4596
4597  // Accessors for code of the runtime routines written in JavaScript.
4598  inline Code* javascript_builtin_code(Builtins::JavaScript id);
4599  inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
4600
4601  // Casting.
4602  static inline JSBuiltinsObject* cast(Object* obj);
4603
4604  // Dispatched behavior.
4605#ifdef OBJECT_PRINT
4606  inline void JSBuiltinsObjectPrint() {
4607    JSBuiltinsObjectPrint(stdout);
4608  }
4609  void JSBuiltinsObjectPrint(FILE* out);
4610#endif
4611#ifdef DEBUG
4612  void JSBuiltinsObjectVerify();
4613#endif
4614
4615  // Layout description.  The size of the builtins object includes
4616  // room for two pointers per runtime routine written in javascript
4617  // (function and code object).
4618  static const int kJSBuiltinsCount = Builtins::id_count;
4619  static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
4620  static const int kJSBuiltinsCodeOffset =
4621      GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
4622  static const int kSize =
4623      kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
4624
4625  static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
4626    return kJSBuiltinsOffset + id * kPointerSize;
4627  }
4628
4629  static int OffsetOfCodeWithId(Builtins::JavaScript id) {
4630    return kJSBuiltinsCodeOffset + id * kPointerSize;
4631  }
4632
4633 private:
4634  DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
4635};
4636
4637
4638// Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
4639class JSValue: public JSObject {
4640 public:
4641  // [value]: the object being wrapped.
4642  DECL_ACCESSORS(value, Object)
4643
4644  // Casting.
4645  static inline JSValue* cast(Object* obj);
4646
4647  // Dispatched behavior.
4648#ifdef OBJECT_PRINT
4649  inline void JSValuePrint() {
4650    JSValuePrint(stdout);
4651  }
4652  void JSValuePrint(FILE* out);
4653#endif
4654#ifdef DEBUG
4655  void JSValueVerify();
4656#endif
4657
4658  // Layout description.
4659  static const int kValueOffset = JSObject::kHeaderSize;
4660  static const int kSize = kValueOffset + kPointerSize;
4661
4662 private:
4663  DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
4664};
4665
4666// Regular expressions
4667// The regular expression holds a single reference to a FixedArray in
4668// the kDataOffset field.
4669// The FixedArray contains the following data:
4670// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
4671// - reference to the original source string
4672// - reference to the original flag string
4673// If it is an atom regexp
4674// - a reference to a literal string to search for
4675// If it is an irregexp regexp:
4676// - a reference to code for ASCII inputs (bytecode or compiled).
4677// - a reference to code for UC16 inputs (bytecode or compiled).
4678// - max number of registers used by irregexp implementations.
4679// - number of capture registers (output values) of the regexp.
4680class JSRegExp: public JSObject {
4681 public:
4682  // Meaning of Type:
4683  // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
4684  // ATOM: A simple string to match against using an indexOf operation.
4685  // IRREGEXP: Compiled with Irregexp.
4686  // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
4687  enum Type { NOT_COMPILED, ATOM, IRREGEXP };
4688  enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
4689
4690  class Flags {
4691   public:
4692    explicit Flags(uint32_t value) : value_(value) { }
4693    bool is_global() { return (value_ & GLOBAL) != 0; }
4694    bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
4695    bool is_multiline() { return (value_ & MULTILINE) != 0; }
4696    uint32_t value() { return value_; }
4697   private:
4698    uint32_t value_;
4699  };
4700
4701  DECL_ACCESSORS(data, Object)
4702
4703  inline Type TypeTag();
4704  inline int CaptureCount();
4705  inline Flags GetFlags();
4706  inline String* Pattern();
4707  inline Object* DataAt(int index);
4708  // Set implementation data after the object has been prepared.
4709  inline void SetDataAt(int index, Object* value);
4710  static int code_index(bool is_ascii) {
4711    if (is_ascii) {
4712      return kIrregexpASCIICodeIndex;
4713    } else {
4714      return kIrregexpUC16CodeIndex;
4715    }
4716  }
4717
4718  static inline JSRegExp* cast(Object* obj);
4719
4720  // Dispatched behavior.
4721#ifdef DEBUG
4722  void JSRegExpVerify();
4723#endif
4724
4725  static const int kDataOffset = JSObject::kHeaderSize;
4726  static const int kSize = kDataOffset + kPointerSize;
4727
4728  // Indices in the data array.
4729  static const int kTagIndex = 0;
4730  static const int kSourceIndex = kTagIndex + 1;
4731  static const int kFlagsIndex = kSourceIndex + 1;
4732  static const int kDataIndex = kFlagsIndex + 1;
4733  // The data fields are used in different ways depending on the
4734  // value of the tag.
4735  // Atom regexps (literal strings).
4736  static const int kAtomPatternIndex = kDataIndex;
4737
4738  static const int kAtomDataSize = kAtomPatternIndex + 1;
4739
4740  // Irregexp compiled code or bytecode for ASCII. If compilation
4741  // fails, this fields hold an exception object that should be
4742  // thrown if the regexp is used again.
4743  static const int kIrregexpASCIICodeIndex = kDataIndex;
4744  // Irregexp compiled code or bytecode for UC16.  If compilation
4745  // fails, this fields hold an exception object that should be
4746  // thrown if the regexp is used again.
4747  static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
4748  // Maximal number of registers used by either ASCII or UC16.
4749  // Only used to check that there is enough stack space
4750  static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
4751  // Number of captures in the compiled regexp.
4752  static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
4753
4754  static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
4755
4756  // Offsets directly into the data fixed array.
4757  static const int kDataTagOffset =
4758      FixedArray::kHeaderSize + kTagIndex * kPointerSize;
4759  static const int kDataAsciiCodeOffset =
4760      FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
4761  static const int kDataUC16CodeOffset =
4762      FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
4763  static const int kIrregexpCaptureCountOffset =
4764      FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
4765
4766  // In-object fields.
4767  static const int kSourceFieldIndex = 0;
4768  static const int kGlobalFieldIndex = 1;
4769  static const int kIgnoreCaseFieldIndex = 2;
4770  static const int kMultilineFieldIndex = 3;
4771  static const int kLastIndexFieldIndex = 4;
4772  static const int kInObjectFieldCount = 5;
4773};
4774
4775
4776class CompilationCacheShape {
4777 public:
4778  static inline bool IsMatch(HashTableKey* key, Object* value) {
4779    return key->IsMatch(value);
4780  }
4781
4782  static inline uint32_t Hash(HashTableKey* key) {
4783    return key->Hash();
4784  }
4785
4786  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
4787    return key->HashForObject(object);
4788  }
4789
4790  MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
4791    return key->AsObject();
4792  }
4793
4794  static const int kPrefixSize = 0;
4795  static const int kEntrySize = 2;
4796};
4797
4798
4799class CompilationCacheTable: public HashTable<CompilationCacheShape,
4800                                              HashTableKey*> {
4801 public:
4802  // Find cached value for a string key, otherwise return null.
4803  Object* Lookup(String* src);
4804  Object* LookupEval(String* src, Context* context);
4805  Object* LookupRegExp(String* source, JSRegExp::Flags flags);
4806  MaybeObject* Put(String* src, Object* value);
4807  MaybeObject* PutEval(String* src, Context* context, Object* value);
4808  MaybeObject* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
4809
4810  // Remove given value from cache.
4811  void Remove(Object* value);
4812
4813  static inline CompilationCacheTable* cast(Object* obj);
4814
4815 private:
4816  DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
4817};
4818
4819
4820class CodeCache: public Struct {
4821 public:
4822  DECL_ACCESSORS(default_cache, FixedArray)
4823  DECL_ACCESSORS(normal_type_cache, Object)
4824
4825  // Add the code object to the cache.
4826  MUST_USE_RESULT MaybeObject* Update(String* name, Code* code);
4827
4828  // Lookup code object in the cache. Returns code object if found and undefined
4829  // if not.
4830  Object* Lookup(String* name, Code::Flags flags);
4831
4832  // Get the internal index of a code object in the cache. Returns -1 if the
4833  // code object is not in that cache. This index can be used to later call
4834  // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
4835  // RemoveByIndex.
4836  int GetIndex(Object* name, Code* code);
4837
4838  // Remove an object from the cache with the provided internal index.
4839  void RemoveByIndex(Object* name, Code* code, int index);
4840
4841  static inline CodeCache* cast(Object* obj);
4842
4843#ifdef OBJECT_PRINT
4844  inline void CodeCachePrint() {
4845    CodeCachePrint(stdout);
4846  }
4847  void CodeCachePrint(FILE* out);
4848#endif
4849#ifdef DEBUG
4850  void CodeCacheVerify();
4851#endif
4852
4853  static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
4854  static const int kNormalTypeCacheOffset =
4855      kDefaultCacheOffset + kPointerSize;
4856  static const int kSize = kNormalTypeCacheOffset + kPointerSize;
4857
4858 private:
4859  MUST_USE_RESULT MaybeObject* UpdateDefaultCache(String* name, Code* code);
4860  MUST_USE_RESULT MaybeObject* UpdateNormalTypeCache(String* name, Code* code);
4861  Object* LookupDefaultCache(String* name, Code::Flags flags);
4862  Object* LookupNormalTypeCache(String* name, Code::Flags flags);
4863
4864  // Code cache layout of the default cache. Elements are alternating name and
4865  // code objects for non normal load/store/call IC's.
4866  static const int kCodeCacheEntrySize = 2;
4867  static const int kCodeCacheEntryNameOffset = 0;
4868  static const int kCodeCacheEntryCodeOffset = 1;
4869
4870  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
4871};
4872
4873
4874class CodeCacheHashTableShape {
4875 public:
4876  static inline bool IsMatch(HashTableKey* key, Object* value) {
4877    return key->IsMatch(value);
4878  }
4879
4880  static inline uint32_t Hash(HashTableKey* key) {
4881    return key->Hash();
4882  }
4883
4884  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
4885    return key->HashForObject(object);
4886  }
4887
4888  MUST_USE_RESULT static MaybeObject* AsObject(HashTableKey* key) {
4889    return key->AsObject();
4890  }
4891
4892  static const int kPrefixSize = 0;
4893  static const int kEntrySize = 2;
4894};
4895
4896
4897class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape,
4898                                           HashTableKey*> {
4899 public:
4900  Object* Lookup(String* name, Code::Flags flags);
4901  MUST_USE_RESULT MaybeObject* Put(String* name, Code* code);
4902
4903  int GetIndex(String* name, Code::Flags flags);
4904  void RemoveByIndex(int index);
4905
4906  static inline CodeCacheHashTable* cast(Object* obj);
4907
4908  // Initial size of the fixed array backing the hash table.
4909  static const int kInitialSize = 64;
4910
4911 private:
4912  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
4913};
4914
4915
4916enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
4917enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
4918
4919
4920class StringHasher {
4921 public:
4922  inline StringHasher(int length);
4923
4924  // Returns true if the hash of this string can be computed without
4925  // looking at the contents.
4926  inline bool has_trivial_hash();
4927
4928  // Add a character to the hash and update the array index calculation.
4929  inline void AddCharacter(uc32 c);
4930
4931  // Adds a character to the hash but does not update the array index
4932  // calculation.  This can only be called when it has been verified
4933  // that the input is not an array index.
4934  inline void AddCharacterNoIndex(uc32 c);
4935
4936  // Returns the value to store in the hash field of a string with
4937  // the given length and contents.
4938  uint32_t GetHashField();
4939
4940  // Returns true if the characters seen so far make up a legal array
4941  // index.
4942  bool is_array_index() { return is_array_index_; }
4943
4944  bool is_valid() { return is_valid_; }
4945
4946  void invalidate() { is_valid_ = false; }
4947
4948  // Calculated hash value for a string consisting of 1 to
4949  // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
4950  // value is represented decimal value.
4951  static uint32_t MakeArrayIndexHash(uint32_t value, int length);
4952
4953 private:
4954
4955  uint32_t array_index() {
4956    ASSERT(is_array_index());
4957    return array_index_;
4958  }
4959
4960  inline uint32_t GetHash();
4961
4962  int length_;
4963  uint32_t raw_running_hash_;
4964  uint32_t array_index_;
4965  bool is_array_index_;
4966  bool is_first_char_;
4967  bool is_valid_;
4968  friend class TwoCharHashTableKey;
4969};
4970
4971
4972// The characteristics of a string are stored in its map.  Retrieving these
4973// few bits of information is moderately expensive, involving two memory
4974// loads where the second is dependent on the first.  To improve efficiency
4975// the shape of the string is given its own class so that it can be retrieved
4976// once and used for several string operations.  A StringShape is small enough
4977// to be passed by value and is immutable, but be aware that flattening a
4978// string can potentially alter its shape.  Also be aware that a GC caused by
4979// something else can alter the shape of a string due to ConsString
4980// shortcutting.  Keeping these restrictions in mind has proven to be error-
4981// prone and so we no longer put StringShapes in variables unless there is a
4982// concrete performance benefit at that particular point in the code.
4983class StringShape BASE_EMBEDDED {
4984 public:
4985  inline explicit StringShape(String* s);
4986  inline explicit StringShape(Map* s);
4987  inline explicit StringShape(InstanceType t);
4988  inline bool IsSequential();
4989  inline bool IsExternal();
4990  inline bool IsCons();
4991  inline bool IsExternalAscii();
4992  inline bool IsExternalTwoByte();
4993  inline bool IsSequentialAscii();
4994  inline bool IsSequentialTwoByte();
4995  inline bool IsSymbol();
4996  inline StringRepresentationTag representation_tag();
4997  inline uint32_t full_representation_tag();
4998  inline uint32_t size_tag();
4999#ifdef DEBUG
5000  inline uint32_t type() { return type_; }
5001  inline void invalidate() { valid_ = false; }
5002  inline bool valid() { return valid_; }
5003#else
5004  inline void invalidate() { }
5005#endif
5006 private:
5007  uint32_t type_;
5008#ifdef DEBUG
5009  inline void set_valid() { valid_ = true; }
5010  bool valid_;
5011#else
5012  inline void set_valid() { }
5013#endif
5014};
5015
5016
5017// The String abstract class captures JavaScript string values:
5018//
5019// Ecma-262:
5020//  4.3.16 String Value
5021//    A string value is a member of the type String and is a finite
5022//    ordered sequence of zero or more 16-bit unsigned integer values.
5023//
5024// All string values have a length field.
5025class String: public HeapObject {
5026 public:
5027  // Get and set the length of the string.
5028  inline int length();
5029  inline void set_length(int value);
5030
5031  // Get and set the hash field of the string.
5032  inline uint32_t hash_field();
5033  inline void set_hash_field(uint32_t value);
5034
5035  inline bool IsAsciiRepresentation();
5036  inline bool IsTwoByteRepresentation();
5037
5038  // Returns whether this string has ascii chars, i.e. all of them can
5039  // be ascii encoded.  This might be the case even if the string is
5040  // two-byte.  Such strings may appear when the embedder prefers
5041  // two-byte external representations even for ascii data.
5042  //
5043  // NOTE: this should be considered only a hint.  False negatives are
5044  // possible.
5045  inline bool HasOnlyAsciiChars();
5046
5047  // Get and set individual two byte chars in the string.
5048  inline void Set(int index, uint16_t value);
5049  // Get individual two byte char in the string.  Repeated calls
5050  // to this method are not efficient unless the string is flat.
5051  inline uint16_t Get(int index);
5052
5053  // Try to flatten the string.  Checks first inline to see if it is
5054  // necessary.  Does nothing if the string is not a cons string.
5055  // Flattening allocates a sequential string with the same data as
5056  // the given string and mutates the cons string to a degenerate
5057  // form, where the first component is the new sequential string and
5058  // the second component is the empty string.  If allocation fails,
5059  // this function returns a failure.  If flattening succeeds, this
5060  // function returns the sequential string that is now the first
5061  // component of the cons string.
5062  //
5063  // Degenerate cons strings are handled specially by the garbage
5064  // collector (see IsShortcutCandidate).
5065  //
5066  // Use FlattenString from Handles.cc to flatten even in case an
5067  // allocation failure happens.
5068  inline MaybeObject* TryFlatten(PretenureFlag pretenure = NOT_TENURED);
5069
5070  // Convenience function.  Has exactly the same behavior as
5071  // TryFlatten(), except in the case of failure returns the original
5072  // string.
5073  inline String* TryFlattenGetString(PretenureFlag pretenure = NOT_TENURED);
5074
5075  Vector<const char> ToAsciiVector();
5076  Vector<const uc16> ToUC16Vector();
5077
5078  // Mark the string as an undetectable object. It only applies to
5079  // ascii and two byte string types.
5080  bool MarkAsUndetectable();
5081
5082  // Return a substring.
5083  MUST_USE_RESULT MaybeObject* SubString(int from,
5084                                         int to,
5085                                         PretenureFlag pretenure = NOT_TENURED);
5086
5087  // String equality operations.
5088  inline bool Equals(String* other);
5089  bool IsEqualTo(Vector<const char> str);
5090  bool IsAsciiEqualTo(Vector<const char> str);
5091  bool IsTwoByteEqualTo(Vector<const uc16> str);
5092
5093  // Return a UTF8 representation of the string.  The string is null
5094  // terminated but may optionally contain nulls.  Length is returned
5095  // in length_output if length_output is not a null pointer  The string
5096  // should be nearly flat, otherwise the performance of this method may
5097  // be very slow (quadratic in the length).  Setting robustness_flag to
5098  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
5099  // handles unexpected data without causing assert failures and it does not
5100  // do any heap allocations.  This is useful when printing stack traces.
5101  SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
5102                               RobustnessFlag robustness_flag,
5103                               int offset,
5104                               int length,
5105                               int* length_output = 0);
5106  SmartPointer<char> ToCString(
5107      AllowNullsFlag allow_nulls = DISALLOW_NULLS,
5108      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
5109      int* length_output = 0);
5110
5111  int Utf8Length();
5112
5113  // Return a 16 bit Unicode representation of the string.
5114  // The string should be nearly flat, otherwise the performance of
5115  // of this method may be very bad.  Setting robustness_flag to
5116  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
5117  // handles unexpected data without causing assert failures and it does not
5118  // do any heap allocations.  This is useful when printing stack traces.
5119  SmartPointer<uc16> ToWideCString(
5120      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
5121
5122  // Tells whether the hash code has been computed.
5123  inline bool HasHashCode();
5124
5125  // Returns a hash value used for the property table
5126  inline uint32_t Hash();
5127
5128  static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
5129                                   int length);
5130
5131  static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
5132                                uint32_t* index,
5133                                int length);
5134
5135  // Externalization.
5136  bool MakeExternal(v8::String::ExternalStringResource* resource);
5137  bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
5138
5139  // Conversion.
5140  inline bool AsArrayIndex(uint32_t* index);
5141
5142  // Casting.
5143  static inline String* cast(Object* obj);
5144
5145  void PrintOn(FILE* out);
5146
5147  // For use during stack traces.  Performs rudimentary sanity check.
5148  bool LooksValid();
5149
5150  // Dispatched behavior.
5151  void StringShortPrint(StringStream* accumulator);
5152#ifdef OBJECT_PRINT
5153  inline void StringPrint() {
5154    StringPrint(stdout);
5155  }
5156  void StringPrint(FILE* out);
5157#endif
5158#ifdef DEBUG
5159  void StringVerify();
5160#endif
5161  inline bool IsFlat();
5162
5163  // Layout description.
5164  static const int kLengthOffset = HeapObject::kHeaderSize;
5165  static const int kHashFieldOffset = kLengthOffset + kPointerSize;
5166  static const int kSize = kHashFieldOffset + kPointerSize;
5167
5168  // Maximum number of characters to consider when trying to convert a string
5169  // value into an array index.
5170  static const int kMaxArrayIndexSize = 10;
5171
5172  // Max ascii char code.
5173  static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
5174  static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
5175  static const int kMaxUC16CharCode = 0xffff;
5176
5177  // Minimum length for a cons string.
5178  static const int kMinNonFlatLength = 13;
5179
5180  // Mask constant for checking if a string has a computed hash code
5181  // and if it is an array index.  The least significant bit indicates
5182  // whether a hash code has been computed.  If the hash code has been
5183  // computed the 2nd bit tells whether the string can be used as an
5184  // array index.
5185  static const int kHashNotComputedMask = 1;
5186  static const int kIsNotArrayIndexMask = 1 << 1;
5187  static const int kNofHashBitFields = 2;
5188
5189  // Shift constant retrieving hash code from hash field.
5190  static const int kHashShift = kNofHashBitFields;
5191
5192  // Array index strings this short can keep their index in the hash
5193  // field.
5194  static const int kMaxCachedArrayIndexLength = 7;
5195
5196  // For strings which are array indexes the hash value has the string length
5197  // mixed into the hash, mainly to avoid a hash value of zero which would be
5198  // the case for the string '0'. 24 bits are used for the array index value.
5199  static const int kArrayIndexValueBits = 24;
5200  static const int kArrayIndexLengthBits =
5201      kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
5202
5203  STATIC_CHECK((kArrayIndexLengthBits > 0));
5204  STATIC_CHECK(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
5205
5206  static const int kArrayIndexHashLengthShift =
5207      kArrayIndexValueBits + kNofHashBitFields;
5208
5209  static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
5210
5211  static const int kArrayIndexValueMask =
5212      ((1 << kArrayIndexValueBits) - 1) << kHashShift;
5213
5214  // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
5215  // could use a mask to test if the length of string is less than or equal to
5216  // kMaxCachedArrayIndexLength.
5217  STATIC_CHECK(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
5218
5219  static const int kContainsCachedArrayIndexMask =
5220      (~kMaxCachedArrayIndexLength << kArrayIndexHashLengthShift) |
5221      kIsNotArrayIndexMask;
5222
5223  // Value of empty hash field indicating that the hash is not computed.
5224  static const int kEmptyHashField =
5225      kIsNotArrayIndexMask | kHashNotComputedMask;
5226
5227  // Value of hash field containing computed hash equal to zero.
5228  static const int kZeroHash = kIsNotArrayIndexMask;
5229
5230  // Maximal string length.
5231  static const int kMaxLength = (1 << (32 - 2)) - 1;
5232
5233  // Max length for computing hash. For strings longer than this limit the
5234  // string length is used as the hash value.
5235  static const int kMaxHashCalcLength = 16383;
5236
5237  // Limit for truncation in short printing.
5238  static const int kMaxShortPrintLength = 1024;
5239
5240  // Support for regular expressions.
5241  const uc16* GetTwoByteData();
5242  const uc16* GetTwoByteData(unsigned start);
5243
5244  // Support for StringInputBuffer
5245  static const unibrow::byte* ReadBlock(String* input,
5246                                        unibrow::byte* util_buffer,
5247                                        unsigned capacity,
5248                                        unsigned* remaining,
5249                                        unsigned* offset);
5250  static const unibrow::byte* ReadBlock(String** input,
5251                                        unibrow::byte* util_buffer,
5252                                        unsigned capacity,
5253                                        unsigned* remaining,
5254                                        unsigned* offset);
5255
5256  // Helper function for flattening strings.
5257  template <typename sinkchar>
5258  static void WriteToFlat(String* source,
5259                          sinkchar* sink,
5260                          int from,
5261                          int to);
5262
5263  static inline bool IsAscii(const char* chars, int length) {
5264    const char* limit = chars + length;
5265#ifdef V8_HOST_CAN_READ_UNALIGNED
5266    ASSERT(kMaxAsciiCharCode == 0x7F);
5267    const uintptr_t non_ascii_mask = kUintptrAllBitsSet / 0xFF * 0x80;
5268    while (chars <= limit - sizeof(uintptr_t)) {
5269      if (*reinterpret_cast<const uintptr_t*>(chars) & non_ascii_mask) {
5270        return false;
5271      }
5272      chars += sizeof(uintptr_t);
5273    }
5274#endif
5275    while (chars < limit) {
5276      if (static_cast<uint8_t>(*chars) > kMaxAsciiCharCodeU) return false;
5277      ++chars;
5278    }
5279    return true;
5280  }
5281
5282  static inline bool IsAscii(const uc16* chars, int length) {
5283    const uc16* limit = chars + length;
5284    while (chars < limit) {
5285      if (*chars > kMaxAsciiCharCodeU) return false;
5286      ++chars;
5287    }
5288    return true;
5289  }
5290
5291 protected:
5292  class ReadBlockBuffer {
5293   public:
5294    ReadBlockBuffer(unibrow::byte* util_buffer_,
5295                    unsigned cursor_,
5296                    unsigned capacity_,
5297                    unsigned remaining_) :
5298      util_buffer(util_buffer_),
5299      cursor(cursor_),
5300      capacity(capacity_),
5301      remaining(remaining_) {
5302    }
5303    unibrow::byte* util_buffer;
5304    unsigned       cursor;
5305    unsigned       capacity;
5306    unsigned       remaining;
5307  };
5308
5309  static inline const unibrow::byte* ReadBlock(String* input,
5310                                               ReadBlockBuffer* buffer,
5311                                               unsigned* offset,
5312                                               unsigned max_chars);
5313  static void ReadBlockIntoBuffer(String* input,
5314                                  ReadBlockBuffer* buffer,
5315                                  unsigned* offset_ptr,
5316                                  unsigned max_chars);
5317
5318 private:
5319  // Try to flatten the top level ConsString that is hiding behind this
5320  // string.  This is a no-op unless the string is a ConsString.  Flatten
5321  // mutates the ConsString and might return a failure.
5322  MUST_USE_RESULT MaybeObject* SlowTryFlatten(PretenureFlag pretenure);
5323
5324  static inline bool IsHashFieldComputed(uint32_t field);
5325
5326  // Slow case of String::Equals.  This implementation works on any strings
5327  // but it is most efficient on strings that are almost flat.
5328  bool SlowEquals(String* other);
5329
5330  // Slow case of AsArrayIndex.
5331  bool SlowAsArrayIndex(uint32_t* index);
5332
5333  // Compute and set the hash code.
5334  uint32_t ComputeAndSetHash();
5335
5336  DISALLOW_IMPLICIT_CONSTRUCTORS(String);
5337};
5338
5339
5340// The SeqString abstract class captures sequential string values.
5341class SeqString: public String {
5342 public:
5343
5344  // Casting.
5345  static inline SeqString* cast(Object* obj);
5346
5347 private:
5348  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
5349};
5350
5351
5352// The AsciiString class captures sequential ascii string objects.
5353// Each character in the AsciiString is an ascii character.
5354class SeqAsciiString: public SeqString {
5355 public:
5356  static const bool kHasAsciiEncoding = true;
5357
5358  // Dispatched behavior.
5359  inline uint16_t SeqAsciiStringGet(int index);
5360  inline void SeqAsciiStringSet(int index, uint16_t value);
5361
5362  // Get the address of the characters in this string.
5363  inline Address GetCharsAddress();
5364
5365  inline char* GetChars();
5366
5367  // Casting
5368  static inline SeqAsciiString* cast(Object* obj);
5369
5370  // Garbage collection support.  This method is called by the
5371  // garbage collector to compute the actual size of an AsciiString
5372  // instance.
5373  inline int SeqAsciiStringSize(InstanceType instance_type);
5374
5375  // Computes the size for an AsciiString instance of a given length.
5376  static int SizeFor(int length) {
5377    return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
5378  }
5379
5380  // Layout description.
5381  static const int kHeaderSize = String::kSize;
5382  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
5383
5384  // Maximal memory usage for a single sequential ASCII string.
5385  static const int kMaxSize = 512 * MB;
5386  // Maximal length of a single sequential ASCII string.
5387  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
5388  static const int kMaxLength = (kMaxSize - kHeaderSize);
5389
5390  // Support for StringInputBuffer.
5391  inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
5392                                                unsigned* offset,
5393                                                unsigned chars);
5394  inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
5395                                                      unsigned* offset,
5396                                                      unsigned chars);
5397
5398 private:
5399  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
5400};
5401
5402
5403// The TwoByteString class captures sequential unicode string objects.
5404// Each character in the TwoByteString is a two-byte uint16_t.
5405class SeqTwoByteString: public SeqString {
5406 public:
5407  static const bool kHasAsciiEncoding = false;
5408
5409  // Dispatched behavior.
5410  inline uint16_t SeqTwoByteStringGet(int index);
5411  inline void SeqTwoByteStringSet(int index, uint16_t value);
5412
5413  // Get the address of the characters in this string.
5414  inline Address GetCharsAddress();
5415
5416  inline uc16* GetChars();
5417
5418  // For regexp code.
5419  const uint16_t* SeqTwoByteStringGetData(unsigned start);
5420
5421  // Casting
5422  static inline SeqTwoByteString* cast(Object* obj);
5423
5424  // Garbage collection support.  This method is called by the
5425  // garbage collector to compute the actual size of a TwoByteString
5426  // instance.
5427  inline int SeqTwoByteStringSize(InstanceType instance_type);
5428
5429  // Computes the size for a TwoByteString instance of a given length.
5430  static int SizeFor(int length) {
5431    return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
5432  }
5433
5434  // Layout description.
5435  static const int kHeaderSize = String::kSize;
5436  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
5437
5438  // Maximal memory usage for a single sequential two-byte string.
5439  static const int kMaxSize = 512 * MB;
5440  // Maximal length of a single sequential two-byte string.
5441  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
5442  static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
5443
5444  // Support for StringInputBuffer.
5445  inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
5446                                                  unsigned* offset_ptr,
5447                                                  unsigned chars);
5448
5449 private:
5450  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
5451};
5452
5453
5454// The ConsString class describes string values built by using the
5455// addition operator on strings.  A ConsString is a pair where the
5456// first and second components are pointers to other string values.
5457// One or both components of a ConsString can be pointers to other
5458// ConsStrings, creating a binary tree of ConsStrings where the leaves
5459// are non-ConsString string values.  The string value represented by
5460// a ConsString can be obtained by concatenating the leaf string
5461// values in a left-to-right depth-first traversal of the tree.
5462class ConsString: public String {
5463 public:
5464  // First string of the cons cell.
5465  inline String* first();
5466  // Doesn't check that the result is a string, even in debug mode.  This is
5467  // useful during GC where the mark bits confuse the checks.
5468  inline Object* unchecked_first();
5469  inline void set_first(String* first,
5470                        WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5471
5472  // Second string of the cons cell.
5473  inline String* second();
5474  // Doesn't check that the result is a string, even in debug mode.  This is
5475  // useful during GC where the mark bits confuse the checks.
5476  inline Object* unchecked_second();
5477  inline void set_second(String* second,
5478                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5479
5480  // Dispatched behavior.
5481  uint16_t ConsStringGet(int index);
5482
5483  // Casting.
5484  static inline ConsString* cast(Object* obj);
5485
5486  // Layout description.
5487  static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
5488  static const int kSecondOffset = kFirstOffset + kPointerSize;
5489  static const int kSize = kSecondOffset + kPointerSize;
5490
5491  // Support for StringInputBuffer.
5492  inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
5493                                                  unsigned* offset_ptr,
5494                                                  unsigned chars);
5495  inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
5496                                            unsigned* offset_ptr,
5497                                            unsigned chars);
5498
5499  // Minimum length for a cons string.
5500  static const int kMinLength = 13;
5501
5502  typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
5503          BodyDescriptor;
5504
5505 private:
5506  DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
5507};
5508
5509
5510// The ExternalString class describes string values that are backed by
5511// a string resource that lies outside the V8 heap.  ExternalStrings
5512// consist of the length field common to all strings, a pointer to the
5513// external resource.  It is important to ensure (externally) that the
5514// resource is not deallocated while the ExternalString is live in the
5515// V8 heap.
5516//
5517// The API expects that all ExternalStrings are created through the
5518// API.  Therefore, ExternalStrings should not be used internally.
5519class ExternalString: public String {
5520 public:
5521  // Casting
5522  static inline ExternalString* cast(Object* obj);
5523
5524  // Layout description.
5525  static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
5526  static const int kSize = kResourceOffset + kPointerSize;
5527
5528  STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
5529
5530 private:
5531  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
5532};
5533
5534
5535// The ExternalAsciiString class is an external string backed by an
5536// ASCII string.
5537class ExternalAsciiString: public ExternalString {
5538 public:
5539  static const bool kHasAsciiEncoding = true;
5540
5541  typedef v8::String::ExternalAsciiStringResource Resource;
5542
5543  // The underlying resource.
5544  inline Resource* resource();
5545  inline void set_resource(Resource* buffer);
5546
5547  // Dispatched behavior.
5548  uint16_t ExternalAsciiStringGet(int index);
5549
5550  // Casting.
5551  static inline ExternalAsciiString* cast(Object* obj);
5552
5553  // Garbage collection support.
5554  inline void ExternalAsciiStringIterateBody(ObjectVisitor* v);
5555
5556  template<typename StaticVisitor>
5557  inline void ExternalAsciiStringIterateBody();
5558
5559  // Support for StringInputBuffer.
5560  const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
5561                                                    unsigned* offset,
5562                                                    unsigned chars);
5563  inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
5564                                                     unsigned* offset,
5565                                                     unsigned chars);
5566
5567 private:
5568  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
5569};
5570
5571
5572// The ExternalTwoByteString class is an external string backed by a UTF-16
5573// encoded string.
5574class ExternalTwoByteString: public ExternalString {
5575 public:
5576  static const bool kHasAsciiEncoding = false;
5577
5578  typedef v8::String::ExternalStringResource Resource;
5579
5580  // The underlying string resource.
5581  inline Resource* resource();
5582  inline void set_resource(Resource* buffer);
5583
5584  // Dispatched behavior.
5585  uint16_t ExternalTwoByteStringGet(int index);
5586
5587  // For regexp code.
5588  const uint16_t* ExternalTwoByteStringGetData(unsigned start);
5589
5590  // Casting.
5591  static inline ExternalTwoByteString* cast(Object* obj);
5592
5593  // Garbage collection support.
5594  inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
5595
5596  template<typename StaticVisitor>
5597  inline void ExternalTwoByteStringIterateBody();
5598
5599
5600  // Support for StringInputBuffer.
5601  void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
5602                                                unsigned* offset_ptr,
5603                                                unsigned chars);
5604
5605 private:
5606  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
5607};
5608
5609
5610// Utility superclass for stack-allocated objects that must be updated
5611// on gc.  It provides two ways for the gc to update instances, either
5612// iterating or updating after gc.
5613class Relocatable BASE_EMBEDDED {
5614 public:
5615  inline Relocatable() : prev_(top_) { top_ = this; }
5616  virtual ~Relocatable() {
5617    ASSERT_EQ(top_, this);
5618    top_ = prev_;
5619  }
5620  virtual void IterateInstance(ObjectVisitor* v) { }
5621  virtual void PostGarbageCollection() { }
5622
5623  static void PostGarbageCollectionProcessing();
5624  static int ArchiveSpacePerThread();
5625  static char* ArchiveState(char* to);
5626  static char* RestoreState(char* from);
5627  static void Iterate(ObjectVisitor* v);
5628  static void Iterate(ObjectVisitor* v, Relocatable* top);
5629  static char* Iterate(ObjectVisitor* v, char* t);
5630 private:
5631  static Relocatable* top_;
5632  Relocatable* prev_;
5633};
5634
5635
5636// A flat string reader provides random access to the contents of a
5637// string independent of the character width of the string.  The handle
5638// must be valid as long as the reader is being used.
5639class FlatStringReader : public Relocatable {
5640 public:
5641  explicit FlatStringReader(Handle<String> str);
5642  explicit FlatStringReader(Vector<const char> input);
5643  void PostGarbageCollection();
5644  inline uc32 Get(int index);
5645  int length() { return length_; }
5646 private:
5647  String** str_;
5648  bool is_ascii_;
5649  int length_;
5650  const void* start_;
5651};
5652
5653
5654// Note that StringInputBuffers are not valid across a GC!  To fix this
5655// it would have to store a String Handle instead of a String* and
5656// AsciiStringReadBlock would have to be modified to use memcpy.
5657//
5658// StringInputBuffer is able to traverse any string regardless of how
5659// deeply nested a sequence of ConsStrings it is made of.  However,
5660// performance will be better if deep strings are flattened before they
5661// are traversed.  Since flattening requires memory allocation this is
5662// not always desirable, however (esp. in debugging situations).
5663class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
5664 public:
5665  virtual void Seek(unsigned pos);
5666  inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
5667  inline StringInputBuffer(String* backing):
5668      unibrow::InputBuffer<String, String*, 1024>(backing) {}
5669};
5670
5671
5672class SafeStringInputBuffer
5673  : public unibrow::InputBuffer<String, String**, 256> {
5674 public:
5675  virtual void Seek(unsigned pos);
5676  inline SafeStringInputBuffer()
5677      : unibrow::InputBuffer<String, String**, 256>() {}
5678  inline SafeStringInputBuffer(String** backing)
5679      : unibrow::InputBuffer<String, String**, 256>(backing) {}
5680};
5681
5682
5683template <typename T>
5684class VectorIterator {
5685 public:
5686  VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
5687  explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
5688  T GetNext() { return data_[index_++]; }
5689  bool has_more() { return index_ < data_.length(); }
5690 private:
5691  Vector<const T> data_;
5692  int index_;
5693};
5694
5695
5696// The Oddball describes objects null, undefined, true, and false.
5697class Oddball: public HeapObject {
5698 public:
5699  // [to_string]: Cached to_string computed at startup.
5700  DECL_ACCESSORS(to_string, String)
5701
5702  // [to_number]: Cached to_number computed at startup.
5703  DECL_ACCESSORS(to_number, Object)
5704
5705  // Casting.
5706  static inline Oddball* cast(Object* obj);
5707
5708  // Dispatched behavior.
5709#ifdef DEBUG
5710  void OddballVerify();
5711#endif
5712
5713  // Initialize the fields.
5714  MUST_USE_RESULT MaybeObject* Initialize(const char* to_string,
5715                                          Object* to_number);
5716
5717  // Layout description.
5718  static const int kToStringOffset = HeapObject::kHeaderSize;
5719  static const int kToNumberOffset = kToStringOffset + kPointerSize;
5720  static const int kSize = kToNumberOffset + kPointerSize;
5721
5722  typedef FixedBodyDescriptor<kToStringOffset,
5723                              kToNumberOffset + kPointerSize,
5724                              kSize> BodyDescriptor;
5725
5726 private:
5727  DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
5728};
5729
5730
5731class JSGlobalPropertyCell: public HeapObject {
5732 public:
5733  // [value]: value of the global property.
5734  DECL_ACCESSORS(value, Object)
5735
5736  // Casting.
5737  static inline JSGlobalPropertyCell* cast(Object* obj);
5738
5739#ifdef DEBUG
5740  void JSGlobalPropertyCellVerify();
5741#endif
5742#ifdef OBJECT_PRINT
5743  inline void JSGlobalPropertyCellPrint() {
5744    JSGlobalPropertyCellPrint(stdout);
5745  }
5746  void JSGlobalPropertyCellPrint(FILE* out);
5747#endif
5748
5749  // Layout description.
5750  static const int kValueOffset = HeapObject::kHeaderSize;
5751  static const int kSize = kValueOffset + kPointerSize;
5752
5753  typedef FixedBodyDescriptor<kValueOffset,
5754                              kValueOffset + kPointerSize,
5755                              kSize> BodyDescriptor;
5756
5757 private:
5758  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
5759};
5760
5761
5762
5763// Proxy describes objects pointing from JavaScript to C structures.
5764// Since they cannot contain references to JS HeapObjects they can be
5765// placed in old_data_space.
5766class Proxy: public HeapObject {
5767 public:
5768  // [proxy]: field containing the address.
5769  inline Address proxy();
5770  inline void set_proxy(Address value);
5771
5772  // Casting.
5773  static inline Proxy* cast(Object* obj);
5774
5775  // Dispatched behavior.
5776  inline void ProxyIterateBody(ObjectVisitor* v);
5777
5778  template<typename StaticVisitor>
5779  inline void ProxyIterateBody();
5780
5781#ifdef OBJECT_PRINT
5782  inline void ProxyPrint() {
5783    ProxyPrint(stdout);
5784  }
5785  void ProxyPrint(FILE* out);
5786#endif
5787#ifdef DEBUG
5788  void ProxyVerify();
5789#endif
5790
5791  // Layout description.
5792
5793  static const int kProxyOffset = HeapObject::kHeaderSize;
5794  static const int kSize = kProxyOffset + kPointerSize;
5795
5796  STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
5797
5798 private:
5799  DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
5800};
5801
5802
5803// The JSArray describes JavaScript Arrays
5804//  Such an array can be in one of two modes:
5805//    - fast, backing storage is a FixedArray and length <= elements.length();
5806//       Please note: push and pop can be used to grow and shrink the array.
5807//    - slow, backing storage is a HashTable with numbers as keys.
5808class JSArray: public JSObject {
5809 public:
5810  // [length]: The length property.
5811  DECL_ACCESSORS(length, Object)
5812
5813  // Overload the length setter to skip write barrier when the length
5814  // is set to a smi. This matches the set function on FixedArray.
5815  inline void set_length(Smi* length);
5816
5817  MUST_USE_RESULT MaybeObject* JSArrayUpdateLengthFromIndex(uint32_t index,
5818                                                            Object* value);
5819
5820  // Initialize the array with the given capacity. The function may
5821  // fail due to out-of-memory situations, but only if the requested
5822  // capacity is non-zero.
5823  MUST_USE_RESULT MaybeObject* Initialize(int capacity);
5824
5825  // Set the content of the array to the content of storage.
5826  inline void SetContent(FixedArray* storage);
5827
5828  // Casting.
5829  static inline JSArray* cast(Object* obj);
5830
5831  // Uses handles.  Ensures that the fixed array backing the JSArray has at
5832  // least the stated size.
5833  inline void EnsureSize(int minimum_size_of_backing_fixed_array);
5834
5835  // Dispatched behavior.
5836#ifdef OBJECT_PRINT
5837  inline void JSArrayPrint() {
5838    JSArrayPrint(stdout);
5839  }
5840  void JSArrayPrint(FILE* out);
5841#endif
5842#ifdef DEBUG
5843  void JSArrayVerify();
5844#endif
5845
5846  // Number of element slots to pre-allocate for an empty array.
5847  static const int kPreallocatedArrayElements = 4;
5848
5849  // Layout description.
5850  static const int kLengthOffset = JSObject::kHeaderSize;
5851  static const int kSize = kLengthOffset + kPointerSize;
5852
5853 private:
5854  // Expand the fixed array backing of a fast-case JSArray to at least
5855  // the requested size.
5856  void Expand(int minimum_size_of_backing_fixed_array);
5857
5858  DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
5859};
5860
5861
5862// JSRegExpResult is just a JSArray with a specific initial map.
5863// This initial map adds in-object properties for "index" and "input"
5864// properties, as assigned by RegExp.prototype.exec, which allows
5865// faster creation of RegExp exec results.
5866// This class just holds constants used when creating the result.
5867// After creation the result must be treated as a JSArray in all regards.
5868class JSRegExpResult: public JSArray {
5869 public:
5870  // Offsets of object fields.
5871  static const int kIndexOffset = JSArray::kSize;
5872  static const int kInputOffset = kIndexOffset + kPointerSize;
5873  static const int kSize = kInputOffset + kPointerSize;
5874  // Indices of in-object properties.
5875  static const int kIndexIndex = 0;
5876  static const int kInputIndex = 1;
5877 private:
5878  DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
5879};
5880
5881
5882// An accessor must have a getter, but can have no setter.
5883//
5884// When setting a property, V8 searches accessors in prototypes.
5885// If an accessor was found and it does not have a setter,
5886// the request is ignored.
5887//
5888// If the accessor in the prototype has the READ_ONLY property attribute, then
5889// a new value is added to the local object when the property is set.
5890// This shadows the accessor in the prototype.
5891class AccessorInfo: public Struct {
5892 public:
5893  DECL_ACCESSORS(getter, Object)
5894  DECL_ACCESSORS(setter, Object)
5895  DECL_ACCESSORS(data, Object)
5896  DECL_ACCESSORS(name, Object)
5897  DECL_ACCESSORS(flag, Smi)
5898
5899  inline bool all_can_read();
5900  inline void set_all_can_read(bool value);
5901
5902  inline bool all_can_write();
5903  inline void set_all_can_write(bool value);
5904
5905  inline bool prohibits_overwriting();
5906  inline void set_prohibits_overwriting(bool value);
5907
5908  inline PropertyAttributes property_attributes();
5909  inline void set_property_attributes(PropertyAttributes attributes);
5910
5911  static inline AccessorInfo* cast(Object* obj);
5912
5913#ifdef OBJECT_PRINT
5914  inline void AccessorInfoPrint() {
5915    AccessorInfoPrint(stdout);
5916  }
5917  void AccessorInfoPrint(FILE* out);
5918#endif
5919#ifdef DEBUG
5920  void AccessorInfoVerify();
5921#endif
5922
5923  static const int kGetterOffset = HeapObject::kHeaderSize;
5924  static const int kSetterOffset = kGetterOffset + kPointerSize;
5925  static const int kDataOffset = kSetterOffset + kPointerSize;
5926  static const int kNameOffset = kDataOffset + kPointerSize;
5927  static const int kFlagOffset = kNameOffset + kPointerSize;
5928  static const int kSize = kFlagOffset + kPointerSize;
5929
5930 private:
5931  // Bit positions in flag.
5932  static const int kAllCanReadBit = 0;
5933  static const int kAllCanWriteBit = 1;
5934  static const int kProhibitsOverwritingBit = 2;
5935  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
5936
5937  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
5938};
5939
5940
5941class AccessCheckInfo: public Struct {
5942 public:
5943  DECL_ACCESSORS(named_callback, Object)
5944  DECL_ACCESSORS(indexed_callback, Object)
5945  DECL_ACCESSORS(data, Object)
5946
5947  static inline AccessCheckInfo* cast(Object* obj);
5948
5949#ifdef OBJECT_PRINT
5950  inline void AccessCheckInfoPrint() {
5951    AccessCheckInfoPrint(stdout);
5952  }
5953  void AccessCheckInfoPrint(FILE* out);
5954#endif
5955#ifdef DEBUG
5956  void AccessCheckInfoVerify();
5957#endif
5958
5959  static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
5960  static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
5961  static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
5962  static const int kSize = kDataOffset + kPointerSize;
5963
5964 private:
5965  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
5966};
5967
5968
5969class InterceptorInfo: public Struct {
5970 public:
5971  DECL_ACCESSORS(getter, Object)
5972  DECL_ACCESSORS(setter, Object)
5973  DECL_ACCESSORS(query, Object)
5974  DECL_ACCESSORS(deleter, Object)
5975  DECL_ACCESSORS(enumerator, Object)
5976  DECL_ACCESSORS(data, Object)
5977
5978  static inline InterceptorInfo* cast(Object* obj);
5979
5980#ifdef OBJECT_PRINT
5981  inline void InterceptorInfoPrint() {
5982    InterceptorInfoPrint(stdout);
5983  }
5984  void InterceptorInfoPrint(FILE* out);
5985#endif
5986#ifdef DEBUG
5987  void InterceptorInfoVerify();
5988#endif
5989
5990  static const int kGetterOffset = HeapObject::kHeaderSize;
5991  static const int kSetterOffset = kGetterOffset + kPointerSize;
5992  static const int kQueryOffset = kSetterOffset + kPointerSize;
5993  static const int kDeleterOffset = kQueryOffset + kPointerSize;
5994  static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
5995  static const int kDataOffset = kEnumeratorOffset + kPointerSize;
5996  static const int kSize = kDataOffset + kPointerSize;
5997
5998 private:
5999  DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
6000};
6001
6002
6003class CallHandlerInfo: public Struct {
6004 public:
6005  DECL_ACCESSORS(callback, Object)
6006  DECL_ACCESSORS(data, Object)
6007
6008  static inline CallHandlerInfo* cast(Object* obj);
6009
6010#ifdef OBJECT_PRINT
6011  inline void CallHandlerInfoPrint() {
6012    CallHandlerInfoPrint(stdout);
6013  }
6014  void CallHandlerInfoPrint(FILE* out);
6015#endif
6016#ifdef DEBUG
6017  void CallHandlerInfoVerify();
6018#endif
6019
6020  static const int kCallbackOffset = HeapObject::kHeaderSize;
6021  static const int kDataOffset = kCallbackOffset + kPointerSize;
6022  static const int kSize = kDataOffset + kPointerSize;
6023
6024 private:
6025  DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
6026};
6027
6028
6029class TemplateInfo: public Struct {
6030 public:
6031  DECL_ACCESSORS(tag, Object)
6032  DECL_ACCESSORS(property_list, Object)
6033
6034#ifdef DEBUG
6035  void TemplateInfoVerify();
6036#endif
6037
6038  static const int kTagOffset          = HeapObject::kHeaderSize;
6039  static const int kPropertyListOffset = kTagOffset + kPointerSize;
6040  static const int kHeaderSize         = kPropertyListOffset + kPointerSize;
6041 protected:
6042  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
6043  DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
6044};
6045
6046
6047class FunctionTemplateInfo: public TemplateInfo {
6048 public:
6049  DECL_ACCESSORS(serial_number, Object)
6050  DECL_ACCESSORS(call_code, Object)
6051  DECL_ACCESSORS(property_accessors, Object)
6052  DECL_ACCESSORS(prototype_template, Object)
6053  DECL_ACCESSORS(parent_template, Object)
6054  DECL_ACCESSORS(named_property_handler, Object)
6055  DECL_ACCESSORS(indexed_property_handler, Object)
6056  DECL_ACCESSORS(instance_template, Object)
6057  DECL_ACCESSORS(class_name, Object)
6058  DECL_ACCESSORS(signature, Object)
6059  DECL_ACCESSORS(instance_call_handler, Object)
6060  DECL_ACCESSORS(access_check_info, Object)
6061  DECL_ACCESSORS(flag, Smi)
6062
6063  // Following properties use flag bits.
6064  DECL_BOOLEAN_ACCESSORS(hidden_prototype)
6065  DECL_BOOLEAN_ACCESSORS(undetectable)
6066  // If the bit is set, object instances created by this function
6067  // requires access check.
6068  DECL_BOOLEAN_ACCESSORS(needs_access_check)
6069
6070  static inline FunctionTemplateInfo* cast(Object* obj);
6071
6072#ifdef OBJECT_PRINT
6073  inline void FunctionTemplateInfoPrint() {
6074    FunctionTemplateInfoPrint(stdout);
6075  }
6076  void FunctionTemplateInfoPrint(FILE* out);
6077#endif
6078#ifdef DEBUG
6079  void FunctionTemplateInfoVerify();
6080#endif
6081
6082  static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
6083  static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
6084  static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
6085  static const int kPrototypeTemplateOffset =
6086      kPropertyAccessorsOffset + kPointerSize;
6087  static const int kParentTemplateOffset =
6088      kPrototypeTemplateOffset + kPointerSize;
6089  static const int kNamedPropertyHandlerOffset =
6090      kParentTemplateOffset + kPointerSize;
6091  static const int kIndexedPropertyHandlerOffset =
6092      kNamedPropertyHandlerOffset + kPointerSize;
6093  static const int kInstanceTemplateOffset =
6094      kIndexedPropertyHandlerOffset + kPointerSize;
6095  static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
6096  static const int kSignatureOffset = kClassNameOffset + kPointerSize;
6097  static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
6098  static const int kAccessCheckInfoOffset =
6099      kInstanceCallHandlerOffset + kPointerSize;
6100  static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
6101  static const int kSize = kFlagOffset + kPointerSize;
6102
6103 private:
6104  // Bit position in the flag, from least significant bit position.
6105  static const int kHiddenPrototypeBit   = 0;
6106  static const int kUndetectableBit      = 1;
6107  static const int kNeedsAccessCheckBit  = 2;
6108
6109  DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
6110};
6111
6112
6113class ObjectTemplateInfo: public TemplateInfo {
6114 public:
6115  DECL_ACCESSORS(constructor, Object)
6116  DECL_ACCESSORS(internal_field_count, Object)
6117
6118  static inline ObjectTemplateInfo* cast(Object* obj);
6119
6120#ifdef OBJECT_PRINT
6121  inline void ObjectTemplateInfoPrint() {
6122    ObjectTemplateInfoPrint(stdout);
6123  }
6124  void ObjectTemplateInfoPrint(FILE* out);
6125#endif
6126#ifdef DEBUG
6127  void ObjectTemplateInfoVerify();
6128#endif
6129
6130  static const int kConstructorOffset = TemplateInfo::kHeaderSize;
6131  static const int kInternalFieldCountOffset =
6132      kConstructorOffset + kPointerSize;
6133  static const int kSize = kInternalFieldCountOffset + kPointerSize;
6134};
6135
6136
6137class SignatureInfo: public Struct {
6138 public:
6139  DECL_ACCESSORS(receiver, Object)
6140  DECL_ACCESSORS(args, Object)
6141
6142  static inline SignatureInfo* cast(Object* obj);
6143
6144#ifdef OBJECT_PRINT
6145  inline void SignatureInfoPrint() {
6146    SignatureInfoPrint(stdout);
6147  }
6148  void SignatureInfoPrint(FILE* out);
6149#endif
6150#ifdef DEBUG
6151  void SignatureInfoVerify();
6152#endif
6153
6154  static const int kReceiverOffset = Struct::kHeaderSize;
6155  static const int kArgsOffset     = kReceiverOffset + kPointerSize;
6156  static const int kSize           = kArgsOffset + kPointerSize;
6157
6158 private:
6159  DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
6160};
6161
6162
6163class TypeSwitchInfo: public Struct {
6164 public:
6165  DECL_ACCESSORS(types, Object)
6166
6167  static inline TypeSwitchInfo* cast(Object* obj);
6168
6169#ifdef OBJECT_PRINT
6170  inline void TypeSwitchInfoPrint() {
6171    TypeSwitchInfoPrint(stdout);
6172  }
6173  void TypeSwitchInfoPrint(FILE* out);
6174#endif
6175#ifdef DEBUG
6176  void TypeSwitchInfoVerify();
6177#endif
6178
6179  static const int kTypesOffset = Struct::kHeaderSize;
6180  static const int kSize        = kTypesOffset + kPointerSize;
6181};
6182
6183
6184#ifdef ENABLE_DEBUGGER_SUPPORT
6185// The DebugInfo class holds additional information for a function being
6186// debugged.
6187class DebugInfo: public Struct {
6188 public:
6189  // The shared function info for the source being debugged.
6190  DECL_ACCESSORS(shared, SharedFunctionInfo)
6191  // Code object for the original code.
6192  DECL_ACCESSORS(original_code, Code)
6193  // Code object for the patched code. This code object is the code object
6194  // currently active for the function.
6195  DECL_ACCESSORS(code, Code)
6196  // Fixed array holding status information for each active break point.
6197  DECL_ACCESSORS(break_points, FixedArray)
6198
6199  // Check if there is a break point at a code position.
6200  bool HasBreakPoint(int code_position);
6201  // Get the break point info object for a code position.
6202  Object* GetBreakPointInfo(int code_position);
6203  // Clear a break point.
6204  static void ClearBreakPoint(Handle<DebugInfo> debug_info,
6205                              int code_position,
6206                              Handle<Object> break_point_object);
6207  // Set a break point.
6208  static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
6209                            int source_position, int statement_position,
6210                            Handle<Object> break_point_object);
6211  // Get the break point objects for a code position.
6212  Object* GetBreakPointObjects(int code_position);
6213  // Find the break point info holding this break point object.
6214  static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
6215                                    Handle<Object> break_point_object);
6216  // Get the number of break points for this function.
6217  int GetBreakPointCount();
6218
6219  static inline DebugInfo* cast(Object* obj);
6220
6221#ifdef OBJECT_PRINT
6222  inline void DebugInfoPrint() {
6223    DebugInfoPrint(stdout);
6224  }
6225  void DebugInfoPrint(FILE* out);
6226#endif
6227#ifdef DEBUG
6228  void DebugInfoVerify();
6229#endif
6230
6231  static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
6232  static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
6233  static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
6234  static const int kActiveBreakPointsCountIndex =
6235      kPatchedCodeIndex + kPointerSize;
6236  static const int kBreakPointsStateIndex =
6237      kActiveBreakPointsCountIndex + kPointerSize;
6238  static const int kSize = kBreakPointsStateIndex + kPointerSize;
6239
6240 private:
6241  static const int kNoBreakPointInfo = -1;
6242
6243  // Lookup the index in the break_points array for a code position.
6244  int GetBreakPointInfoIndex(int code_position);
6245
6246  DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
6247};
6248
6249
6250// The BreakPointInfo class holds information for break points set in a
6251// function. The DebugInfo object holds a BreakPointInfo object for each code
6252// position with one or more break points.
6253class BreakPointInfo: public Struct {
6254 public:
6255  // The position in the code for the break point.
6256  DECL_ACCESSORS(code_position, Smi)
6257  // The position in the source for the break position.
6258  DECL_ACCESSORS(source_position, Smi)
6259  // The position in the source for the last statement before this break
6260  // position.
6261  DECL_ACCESSORS(statement_position, Smi)
6262  // List of related JavaScript break points.
6263  DECL_ACCESSORS(break_point_objects, Object)
6264
6265  // Removes a break point.
6266  static void ClearBreakPoint(Handle<BreakPointInfo> info,
6267                              Handle<Object> break_point_object);
6268  // Set a break point.
6269  static void SetBreakPoint(Handle<BreakPointInfo> info,
6270                            Handle<Object> break_point_object);
6271  // Check if break point info has this break point object.
6272  static bool HasBreakPointObject(Handle<BreakPointInfo> info,
6273                                  Handle<Object> break_point_object);
6274  // Get the number of break points for this code position.
6275  int GetBreakPointCount();
6276
6277  static inline BreakPointInfo* cast(Object* obj);
6278
6279#ifdef OBJECT_PRINT
6280  inline void BreakPointInfoPrint() {
6281    BreakPointInfoPrint(stdout);
6282  }
6283  void BreakPointInfoPrint(FILE* out);
6284#endif
6285#ifdef DEBUG
6286  void BreakPointInfoVerify();
6287#endif
6288
6289  static const int kCodePositionIndex = Struct::kHeaderSize;
6290  static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
6291  static const int kStatementPositionIndex =
6292      kSourcePositionIndex + kPointerSize;
6293  static const int kBreakPointObjectsIndex =
6294      kStatementPositionIndex + kPointerSize;
6295  static const int kSize = kBreakPointObjectsIndex + kPointerSize;
6296
6297 private:
6298  DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
6299};
6300#endif  // ENABLE_DEBUGGER_SUPPORT
6301
6302
6303#undef DECL_BOOLEAN_ACCESSORS
6304#undef DECL_ACCESSORS
6305
6306
6307// Abstract base class for visiting, and optionally modifying, the
6308// pointers contained in Objects. Used in GC and serialization/deserialization.
6309class ObjectVisitor BASE_EMBEDDED {
6310 public:
6311  virtual ~ObjectVisitor() {}
6312
6313  // Visits a contiguous arrays of pointers in the half-open range
6314  // [start, end). Any or all of the values may be modified on return.
6315  virtual void VisitPointers(Object** start, Object** end) = 0;
6316
6317  // To allow lazy clearing of inline caches the visitor has
6318  // a rich interface for iterating over Code objects..
6319
6320  // Visits a code target in the instruction stream.
6321  virtual void VisitCodeTarget(RelocInfo* rinfo);
6322
6323  // Visits a code entry in a JS function.
6324  virtual void VisitCodeEntry(Address entry_address);
6325
6326  // Visits a global property cell reference in the instruction stream.
6327  virtual void VisitGlobalPropertyCell(RelocInfo* rinfo);
6328
6329  // Visits a runtime entry in the instruction stream.
6330  virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
6331
6332  // Visits the resource of an ASCII or two-byte string.
6333  virtual void VisitExternalAsciiString(
6334      v8::String::ExternalAsciiStringResource** resource) {}
6335  virtual void VisitExternalTwoByteString(
6336      v8::String::ExternalStringResource** resource) {}
6337
6338  // Visits a debug call target in the instruction stream.
6339  virtual void VisitDebugTarget(RelocInfo* rinfo);
6340
6341  // Handy shorthand for visiting a single pointer.
6342  virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
6343
6344  // Visits a contiguous arrays of external references (references to the C++
6345  // heap) in the half-open range [start, end). Any or all of the values
6346  // may be modified on return.
6347  virtual void VisitExternalReferences(Address* start, Address* end) {}
6348
6349  inline void VisitExternalReference(Address* p) {
6350    VisitExternalReferences(p, p + 1);
6351  }
6352
6353#ifdef DEBUG
6354  // Intended for serialization/deserialization checking: insert, or
6355  // check for the presence of, a tag at this position in the stream.
6356  virtual void Synchronize(const char* tag) {}
6357#else
6358  inline void Synchronize(const char* tag) {}
6359#endif
6360};
6361
6362
6363class StructBodyDescriptor : public
6364  FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
6365 public:
6366  static inline int SizeOf(Map* map, HeapObject* object) {
6367    return map->instance_size();
6368  }
6369};
6370
6371
6372// BooleanBit is a helper class for setting and getting a bit in an
6373// integer or Smi.
6374class BooleanBit : public AllStatic {
6375 public:
6376  static inline bool get(Smi* smi, int bit_position) {
6377    return get(smi->value(), bit_position);
6378  }
6379
6380  static inline bool get(int value, int bit_position) {
6381    return (value & (1 << bit_position)) != 0;
6382  }
6383
6384  static inline Smi* set(Smi* smi, int bit_position, bool v) {
6385    return Smi::FromInt(set(smi->value(), bit_position, v));
6386  }
6387
6388  static inline int set(int value, int bit_position, bool v) {
6389    if (v) {
6390      value |= (1 << bit_position);
6391    } else {
6392      value &= ~(1 << bit_position);
6393    }
6394    return value;
6395  }
6396};
6397
6398} }  // namespace v8::internal
6399
6400#endif  // V8_OBJECTS_H_
6401